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Abstract

In this paper, we study the conchodial surfaces in 3-dimensional Euclidean space with
the condition ∆xi = λixi where ∆ denotes the Laplace operator with respect to the first
fundamental form. We obtain the classification theorem for these surfaces satisfying under
this condition. Furthermore, we have give some special cases for the classification theorem
by given the radius function r(u,v) with respect to the parameter u and v.

1. Introduction

The invention of the conchoid was attributed to Greek mathematician Nicomedes by Pappus and other classical authors in the second century
BC. Based on the oldest data, the conchoid curve was designed by Nicomedes as a result of the problem of dividing an angle into three equal
parts, which has been a problem for many mathematicians for many years. The word conchoid is derived from the Greek word ”conch”,
which means crustacean, and is also referred to as mussel shell shape in the literature.
This curve became a favourite of many mathematicians in the 17th century as an example of new methods in analytical geometry and
calculus. For this reason, Newton suggested that it should be treated as a ‘standard’ curve [1]. In 1837, Pierre Wantzel showed that an
arbitrary angle is not divisible by three in the classical way, and therefore conchoid curves were obtained, which can be examples of many
curves. The best known of these curves are Hippias’ quadratrix curve, Nicomedes’ conchoid, Pascal’s limachon and cycloid curves.
The conchoid structure is usually best applied to curves in the Euclidean plane E2 [2]. A conchoid curve is obtained by using a planar curve,
a fixed point and a fixed distance. The set of points on the line at a fixed distance from a moving point on a planar curve gives the conchoid
of this planar curve [3]. In [2], the concept of a conchoidal curve is generalized to the concept of a conchoidal transformation of two curves,
and when one of the two curves is a circle, the conchoidal transformation becomes a classical conchoidal curve. It is known that conchoid
curves have many applications. In particular, they have been used in the construction of buildings and structures and are also used in physics,
astronomy, optics, electromagnetic research, biology and medical engineering applications(see, [3]- [5]).
The conchoid transformation has been applied to surfaces in Euclidean 3-space in ( [6]- [11]) in order to construct new classes of surfaces
and making them accessible to the algorithms implemented in CAGD systems. The concept of conchoid surface is also based on the concept
of curve and studies on conchoid surfaces of quadrics, conchoid surfaces of sphere, conchoid surfaces of ruled surfaces have been carried out.
In addition, in [12] conchoid curves and surfaces in 3-dimensional Euclidean space are considered and the curvatures that determine the
geometric properties of these curves and surfaces are calculated. Also in ( [13]) the authors computed the types of spacelike conchoid curves
in the Minkowski plane and in ( [14]) the authors examined the condition which is the conchoidal surface and the surface of revolution given
with a conchoid curve to be a Bonnet surface in Euclidean 3-space. The latest studies in Euclidean 3-space is conchoidal twisted surface
which isformed by the synchronized anti-symmetric rotation matrix of a planar conchoidal curve ( [15]).
This paper is organised as follows: In section 2 we give some basic concepts of the surfaces in E3 and also surfaces satisfying the condition
∆xi = λixi. In section 3 we consider conchoidal surfaces in E3and we gave the results of Gaussian and mean curvature of these surfaces
with respect to the given paper in [12]. In the final section we consider conchoidal surfaces in E3 satisfying the condition ∆xi = λixi. We
obtain the classification theorem for these surfaces satisfying under this condition. Furthermore, we have give some special cases for the
classification theorem by given the radius function r(u,v) with respect to the parameter u and v.
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2. Basic Concepts

2.1. Surfaces in E3

Let M be a smooth surface in E3 given with the patch X(u,v) : (u,v) ∈ D⊂ E2. The tangent space to M at an arbitrary point p = X(u,v) of
M span {Xu,Xv}. The unit normal vector field or surface normal N is defined by

N(u,v) =
Xu×Xv

‖Xu×Xv‖
(u,v)

at those points (u,v) ∈ D at which Xu×Xv does not vanish, i.e., X is regular.
Let X : D⊂ E2→ E3 be a regular patch. Then the Gaussian curvature and mean curvature of the surface are given by the formulas

K =
eg− f 2

EG−F2

and

H =
eG+gE−2 f F

2(EG−F2)

where

E = 〈Xu,Xu〉 ,
F = 〈Xu,Xv〉 ,
G = 〈Xv,Xv〉

and

e = 〈Xuu,N〉 ,
f = 〈Xuv,N〉 ,
g = 〈Xvv,N〉

are the coefficients of first and second fundamental form of the surface respectively. Recall that a surface M is said to be flat and minimal if
its Gaussian curvature and mean curvature vanishes respectively [22, 23].

2.2. Surfaces satisfying ∆xi = λixi

The definition of submanifolds of finite type was introduced by B.Y. Chen in the late 1970s in order to understand the total mean mean
curvature for general Euclidean submanifolds. So, the author introduced the notions of order and type for Euclidean submanifolds. By
applying such notions, he introduced the notions of finite type submanifolds an finite type maps. The family of finite-type submanifolds is
quite large. The most important and widely known; minimal submanifolds in Euclidean space, minimal submanifolds on hyperspheres and
all parallel submanifolds [24].
Let ui,u j be a local coordinate system of M. For the array gi j (i, j = 1,2) consisting of components of the induced metric on M, we denote
by gi j = (gi j)

−1 the inverse matrix of the array gi j. Then the Laplacian operator ∆ of the induced metric on M is given

∆ =− 1√
det(gi j)

∑
i, j

∂

∂ui

(√
det(gi j)gi j ∂

∂ui

)
.

An isometric immersion x : M→ Em of a submanifold M in Euclidean m-space Em is said to be of finite type if x identified with the position
vector field of M in Em can be expressed as a finite sum of eigenvectors of the Laplacian ∆ of M, that is;

x = x0 +
k

∑xi
i=1

where x0 is a constant map, x1, x2, ..., xk non-constant maps such that ∆xi = λixi, λi ∈ R, 1≤ i≤ k. If λ1, λ2, ..., λk are different, then M is
said to be of k-type.
Similarly, a smooth map ϕ of an n-dimensional Riemannian manifold M of Em is said to be of finite type if ϕ is a finite sum of Em-valued
eigenfunctions of ∆ (see, [24], [25]).
It is well known the Beltrami formula [24] ;

∆
−→x =−2

−→
H

which shows, in particular, that M is minimal surface in R3 if and only if its coordinate functions are harmonic. Moreover, T. Takahashi [26]
states that minimal surfaces and spheres are the only surfaces in R3 satisfying the condition

∆
−→x = λ

−→x , λ ∈ R.

On the other hand Garay [16] determined the complete surfaces of revolution in R3 whose component functions are eigenfunctions of their
Laplace operator i.e.

∆xi = λixi λi ∈ R (2.1)
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Later Lopez [17] studied the hypersurfaces in Rn+1, Bekkar and Zoubir [18] classified the surfaces of revolution with non zero Gaussian
curvature in the 3-dimensional Euclidean space E3 and Lorentzian-Minkowski spaces and Bekkar and Senoussi [19] studied the factorable
surfaces in the 3-dimensional Euclidean and Minkowski space under the condition (2.1). Also Difi et al. [20] studied the translation-factorable
surfaces in 3-dimensional Euclidean and Lorentzian spaces satisfying the condition ∆xi = λixi. Zoubi et al. [21] gave a classification of
surfaces of coordinate finite type in the Lorentz–Minkowski 3-Space.
In this paper we classify the conchoidal surfaces in the 3-dimensional Euclidean space E3 satisfying the condition ∆xi = λixi where λi ∈ R.

3. Conchoidal Surfaces in E3

In this section some results on conchoid surfaces are given. Gaussian and mean curvatures of conchoid surfaces given in 3-dimensional
Euclidean space have been investigated in the paper Bulca et al. [12].
The conchoid surface Md of a given surface M with respect to a point O is roughly speaking the surface obtained by increasing the radius
function of M with respect to O by a constant d. Consider M ⊂ R3 be a regular surface, distance d ∈ R, with respect to a given fixed point
O = (0,0,0) ∈ R3. Let M be represented by polar representation

x(u,v) = r(u,v)ρ(u,v) (3.1)

with ‖ρ(u,v)‖ = 1. Taking into account parametrization ρ(u,v) = (cosucosv,sinucosv,sinv) of the unit sphere S2, so ρ(u,v) is called
spherical part of x(u,v) and r(u,v) its radius function. The conchoidal surface Md of M at distance d parametrized by

xd(u,v) = (r(u,v)±d)ρ(u,v) (3.2)

(see, [9]).

Theorem 3.1. ( [12])Let M be a regular surface given with the parametrization (3.1). Then the Gaussian and mean curvature of M becomes

K =−δ 2(u,v)−ψ(u,v)ξ (u,v)cos2 v

r2
(
(r2 + r2

v )cos2 v+ r2
u
)2 (3.3)

and

H =−cosv(r2 + r2
v )ψ(u,v)+ cosv(r2 cos2 v+ r2

u)ξ (u,v)+2rurvδ (u,v)

2r2
(
(r2 + r2

v )cos2 v+ r2
u
)3/2

(3.4)

respectively,where

δ (u,v) = rruv cosv−2rurv cosv+ rru sinv,

ψ(u,v) = 2r2
u + rrv sinvcosv+ r2 cos2 v− rruu,

ξ (u,v) = 2r2
v + r2− rrvv

are the differentiable functions.

Corollary 3.2. ( [12])Let M be a regular surface given with the parametrization (3.1).
i) If the radius function r(u,v) be an u-parameter function then the Gaussian and mean curvature of M

K =
cos2 v

(
2r2

u + r2 cos2 v− rruu
)
− r2

u sin2 v
(r2 cos2 v+ r2

u)
2 ,

H =−
cosv

(
3r2

u +2r2 cos2 v− rruu
)

2
(
r2 cos2 v+ r2

u
)3/2

ii) If the radius function r(u,v) be a v-parameter function then the Gaussian and mean curvature of M

K =
(rv sinv+ r cosv)

(
2r2

v + r2− rrvv
)

r cosv(r2 + r2
v )

2 ,

H =−
(rv sinv+ r cosv)

(
r2 + r2

v
)
+ r cosv

(
2r2

v + r2− rrvv
)

2r cosv
(
r2 + r2

v
)3/2

Theorem 3.3. ( [12])Let Md be a conchoidal surface of M given with the parametrization (3.2). Then the Gaussian and mean curvature of
Md becomes

K̃ =− δ̃ 2(u,v)− ψ̃(u,v)ξ̃ (u,v)cos2 v

(r±d)2
(
((r±d)2 + r2

v )cos2 v+ r2
u
)2

and

H̃ =−
ξ̃ (u,v)cosv

(
(r±d)2 cos2 v+ r2

u
)
+ ψ̃(u,v)cosv

(
(r±d)2 + r2

v
)
+2rurvδ̃ (u,v)

2(r±d)2
(
((r±d)2 + r2

v )cos2 v+ r2
u
)3/2



Universal Journal of Mathematics and Applications 117

respectively, where

δ̃ (u,v) = rruv cosv−2rurv cosv+ rru sinv,

ψ̃(u,v) = 2r2
u + rrv sinvcosv+ r2 cos2 v− rruu,

ξ̃ (u,v) = 2r2
v + r2− rrvv

are the differentiable functions.

Corollary 3.4. ( [12])Let Md be a regular surface given with the parametrization (3.2).
i) If the radius function r(u,v) be an u-parameter function then the Gaussian and mean curvature of Md

K̃ =
cos2 v

(
2r2

u +(r±d)2 cos2 v− (r±d)ruu
)
− r2

u sin2 v
((r±d)2 cos2 v+ r2

u)
2 ,

H̃ =−
cosv

(
3r2

u +2(r±d)2 cos2 v− (r±d)2ruu
)

2
(
(r±d)2 cos2 v+ r2

u
)3/2

ii) If the radius function r(u,v) be a v-parameter function then the Gaussian and mean curvature of Md

K̃ =
(rv sinv+(r±d)cosv)

(
2r2

v +(r±d)2− (r±d)rvv
)

(r±d)cosv((r±d)2 + r2
v )

2 ,

H̃ =−
(rv sinv+(r±d)cosv)

(
(r±d)2 + r2

v
)
+(r±d)cosv

(
2r2

v +(r±d)2− (r±d)rvv
)

2(r±d)cosv
(
(r±d)2 + r2

v
)3/2

.

4. Conchoidal Surfaces in Euclidean 3-space Satisfying ∆xi = λixi

In this section we consider a conchoidal surfaces given with the parametrization (3.2) which is satisfying the condition ∆xi = λixi. Firstly we
consider the polar representation of the surfaces M given with the parametrization (3.1). The coefficients of the first fundamental form and
the unit normal vector field of the surface M are:

E = r2 cos2 v+ r2
u,

F = rurv,

G = r2 + r2
v ,

and

N =
(rv cosucosvsinv+ r cosucos2 v+ ru sinu,rv sinucosvsinv+ r sinucos2 v− ru cosu,−rv cos2 v+ r cosvsinv)√

(r2 + r2
v )cos2 v+ r2

u
. (4.1)

Further, the coefficients of the second fundamental form as follows;

e =−
cosv

(
2r2

u + rrv sinvcosv+ r2 cos2 v− rruu
)√

(r2 + r2
v )cos2 v+ r2

u
,

f =
rruv cosv−2rurv cosv+ rru sinv√

(r2 + r2
v )cos2 v+ r2

u
,

g =−
cosv

(
2r2

v + r2− rrvv
)√

(r2 + r2
v )cos2 v+ r2

u
.

The Laplacian ∆ of M is given by with respect to the Beltrami formula is ∆x =−2
−→
H . So if we use this formula we can obtain,

∆x1 =−2Hn1

∆x2 =−2Hn2 (4.2)

∆x3 =−2Hn3

where H and ni are defined in (3.4) and (4.1) respectively. If the the polar representation of the surfaces M given with the parametrization
(3.1) is constructed with component functions which are eigenfunctions of its Laplacian, we shall have that

∆(r(u,v)cosucosv) = λ1r(u,v)cosucosv

∆(r(u,v)sinucosv) = λ2r(u,v)sinucosv (4.3)

∆r(u,v)sinv = λ3r(u,v)sinv

where λ1,λ2,λ3 ∈ R. Using the equations (4.1),(4.2) and (4.3) we obtain

−2H(rv cosucosvsinv+ r cosucos2 v+ ru sinu) = λ1W cosucosv,

−2H(rv sinucosvsinv+ r sinucos2 v− ru cosu) = λ2W sinucosv, (4.4)

−2H(−rv cos2 v+ r sinvcosv) = λ3W sinv,
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where

W = r
√
(r2 + r2

v )cos2 v+ r2
u

We distinguish two special cases according to whether this surface satisfying the condition given by (4.4)
Case 1. For the first case we suppose that the radius function r(u,v) given with the parameter u. So, if the function r = r(u) then the mean
curvature of the surface M and the conditions of ∆xi = λixi are

H =−
cosv

(
3r2

u +2r2 cos2 v− rruu
)

2
(
r2 cos2 v+ r2

u
)3/2

,

and

−2H(r cosucos2 v+ ru sinu) = λ1W cosucosv, (4.5)

−2H(r sinucos2 v− ru cosu) = λ2W sinucosv, (4.6)

−2H(r cosv) = λ3W. (4.7)

Furthermore, we explore the classification of the surface M given with the parametrization (3.1) satisfying the equation (2.1);

1) Let λ3 = 0 then the equation (4.5) gives rise to H = 0 which means that the surface is minimal. We get also by the equations (4.5) and
(4.6) λ1 = λ2 = 0.

2) Let λ3 6= 0, so H 6= 0. We get four cases for these condition.

i) If λ1 = 0 and λ2 6= 0 then H 6= 0. So, from (4.5) we have

r cosucos2 v+ ru sinu = 0. (4.8)

The solution of the differential equation (4.8) we obtain the radius function

r(u) =
C1√

(sinu)cos2v+1
,

where C1 is a real constant.
ii) If λ1 6= 0 and λ2 = 0 then H 6= 0. So, from (4.6) we have

r sinucos2 v− ru cosu = 0. (4.9)

The solution of the differential equation (4.9) we obtain the radius function

r(u) =
C2√

cos(u)cos2v+1

where C2 is a real constant.
iii) If λ1 6= 0 and λ2 6= 0. Equations (4.5) and (4.6) imply that:

r cosucos2 v+ ru sinu 6= 0,

r sinucos2 v− ru cosu 6= 0.

Also, the Equations (4.5) and (4.7) imply that,

(r cosucos2 v+ ru sinu)λ3 = λ1r cosucos2 v, (4.10)

and the Equations (4.6) and (4.7) imply that;

(r sinucos2 v− ru cosu)λ3 = λ2r sinucos2 v. (4.11)

So, the solution of the differential equations (4.10) and (4.11) we obtain the radius function

r(u) =C3

√
cos(u)

(cos(2v)+1)(λ2−λ3)

λ3

or

r(u) =C4

√
sin(u)

(cos(2v)+1)(λ1−λ3)

λ3

where C3, C4 are real constants.
iv) If λ1 = 0 and λ2 = 0 then from the equations (4.5) and (4.6) we get,

r cosucos2 v+ ru sinu = 0,

r sinucos2 v− ru cosu = 0

The solution of these differential equations we obtain H = 0. So this is a contradiction.
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Case 2. For the second case we suppose that the radius function r(u,v) given with the parameter v. So, if the function r = r(v) then the mean
curvature of the surface M and the conditions of ∆xi = λixi are

H =−
(rv sinv+ r cosv)

(
r2 + r2

v
)
+ r cosv

(
2r2

v + r2− rrvv
)

2r cosv
(
r2 + r2

v
)3/2

and

−2H(rv sinv+ r cosv) = λ1W (4.12)

−2H(rv sinv+ r cosv) = λ2W (4.13)

−2H(−rv cos2 v+ r sinvcosv) = λ3W sinv (4.14)

Furthermore, we explore the classification of the surface M given with the parametrization (3.1) satisfying (2.1);

1) Let λ3 = 0. We get two cases for these condition. i) If λ3 = 0 then the equation (4.12) gives rise to H = 0 which means that the surface
is minimal. We get also by the equations (4.12) and (4.13) λ1 = λ2 = 0.
ii) If −rv cos2 v+ r sinvcosv = 0 then the solution of this differential equation we obtain the radius function

r(v) =
C5

cosv
(4.15)

where C5 is a real constant. For the radius function given with (4.15) one can get H 6= 0, so we obtain λ1 = λ2 =
1

C2
5

.

2) Let λ3 6= 0, so H 6= 0 and (−rv cos2 v+ r sinvcosv) 6= 0. For the equations (4.12) and (4.13) we get λ1 = λ2 three cases for these
condition.
i) If λ1 = 0 and λ2 6= 0 (or λ1 6= 0 and λ2 = 0). So, from (4.12) and (4.13) we have

rv sinv+ r cosv = 0. (4.16)

The solution of the differential equation (4.16) we obtain the radius function

r(v) =
C6

sinv
,

where C6 is a real constant. For this radius function we get H = 0, so this is a contradiction.
ii)If λ1 = λ2 6= 0 Then the Equations (4.12) and (4.14) imply that,

λ3 sinv(rv sinv+ r cosv) = λ1 cosv(−rv cosv+ r sinv), (4.17)

So, the solution of the differential equation (4.17) we obtain the radius function

r(v) =

√
2C7√

λ3(1− cos(2v))+λ1(1+ cos(2v))
.

iii) If λ1 = λ2 = 0 then from the equations (4.12) we get H = 0 or rv sinv+ r cosv = 0.So this is a contradiction.

Theorem 4.1. Let M be surface given with the parametrization (3.1) in E3. If the radius function r(u,v) given with the parameter u, then M
satisfies ∆ri = λiri, (i = 1,2,3) if and only if the following statements hold:
i) M has zero mean curvature,
ii) The radius function r = r(u) is

r(u) =
C1√

(sinu)cos2v+1
or r(u) =

C2√
cos(u)cos2v+1

,

iii) The radius function r = r(u) is

r(u) =C3

√
cos(u)

(cos(2v)+1)(λ2−λ3)

λ3 or r(u) =C4

√
sin(u)

(cos(2v)+1)(λ1−λ3)

λ3 .

Theorem 4.2. Let M be surface given with the parametrization (3.1) in E3. If the radius function r(u,v) given with the parameter v, then M
satisfies ∆ri = λiri, (i = 1,2,3) if and only if the following statements hold:
i) M has zero mean curvature,
ii) The radius function r = r(v) is

r(v) =
C5

cosv
or r(v) =

C6

sinv
,

iii) The radius function r = r(v) is

r(v) =

√
2C7√

λ3(1− cos(2v))+λ1(1+ cos(2v))
.
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Using the similar way we obtain the conchoidal surface Md of M at distance d given with the parametrization (3.2) satisfying the condition
∆xi = λixi.

Theorem 4.3. Let Md be conchodial surface given with the parametrization (3.2) in E3. If the radius function r(u,v) given with the
parameter u, then Md satisfies ∆ri = λiri, (i = 1,2,3) if and only if the following statements hold:
i) Md has zero mean curvature,
ii) The radius function r = r(u) is

r(u) =±d +
C1√

(sinu)cos2v+1
or r(u) =±d +

C2√
cos(u)cos2v+1

,

iii) The radius function r = r(u) is

r(u) =±d +C3

√
cos(u)

(cos(2v)+1)(λ2−λ3)

λ3 or r(u) =±d +C4

√
sin(u)

(cos(2v)+1)(λ1−λ3)

λ3 .

Theorem 4.4. Let Md be conchodial surface given with the parametrization (3.2) in E3. If the radius function r(u,v) given with the
parameter v, then Md satisfies ∆ri = λiri, (i = 1,2,3) if and only if the following statements hold:
i) Md has zero mean curvature,
ii) The radius function r = r(v) is

r(v) =±d +
C5

cosv
or r(v) =±d +

C6

sinv
,

iii) The radius function r = r(v) is

r(v) =±d +

√
2C7√

λ3(1− cos(2v))+λ1(1+ cos(2v))
.

5. Conclusion

In this study, we study the conchodial surfaces in 3-dimensional Euclidean space with the condition ∆xi = λixi where ∆ denotes the Laplace
operator with respect to the first fundamental form. We give a result for this condition for the special cases of radius function r(u,v). In
future studies, this problem can be done for the general solution for radius function. It is possible to consider these kind of surfaces in the
other spaces or higher dimensional Euclidean spaces.
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