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Abstract  Öz 

Condition monitoring in machines holds significant 

importance for early fault detection, optimizing 

maintenance processes, and ensuring operational 

continuity. In this study, a novel intelligent detection 

approach for rolling bearings is introduced, utilizing the 

Common Spatial Pattern (CSP) method to extract 

distinctive features related to bearing faults. By maximizing 

the variance ratio of signal matrices from distinct sources, 

CSP sets itself apart from conventional frequency-based 

features. This technique captures characteristic vibration 

patterns unique to each measurement, enabling 

differentiation between faulty and healthy bearings. The 

effectiveness of the proposed method was assessed using 

Artificial Neural Network (ANN), Support Vector Machine 

(SVM), and K-Nearest Neighbour (k-NN) algorithms 

across two diverse datasets. The results indicated an 88.5% 

accuracy in two-class fault detection and 93.5% in fault 

classification when employing ANN. Comparison with 

traditional time domain feature sets highlighted the superior 

performance of CSP features, exhibiting elevated accuracy 

rates in both two-class and multiclass scenarios. Thus, CSP 

features emerge as a promising avenue for effectively 

monitoring bearing conditions through vibration data. 

 Makinelerde durum izleme, erken arıza tespiti, bakım 

süreçlerinin optimize edilmesi ve iş sürekliliğinin 

sağlanması açısından büyük öneme sahiptir. Bu çalışmada, 

rulmanlar için yeni bir akıllı tespit yaklaşımı sunulmuş, 

rulman arızalarıyla ilgili ayırt edici öznitelikleri çıkarmak 

için Ortak Uzamsal Örüntü (OUÖ) yöntemi kullanılmıştır. 

Farklı kaynaklardan gelen sinyal matrislerinin varyans 

oranını maksimize eden OUÖ, geleneksel frekans temelli 

özniteliklerden ayrılır. Bu teknik, her ölçümde benzersiz 

titreşim desenlerini yakalayarak arızalı ve sağlam 

rulmanlar arasındaki farkı belirlemeyi sağlar. Önerilen 

yöntemin etkinliği Yapay Sinir Ağı (YSA), Destek Vektör 

Makinesi (DVM) ve K-En Yakın Komşu (k-YK) 

algoritmaları kullanılarak iki farklı veri kümesinde 

değerlendirildi. Sonuçlar, YSA kullanıldığında iki sınıflı 

arıza tespitinde %88.5 doğruluk ve arıza sınıflandırmasında 

%93.5 doğruluk elde edilebileceğini gösterdi. Geleneksel 

zaman alanı öznitelikleri ile yapılan karşılaştırma, OUÖ 

özniteliklerinin üstün performansını ortaya koydu. OUÖ iki 

sınıflı ve çoklu sınıflı senaryolarda yüksek doğruluk 

oranları sergiledi. Böylece, OUÖ öznitelikleri titreşim 

verileri aracılığıyla rulman arızalarının etkili bir şekilde 

tespit edilmesi için umut verici bir yol olarak ortaya 

çıkmaktadır. 

Keywords: Common spatial pattern, Bearings, Condition 

monitoring, Vibration signals 

 Anahtar kelimeler: Ortak uzamsal örüntü, Rulmanlar, 

Durum izleme, Titreşim sinyalleri 

1 Introduction 

Bearings are basic machine elements commonly used in 

rotating machinery such as in aviation, turbines, agricultural 

equipment, and motor vehicles. They can carry high dynamic 

loads that occur during the operation of the machines and are 

transmitted around the rolling element bearings [1]. 

Therefore, any failure in a bearing can cause serious 

problems that may lead to production deficiency and 

financial loss. Bearings often operate for long hours in harsh 

environments and frequently lose performance or break 

down [2]. It has been highlighted that a considerable portion 

of breakdowns in rotating machines is attributed to faulty 

bearings [3]. Hence, it is very important to study the 

condition monitoring of bearings for reducing operating 

costs and preventing industrial accidents. 

Bearings produce noise and vibration due to their 

changing working conditions or due to any damage to the 

body. The radial loading of bearings may cause vibration 

even when they are geometrically perfect [4]. The 

oscillations may increase due to a defect [5]. In the rotating 

machinery industry, a vast number of condition-based 

strategies have been invented to describe the occurrence of 

faults [6]. The signal characteristics of a faulty bearing are 

generally non-stationary and multi-component which makes 

it difficult to identify from the raw signal accurately. Various 

techniques have been improved to detect failures in bearings 

[7]. 

In recent years, the analysis of vibration signals has 

become one of the most preferred and efficient methods used 

for detecting faults in bearings [8]. A large number of 

https://orcid.org/0000-0002-7016-5201
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diagnosis strategies have been recommended for vibration 

signal analysis [9], combining various feature extraction and 

classification methods for machine faults [10]. Feature 

extraction is considered the main distinguishing point in 

bearing fault diagnosis which is a crucial step for time 

domain, frequency domain, or both domains data by 

removing the noise and gathering the subject-specific 

information. Various methods, such as wavelet denoising 

[11], empirical mode decomposition [12], and time-

frequency manifolds [13], have already been used to filter 

the noise and obtain satisfactory results. Among them, the 

wavelet denoising method is more efficient and usable. In 

frequency domain analysis [14], the repetition frequencies of 

the impulse response series, which arise both from the 

passage of the fault in and out of the load zone are observed 

by several mathematical methods. Among them, the spectral 

representation of signals and the Fourier transform are the 

most preferred, easy-to-apply algorithms [15]. Moreover, 

Kalman filtering [16], the spectrogram [17], empirical mode 

decomposition [18], multiscale permutation entropy [19], the 

envelope spectrum [20], the adaptive spectral kurtosis [21], 

the cyclic spectral correlation and coherence [22] and the 

negentropy [23] are some of the other commonly used 

algorithms. The defect frequency extraction is not very 

efficient in rolling bearings with a low signal-noise ratio 

(SNR). It is stated that the impulse energy of the defective 

bearing is kept in the machine noise and the fault frequency 

can not be observed in the envelope spectrum [24]. In this 

case, besides the frequency range of the impact location, the 

exact time of emergence of the impact is also necessary. 

Therefore, time-frequency analysis like wavelet transform 

[25] and its combinations with envelope spectrum [26], 

multi-scale morphological filters [27], adaptive mode 

decomposition [28], multiscale complexity analysis [29], 

autoregressive model [30] and Wigner-Ville analysis [31] 

are the other methods that were used. However, if the fault 

signals are weak, these methods may not work. 

Since the signal characteristics and the processing 

methods have much in common, feature extraction 

techniques used in biomedical signal analysis have found 

themselves a way into rotating machinery analysis. 

Therefore, we proposed the Common Spatial Pattern (CSP) 

method, which is considered a powerful feature extraction 

method in the electroencephalogram (EEG) processing for 

Brain-Computer Interfaces (BCI) for the vibration data of 

bearings [32]. The method of common spatial patterns (CSP) 

implements spatial filters by computing the variances in the 

filtered time series for optimal discrimination [33]. Spatial 

filtering can significantly enhance the discrimination ability 

while separating the signal from the noise. In a recent study 

by Karabacak and Özmen [34], CSP has become successful 

in diagnosing the faults of worm gearboxes under different 

working conditions. In a study by Li et al. [35], a variational 

mode decomposition and high dimensional Common Spatial 

Pattern-based feature extraction are utilized for rolling 

bearings. 

Although bearing diagnostics are widely studied and 

many methods have been developed for them, due to the 

improvements in the feature extraction of various signals, 

new methods are being introduced to the condition 

monitoring of bearings.  In this study, we have tested the CSP 

method on the Case Western Reserve University (CWRU) 

Bearing Data [36,37] and the University of Ferrara, Italy, 

Engineering Department Data [38], to classify healthy and 

faulty bearings. ANN, SVM, and k-NN are used to train CSP 

features and then to classify the faults [39]. The results of the 

study were given comparatively by accuracy metrics. The 

results of the study were given comparatively by SVM and 

k-NN by accuracy metrics. Furthermore, classical time 

domain features and the high distinguishing capability of the 

CSP features were compared and the results are presented. 

Support Vector Machine (SVM), Naive Bayes, K-

Nearest Neighbor (k-NN), Random Forest, Decision Trees, 

and Deep Learning methods are the frequently used machine 

learning algorithms in fault detection of machinery [40]. The 

superiority of Artificial Neural Networks (ANN) and SVM 

has been proven in rotating machines [41]. Newly, Deep 

Learning (DL) based solutions like Convolutional Neural 

Networks (CNNs) have also been tried for fault diagnosis of 

bearings [42]. Deep learning and ensemble learning 

techniques have some limitations. A reasonable amount of 

data gathering and complex analyzing methods with their 

tuning is still a problem to handle which can be handled in 

future studies [43]. 

In the study by Zhao et al. [44], bearing fault diagnosis 

was performed using transfer learning and an optimized deep 

belief network. The effectiveness of the proposed approach 

was validated using vibration data from a rotating 

machinery. In the research conducted by Kaya et al. [45], 

they introduced a novel approach for feature extraction in 

bearing fault classification. Their method involved utilizing 

one-dimensional gray-level co-occurrence matrices. Upon 

subjecting the signals to their proposed model, the achieved 

success rates were notably high across various datasets. In 

the study conducted by Bayram et al. [46], the impact of 

bearing faults on coefficients obtained through wavelet 

transform was investigated. Through a series of experimental 

studies, it was concluded that the approach reliant on wavelet 

transform coefficients effectively achieves the classification 

of distinct types of bearing faults. In their study, Kaya et al 

[47]. introduced a novel method for automated diagnosis of 

bearing fault sizes. This method involves the utilization of 

time-frequency images generated through Continuous 

Wavelet Transform (CWT), coupled with deep transfer 

learning techniques. In his research, Kuncan [48] presented 

an intelligent methodology for bearing fault diagnosis that 

involves the integration of two distinct techniques: one-

dimensional local binary pattern analysis and gray relational 

analysis. In the study conducted by Yang et al. [49], the focus 

was on the interpretability of deep convolutional neural 

networks (CNNs) in the context of rolling bearing fault 

diagnosis. 

Up to now, many methods have been presented for 

condition monitoring some of which were for constant 

operational conditions and therefore do not represent the real 

working conditions in industrial applications [50]. In [51], it 

is stated that there is a need for a benchmark study that 

applies novel diagnostic algorithms and they have presented 
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some solid results. They suggested that the researchers 

propose novel methods and propose the superiority of their 

algorithm against the Randall results or similar results with 

cost-effective methods. Therefore, in this study, we used the 

Common Spatial Pattern method as a new diagnosing tool to 

distinguish bearing faults, which is a powerful feature 

extraction technique in EEG signal processing. To give a 

better diagnosis for datasets, the CSP-based approach can 

overcome the confusion created by the nonlinearity and the 

inadequacy of classical methods such as statistical features 

and envelope analysis. Moreover, it is computationally 

simple and efficient. The study is unique in its use of CSP 

features for the fault detection of bearings and performing a 

remarkable classification performance when compared to the 

state-of-the-art methods. 

The remainder of this paper is presented in the following 

manner. In Section 2, the data sets are introduced and the 

theoretical background of CSP is given. Section 3 presents 

the results of both data sets with the proposed models. The 

Conclusions are given in the final chapter Section 4. 

2 Materials and methods 

2.1 The ball bearing and its geometry 

Bearings are precision-manufactured machine elements 

that enable machines to work efficiently at high speeds and 

to carry heavy loads safely. As there are balls placed between 

the inner and outer races of rolling elements, they can carry 

axial or radial loads with minimum torsional friction. Deep 

groove ball bearings are the simplest type of bearings 

commonly used in industry. The main parts of the ball 

bearings such as the inner, and outer races, balls, the cage, 

and the shaft are given in Figure 1 [52]. 

 

 

Figure 1. Fundamental dimensions of Deep-groove 

bearing (OD: outer race diameter; D: pitch diameter; ID: 

inner diameter or bore diameter; d: rolling element 

diameter, W: raceway width, α: contact angle [52] 

 

During the rotation of a ball bearing, the outer race is 

fixed while the inner race and balls move. The correct 

alignment and placement are very important for the 

maximum lifespan of this equipment, if not, several kinds of 

defects can occur such as cracks or pits on moving surfaces 

or bearing elements, or other harms such as roughness or 

misaligned races may occur. The cracks or pits may be 

observed on the inside of the outer race such that is forced 

with higher loads. On the other hand, the inner race faults 

can be observed at any point of the race due to rotation. 

2.2 The Case Western Reserve University dataset 

(CWRU) 

In this study, we used the Case Western Reserve 

University (CWRU) vibration data [51]. In Figure 2 the test 

system is shown which has a 2 hp Reliance Electric motor 

with a torque sensor and encoder fixed on it. Torque is 

supplied from a dynamometer and an electronic control unit. 

The CWRU Bearing Data Center website has details about 

the test system [36]. 

 

 

Figure 2. The bearing test rig [51] 

 

The data were obtained for many different conditions and 

161 datasets were formed. We used the dataset from Table 3, 

48k drive end bearing fault data with 48 kHz sampling 

frequency, containing 1 healthy and 3 defective bearings 

(6203-2RS). They are denoted as HB (healthy bearing), FB1 

(bearing with outer race fault), FB2 (bearing with inner race 

fault), and FB3 (bearing with rolling element fault). The 

speed of the shaft in the experimental setup was 

approximately 6 Hz for all signals, and the sampling 

frequency was 48000 samples/s. The signal length is 200000 

samples for each bearing [51]. Table 1 shows the 

fundamental specifications of the bearings. 

A reasonable amount of vibration can be observed in ball 

bearings; even if they are perfectly aligned and fixed. The 

vibration level may increase if there is any fault in one of the 

elements of the ball bearing. Figure 3 shows common 

bearing faults. 

 

 

Figure 3. Pictures of HB (healthy bearing), FB1 (bearing 

with outer race fault), FB2 (bearing with inner race fault), 

and FB3 (bearing with rolling element fault) [42] 
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Table 1. Fundamental dimensions of the test bearings [51] 

Symbol Explanation Value 

D Pitch diameter 38.5 [mm] 
ID Inner diameter 25 [mm] 

OD Outer race diameter 52 [mm] 

d Rolling element diameter 7.12 [mm] 
W Raceway width 15 [mm] 

n The rolling element number  12 [-] 

α The angle of contact  0 [°] 

2.3 The University of Ferrara dataset 

The second data set is from the The University of Ferrara, 

Department of Engineering from Italy [38]. This dataset 

comprises the vibration data obtained throughout a test study 

on bearings defined by artificial faults on the outer ring. 

Vibration signals were obtained for several working statuses. 

These were described by various values of implemented 

load, shaft rotation speed, and fault size. The test rig is given 

in Figure 4. The bearing faults utilized in the experiments 

can be seen schematically in Figure 5. The test bearing is 

mounted on the shaft end and enclosed in a housing. Apart 

from the test bearing, two bearings are utilized as supporting 

bearings. There is a coupling between the support bearings 

and the electric motor. An inverter controls the speed of the 

electric motor. Different loads can be implemented to the test 

bearing in the vertical direction. The acceleration signals are 

obtained using a data collection system and a sensor mounted 

on the test bearing [38]. 

 

 

Figure 4. The University of Ferrara bearing test rig [38] 

 

 

Figure 5. The University of Ferrara dataset fault types 

 

Bearings with different fault sizes (FB1-2, FB2-2, and 

FB3-2) were tested under various combinations of applied 

loads and shaft rotational speeds, and vibration data were 

collected. Faults in the outer ring of the bearings were 

artificially made by the electric discharge process. The 

sampling frequency of each signal is 51.2 kHz and the 

measurement time is 15 s [38]. 

2.4 Methodology 

The data sets are evaluated separately. According to the 

flowchart in Figure 6, the raw data is preprocessed then the 

feature extraction is applied. After that, the feature sets are 

sent to the classifiers in order to detect healthy and faulty 

bearings with different defect types. 

 

 

Figure 6. The bearing fault detection flowchart 
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2.4.1 Feature extraction with Common Spatial Pattern 

(CSP) 

In signal processing, the CSP method separates a 

multivariate signal with maximum distinctions in variance 

between two windows. It is efficiently used in maximizing 

the variance ratio of the two-class signal matrices in EEG 

signal processing and it can be applied to two or multi-class 

classification problems. If 
1X  and 

2X  are the estimates of 

the covariance matrices of classes 1 and 2 respectively, then 

the CSP algorithm uses the simultaneous diagonalization of 

two covariance matrices (
1X ,

2X ). This can be implemented 

mathematically by solving the eigenvalue decomposition 

problem [53]. 

In Equation (1), P  is the CSP projection matrix (
NXNP R ), and it obtains the features whose variances are 

best for classifying two classes of signals. The rows of  P  

are fixed spatial filters, and CSP can be calculated from rows 

of 
1P
.  D is a diagonal matrix and involves the eigenvalues 

of 
1X . For each thj  attempt of the vibration signal, 

NXT

jV R  is converted into a low-dimensional subspace with 

the projection matrix ( P ). Here, jV  is the matrix composed 

of vectors of vibration signals. Besides, N denotes the 

number of vibration signals and T represents the number of 

samples per trial. In Equation (2), the linear transformation 

of the thj  trial is given. Here 
NXT

jS R  is used to show the 

spatially filtered data, and these signals maximize the 

difference in the variance of two classes of vibration data 

[53]. 

 

1 1 2( )X P X X PD   (1) 

 

j jS PV  (2) 

 

The subsets of the data are selected from the n pairs of 

the first and last rows of jS . If 
2nxT

fS R  are the first and 

last rows of jS , then the variance of fS  forms the feature 

vector for the thj  trial. Accordingly, jf  can be written as in 

Equation (3) ( 2n   and
2n

jf R ). Here, jf  denotes the 

two-class features for one class versus another class for the 
thj trial [53]. 

 

2

1

var( )
log

var( )

f

j n

fj

S
f

S


 
 
 
 

 (3) 

 

Figure 7 shows the distribution of samples of two classes 

before and after CSP filtering. The red and blue circles are 

plotted from Gaussian distributions of healthy and faulty 

bearing sets. In (a), the distribution of prefiltering is shown. 

In (b), the distribution after the filtering is given. The 

samples in Figure 7(a) are mapped to the ones in Figure 7(b) 

by CSP where the two distributions are completely different 

along the new axes. The estimated covariances show the 

direction of CSP projections. It is clear that the two classes 

are independent of each other, that is, they are different 

classes. Therefore, the horizontal (vertical) axis represents 

the highest variance in the red (blue) class and oppositely the 

smallest in the blue (red) class [54]. 

 

 

Figure 7. (a) Distribution of vibration data before CSP 

filtering (b) Distribution of vibration data after CSP 

filtering 

2.4.2 Fault detection 

After the 2000s, ANN has become a superb machine 

learning technique. It is commonly applied to many 

engineering problems from modeling to classification. There 

are many studies in the literature on the condition monitoring 

of rotary machines and bearing fault detection [55]. 

A representative ANN is shown in Figure 8 containing 

two hidden layers. The parameters, 
1x , 

2x  and 
3x  represent 

the inputs, and y represents the output. A mathematical 

function is defined as in Equation (4) for the relation between 

the output and inputs. f  is the activation function of the 

network, and b  is a fixed quantity. The classifier parameter 

or weight is shown by W produced after an iterative training 

process [43]. 

 
3

1

( )T

i i

i

y f W x f W x b


 
   

 
  (4) 

 

 

Figure 8. Two hidden layers of the ANN 

https://en.wikipedia.org/wiki/Multivariate_analysis
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Window_function
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The dataset containing vibration data CSP features is 

used in the detection of bearing faults with two-class or 

multi-class ANN classifiers. For this purpose, the binary 

classification contains six pairs where the ANN outputs are 

labeled as healthy and faulty bearing pairs (Table 2). The 

datasets are partitioned as 70% training, 15% validation, and 

15% test. In multiple classifications, the one versus rest-

voting strategy is used to obtain the four classes of all bearing 

types (Table 2). 

 

Table 2. Binary and multiclass CSP pairs for machine 

learning algorithms 

CWRU Two-class 

Classification 

Pairs 

HB 

vs 

FB1 

HB 

vs 

FB2 

HB 

vs 

FB3 

FB1 

vs 

FB2 

FB1 

vs 

FB3 

FB2 

vs 

 FB3 

The University of 

Ferrara Two-class 

Classification 

Pairs 

FB1-2 vs 

FB2-2 

FB1-2 vs 

FB3-2 

FB2-2 vs  

FB3-2 

CWRU Multiclass 

Classification 

HB FB1, FB2, FB3 

FB1 HB, FB2, FB3 

FB2 HB, FB1, FB3 

FB3 HB, FB1, FB2 

The University of 

Ferrara Multiclass 

Classification 

Pairs 

FB1-2 FB2-2, FB3-2 

FB2-2 FB1-2, FB3-2 

FB3-2 FB1-2, FB2-2 

 

We used a feedforward ANN algorithm with a hidden 

and output layer both binary and multiple classification 

processes. In most ANN problems, using a single hidden 

layer is usually sufficient to solve the problem. There is no 

general rule in determining the number of neurons in the 

hidden layer. If the number of neurons in the hidden layer is 

chosen too small, the classification success will be low. 

Using a large number of neurons in the hidden layer can 

result in longer training time and overfitting. Accordingly, in 

order to designate the optimal number of neurons in the 

hidden layer, the dimensions of the input and output layers 

should be chosen by considering them. After some trials, the 

feasible artificial neuron numbers in the hidden layer were 

chosen as 20. We utilized the log-sigmoid transfer function 

as it is suitable and preferred for small networks. 

SVM is a well-known supervised method that creates a 

hyperplane between different datasets and classifies two 

classes of data. SVM moves the problem to a higher 

dimensional space using a suitable kernel function, and it 

solves complex and multidimensional problems [56]. K-NN 

non-parametric supervised learning method which is used 

mostly for classification and regression. The output of k-NN 

is a class membership where the class label of a new sample 

is attained by the class label of its k nearest neighbors [57]. 

The Euclidean distance is the most commonly used metric. 

2.4.3 Classification evaluation criteria 

The toolboxes in Matlab R2021a software were used for 

ANN, SVM, and k-NN applications in this study. Accuracy, 

precision, sensitivity, and specificity were chosen as 

performance metrics [58]. 

All the calculations are performed with MATLAB 

R2021a, on a PC with a 2.4-GHz CPU and 16 GB RAM. The 

average computation time is around 2 s to analyze the 

samples in 4 or 3 classes, showing that the recommended 

method is computationally capable. 

3 Results and discussion 

3.1 Case 1: CWRU dataset 

Vibration data obtained from four different bearing sets 

HB, FB1, FB2, and FB3 were preprocessed and the feature 

sets were formed.  The duration of each measurement is 4.16 

s, and the sampling frequency is 48000 samples/s. The signal 

length is 200000 samples for each bearing. In Figure 9, time-

domain vibration signals are given. The vibration amplitudes 

of the HB bearing are lower than the other bearings. The 

highest amplitudes were observed in the FB1 bearing. 

Moreover, periodic sharp peaks are more frequent in FB1 

and FB2 due to the faults. 

 

 

Figure 9. CWRU Raw vibration signals in the time 

domain 

 

In Figure 10, frequency domain power spectrums of the 

bearing signals are given. Since the power spectrums seem 

similar, further spectral calculations are needed to comment 

on this situation. 
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Figure 10. CWRU Power spectrum of the vibration 

signals 

3.1.1 CSP-based Two-class ANN classification results 

In Figure 11, the scatter matrices of CSP features for all 

defined bearing pairs are given. In Table 3 and Figure 12, 

performance comparisons of CSP-based binary ANNs are 

presented for healthy and faulty bearings. It can be observed 

from Table 3 that, the highest classification accuracy (88.5 

%) is obtained for healthy bearing (HB) and bearing with 

outer race fault (FB1). Although the lowest accuracy 

(81.5%) was observed between bearing with outer race fault 

(FB1) and bearing with rolling element fault (FB3), it is 

notable that the value is considerably high. These results can 

also be inferred from the scatter plots of CSP features in 

Figure 11. 

 

Figure 11. CSP feature visualization of CWRU Data 

 

Table 3. CSP-based binary ANN accuracy results 

CSP-based Two-class Classification 

Bearing 
Pairs 

Accuracy Precision Sensitivity Specificity 

HB vs FB1 0.885 0.920 0.859 0.913 

HB vs 

FB2 
0.880 0.960 0.828 0.952 

HB vs FB3 0.835 0.910 0.791 0.894 

FB1 vs 

FB2 
0.835 0.770 0.885 0.796 

FB1 vs 

FB3 
0.815 0.800 0.825 0.806 

FB2 vs 

FB3 
0.820 0.710 0.910 0.762 

 

 

Figure 12. Bar graphs for accuracy metrics of ANN 

3.1.2 Multiclass ANN classification with CSP 

The performance for a single fault and all other faults are 

represented in this section respectively. In Figure 13, the 

scatter plots of four different cases are given. Table 4, and 

Figure 14 show performance metrics such as accuracy, 

precision, sensitivity, and specificity values of CSP-based 

multiclass ANN classifiers, for fault diagnosis in bearings. 

The results of multiclass classification for bearings are 

remarkably high enough and depicted as bold in tables. 

Therefore, we can conclude that the CSP values of HB and 

the rest have the highest distinctiveness (93.5 accuracy, 1 

precision, 88.5% sensitivity, and 1 specificity). 
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Figure 13. CSP feature visualization for all fault types 

 

Table 4. Performance metrics for CSP-based ANN fault 

classification 

Bearing 

Pairs 
Accuracy Precision Sensitivity Specificity 

HB vs 

Rest 
0.935 1 0.885 1 

FB1 vs 

Rest 
0.880 0.950 0.833 0.942 

FB2 vs 

Rest 
0.870 0.860 0.878 0.863 

FB3 vs 
Rest 

0.915 0.960 0.881 0.956 

 

When the binary and multiple classification results are 

examined, it is seen that the classification accuracies are high 

enough to be declared. Moreover, bearing with rolling 

element fault (FB3) is considered the most difficult fault that 

can be diagnosed [51]. In general, the amplitudes of the 

frequency components of the ball passing from the outer and 

inner race are higher, while the amplitudes of frequency 

components of the ball spin are less. Therefore, the detection 

of the FB3 fault is also more difficult. However, in our study, 

93.5 % accuracy for HB-FB3 and 91.5% for multiclass FB3 

and Rest classification were obtained. 

 

Figure 14. Bar graphs for accuracy metrics of CSP-based 

multiclass ANN 

3.1.3 Classifier comparison between ANN -SVM - k-NN 

In this part of the study, SVM and k-NN results for binary 

and multiclass classification are given comparatively to 

show the efficiency of similar classifiers that are usually 

preferred for vibration data fault detection. A standard type 

k-NN and a Gaussian kernel type SVM were tried. In Table 

5 and Figure 15, all of the performance metrics are presented. 

From the tables, it is clear that ANN outperforms SVM and 

the k-NN (88.5% ANN, 66% SVM, and 50.5% k-NN). It is 

stated that k-NN performs well when the sample size is 

small; it is very simple and requires tuning only one 

hyperparameter (the value of k). 

 

Table 5. Performances of different classifiers 

 ANN SVM k-NN 

HB vs FB1 0.885 0.660 0.505 

HB vs FB2 0.880 0.685 0.520 
HB vs FB3 0.835 0.755 0.505 

FB1 vs FB2 0.835 0.615 0.520 

FB1 vs FB3 0.815 0.650 0.505 
FB2 vs FB3 0.820 0.655 0.510 

HB vs Rest 0.935 0.795 0.785 

FB1 vs Rest 0.880 0.825 0.755 
FB2 vs Rest 0.870 0.805 0.575 

FB3 vs Rest 0.915 0.810 0.835 

 

 

Figure 15. Bar graph comparisons for various classifiers 

 

When the data size is larger, SVM and ANN are 

preferred.  Although SVM is a powerful classification 

method, for this vibration data, we have obtained higher 

accuracies with ANN. There can be several possible 

explanations for this result; deep architectures can represent 

intelligent behavior more efficiently than shallow 

architectures like SVMs, in an ANN there are a bunch of 

hidden layers with fixed sizes depending on the number of 
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features. Parametric models represent them whereas SVMs 

are non-parametric [59]. 

3.1.4 Evaluation of CSP features versus Classical 

Statistical Features (CSF) 

To demonstrate the effectiveness and distinctiveness of 

CSP features, we compared CSP results with generally used 

time domain statistical features (CSF) like standard deviation 

(SD), Root mean square (RMS), variance (VAR), kurtosis 

(K) and skewness (SK) [60]. These features were calculated 

and fed to the ANN classifiers. The results are shown in 

Table 6. From the table, it can be seen that using CSP 

features has achieved higher accuracies in all two-class and 

multiclass cases. Therefore, we can conclude that in 

condition monitoring of bearings, CSP features will be a 

possible tool in fault detection to improve diagnostic 

performance. In addition, CSP can reduce time and 

calculation energy loss due to complex and high-dimensional 

CSF calculations. 

 

Table 6. Comparison of CSP and CSF features 

  CSP-ANN  CSF-ANN 

HB vs FB1 0.885 0.860 

HB vs FB2 0.880 0.820 

HB vs FB3 0.835 0.830 
FB1 vs FB2 0.835 0.830 

FB1 vs FB3 0.815 0.800 

FB2 vs FB3 0.820 0.800 

HB vs Rest 0.935 0.900 

FB1 vs Rest 0.880 0.850 

FB2 vs Rest 0.870 0.860 
FB3 vs Rest 0.915 0.900 

3.2 Case 2: The University of Ferrara dataset signal 

analysis 

Time domain vibration signals and frequency domain 

power spectrums of the four different bearing sets FB1-2, 

FB2-2, and FB3-2 are given in Figure 16. 

 

 

Figure 16. The vibration signals in the time and frequency 

domain 

3.2.1 CSP-based Two-class ANN classification for the 

second dataset 

In Figure 17, the scatter matrices of CSP features for the 

second dataset are given. In Table 7 performance 

comparisons of CSP-based binary ANNs are given for faulty 

bearings. 

 

 

Figure 17. CSP projections of acceleration data for two- 

class ANN for the second dataset 

 

Table 7. CSP-based binary ANN accuracy results 

CSP-based Two-class Classification 

Bearing 

Pairs 
Accuracy Precision Sensitivity 

Specifici

ty 

FB1-2 vs 
FB2-2 

0.750 0.800 0.714 0.800 

FB1-2 vs 
FB3-2 

0.833 0.667 1 0.750 

FB2-2 vs 

FB3-2 
0.917 0.833 1 0.857 

3.2.2 The University of Ferrara multiclass ANN 

classification with CSP 

The performance for a single fault and all other faults are 

represented in this section respectively. In Figure 18, the 

scatter plots of 3 different cases are given. Table 8, shows 

performance metrics such as accuracy, precision, sensitivity, 

and specificity values of CSP-based multiclass ANN 

classifiers, for the second dataset. 

 

 

Figure 18. CSP features separation for all fault types 
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Table 8. Performance metrics for CSP-based ANN fault 

classification for the second dataset 

Bearing 
Pairs 

Accuracy Precision Sensitivity 
Specificit

y 

FB1-2 vs 

Rest 
0.917 0.833 1 0.857 

FB2-2 vs 

Rest 
0.833 0.667 1 0.750 

FB3-2 vs 

Rest 
0.917 1 0.857 1 

3.2.3 Classifier comparison between ANN -SVM - k-NN 

In this part of the study, SVM and k-NN results for binary 

and multiclass classification are given for the second dataset. 

In Table 9 all of the performance metrics are presented. 

 

Table 9. Performances of different classifiers 

 ANN SVM k-NN 

FB1-2 vs 

FB2-2 
0.750 0.833 0.510 

FB1-2 vs 

FB3-2 
0.833 0.917 0.667 

FB2-2 vs 

FB3-2 
0.917 0.917 0.583 

FB1-2 vs 

Rest 
0.917 0.833 0.583 

FB2-2 vs 

Rest 
0.833 0.917 0.510 

FB3-2 vs 
Rest 

0.917 0.750 0.417 

3.2.4 Evaluation of CSP features versus Classical 

Statistical Features (CSF) for the second dataset 

The results can be seen in Table 10. From the table, it is 

quite apparent that using CSP features has achieved higher 

accuracies in all two-class and multiclass cases for the 

second dataset. 

 

Table 10. Comparison of CSP and CSF features 

  CSP-ANN  CSF-ANN 

FB1 vs FB2 0.750 0.710 

FB1 vs FB3 0.833 0.750 

FB2 vs FB3 0.917 0.850 

FB1 vs Rest 0.917 0.850 

FB2 vs Rest 0.833 0.800 

FB3 vs Rest 0.917 0.850 

3.3 Comparison of CSP-based ANN performance with the 

existing literature 

CWRU bearing diagnostic vibration data [36] were 

commonly used in the literature as it’s a benchmark dataset. 

In this part of the study, we have compared our results with 

the existing literature that they have used a similar structure 

to our dataset. Although many studies have used CWRU 

data, the selected working datasets and the methodologies 

differ in concept. Therefore, it is difficult to make a logical 

comparison between these studies. In the study by Sun, J. et 

al. [61], they proposed a novel method for bearing fault 

detection, coming from the idea of compressed sensing and 

deep learning. Table 11 compares the average accuracy 

results obtained with the methods used in this study with the 

results of [62,63]. 

 

Table 11. Comparison of the results with the existing 

literature 

Method  
Average 

Accuracy 

CSP-based SVM (CRWU) 0.72 

CSP-based k-NN (CRWU) 0.60 

CSP-based ANN(CRWU) 0.88 

CSF-based ANN(CRWU) 0.85 

CSP-based SVM (The University of Ferrara) 0.86 

CSP-based k-NN (The University of Ferrara) 0.55 

CSP-based ANN (The University of Ferrara) 0.86 

CSF-based ANN (The University of Ferrara) 0.80 

Compression sampling-based Deep Neural 

Networks [61] 
0.97 

Raw time domain signal-based Deep Neural 
Networks [62] 

0.96 

GoogleNet-CNN [63] 1 

ResNet-50-CNN [63] 1 

AlexNet-CNN [63] 0.9 

EfficientNet-B0-CNN [63] 1 

 

The average accuracy obtained from the studies in [61-

63] is higher than the accuracy rates obtained from the CSP-

based diagnostics proposed in this study. However, 

considering the computational complexity and the 

applicability of the deep learning approach, CSP-based 

diagnostics can still yield satisfactory results for simplicity 

and rapid diagnosis. 

4 Conclusions 

A novel fault diagnosis method for rolling bearing via the 

CSP algorithm is recommended in this study. CSP 

maximizes the variance ratio of the two-class signal matrices 

coming from different sources.  The case study is validated 

with two known data sets. It is proven with the calculations 

that the use of CSP features is both powerful and 

advantageous to identify different faults in terms of 

computational load. An 88.5% accuracy was obtained with 

ANN for two-class fault detection and 93.5% for fault 

classification. The results of the study were tested with SVM 

and k-NN, and it is seen that ANN has the highest accuracy 

performance. Moreover, classical time domain feature set 

results were also presented comparatively. CSP features 

have achieved higher accuracies in all two-class and 

multiclass cases. The proposed feature extraction method 

does not use the typical frequency or time domain features; 

instead, it focuses on capturing the covariance nature of 

impact vibrations. The CSP-based approach can overcome 

the confusion created by the nonlinearity and the inadequacy 

of classical methods such as statistical features and envelope 

analysis. We can propose CSP features to be used for 

condition monitoring of bearings with acceleration data. 

Based on the findings of this study, further research could 

explore the application of the CSP algorithm to a wider range 

of machinery and mechanical systems beyond rolling 

bearings, in order to determine its effectiveness in fault 

diagnosis across various industrial contexts. 
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