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Abstract  Keywords 

The development of control systems for aerial vehicles necessitates a 
meticulous examination of their dynamic behavior. This research delves into 
an in-depth investigation of the dynamic behavior of the F-16 aircraft, 
employing refined mathematical models to analyze both its longitudinal and 
lateral motions, as well as their corresponding modes. These mathematical 
models are formulated in two conventional representations: state space 
equations and transfer functions. By utilizing these mathematical 
representations, two displacement autopilots have been developed, consisting 
of a pitch attitude autopilot based on the longitudinal equations and a roll 
attitude autopilot designed using the lateral equations. Proportional Integral 
Derivative (PID) controllers, encompassing inner loops, as well as Linear 
Quadratic Controllers (LQR), have been recruited as control system units. The 
control structures have undergone analysis utilizing Simulink models. The 
analyses have yielded favorable damping characteristics and faster responses 
in both longitudinal and lateral movements and modes. 
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1. Introduction 

The F-16 aircraft represents a multi-role fighter 
renowned for its exceptional maneuverability. Its 
prowess has been demonstrated in both air-to-air and 
air-to-surface missions. This high level of agility is 
attained by intentionally shifting the center of 
gravity(CG)  from the stable region to the unstable 
region, resulting in a state of relaxed static stability 
(Reichert, 1993). Whenever the CG position falls within 
the unstable region, the F-16 aircraft can only sustain 
flight by relying on a flight control system known as the 
Control Augmentation System (CAS). This sophisticated 
flight control system alters the dynamic characteristics 
of the F-16, ensuring its stability even when the CG 
position is situated within the unstable CG region. 
Moreover, this control system offers the pilot the 

advantage of choosing task-specific control laws. For 
instance, a specialized control augmentation system is 
indispensable for high-performance fighter aircraft like 
the F-16, as it allows the pilot to execute intricate 
maneuvers, pushing the aircraft to its performance 
limits while performing tasks such as precision target 
tracking (Stevens and Lewis, 1992).  
The issue of aircraft control has engendered a novel 
conundrum for control engineers within the scientific 
domain. It is widely acknowledged that aircraft dynamics 
exhibit a profoundly nonlinear nature, manifesting a 
robust interplay between longitudinal and lateral 
dynamics. This coupling intensifies markedly as the 
aircraft undertakes maneuvers at escalated angular rates 
and heightened angles of attack. Consequently, the 
development of a dependable controller becomes 
imperative to counteract such effects, all the while 
preserving noteworthy resilience against unaccounted-
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for dynamics and parameter variations. Within the realm 
of flight control systems, the requisites for optimal 
performance fluctuate at varying attack angles. Notably, 
when the angle of attack is low, the primary performance 
objective lies in attaining impeccable maneuverability. 
Conversely, at high angles of attack, where the aircraft 
approaches or enters the stall regime, utmost emphasis 
must be placed upon preserving flight stability, albeit at 
the expense of some flight quality compromise. 
Moreover, in the context of fighter aircraft, the 
performance requisites may also undergo 
metamorphosis contingent upon the specifics of flight 
operations, encompassing factors like speed, attitude, 
pilot commands, and others (Ijaz et al., 2021). Stability 
analysis emerges as a momentous phenomenon 
necessitating comprehensive consideration to achieve 
the envisaged mission in consonance with the specific 
aircraft archetype. Noteworthy determinants 
encompass passenger comfort, the pilot's command 
over aircraft manipulation, the meticulous calculation of 
flight performance, sensor precision, and a myriad of 
other criteria divulged through an intricate evaluation of 
the aircraft's inherent stability. The ever-evolving 
technological landscape, characterized by amplified 
technical capacities, heightened maneuverability in 
temporal domains, and the proliferation of time-varying 
data such as ammunition and fuel specifics, impels the 
urgency of performance and efficiency computations 
alongside rigorous precision assessments. These 
verifications entail the meticulous utilization of 
aerodynamic efficiency data stemming from the 
aircraft's architectural blueprint, coupled with motion 
equations predicated upon aerodynamic coefficients, 
control surface efficacy evaluations, flight performance 
computations, and a host of other multifaceted 
considerations (Özcan and Caferov, 2022). Traditionally, 
flight control systems have been meticulously fashioned 
through the utilization of mathematical aircraft models, 
which undergo linearization at multiple operation 
points, leading to the programming of controller 
parameters contingent upon prevailing flight conditions 
(Andrade et al., 2017). 
Autopilot systems have demonstrated a significant 
function in advancing aviation, as they actively enhance 
navigation protocols, aviation management, and the 
overall stability and control of the aerial vehicles (Nelson 
1998). The inclusion of nonlinear terms in control 
algorithms introduces intricacy and heightened 
computational expenses. As a result, PID control 
algorithms have proven to be effective, owing to their 
straightforward nature, ease of implementation, and 
commendable performance across various instances 
(Kada and Ghazzawi 2011). Due to this nonlinearity, the 
conventional approach to designing flight control 
systems involves the utilization of mathematical models 
of the aircraft that are linearized at different flight 

conditions. Consequently, the controller parameters or 
gains are "scheduled" or adjusted based on the flight 
operating conditions (Vo and Seshagiri, 2008). The F-16 
Air Combat Fighter leverages the concept of relaxed 
static stability (RSS) in the pitch axis, imparting amplified 
aerodynamic lift and mitigated trim drag. This 
technological breakthrough constitutes a paramount 
achievement for the F-16, entailing a state where the 
aircraft attains equilibrium along the pitch axis during 
subsonic flight conditions, such that the wing's center of 
lift aligns with or precedes the center of gravity. 
Consequently, the inclusion of a lifting tail becomes 
imperative. The RSS system exhibits a tendency to 
swiftly deviate if continuous activation of pitch stability 
augmentation is not sustained (Ammons, 1978).  
In the present work, the progression towards the goals 
will be methodically executed through a gradual step-
by-step approach, ensuring a meticulous achievement of 
each milestone. Consequently, the study is divided into 
two distinct sections, with each section comprising two 
groups. The initial section requires substantial effort and 
serves as the foundation for subsequent advancements, 
wherein the tools and knowledge gained from the first 
section are utilized. In the second section, control 
systems are designed for the constructed model. Both 
longitudinal and lateral aspects are individually 
addressed within each section, resulting in the 
subdivision of each section into two distinct groups. The 
dynamics model of system will be constructed by 
considering its geometrical, mechanical and 
aerodynamic characteristics of the aircraft. Wherever 
possible, extracted parameters from literature were 
listed in tables as much as possible and other needed 
parameters were calculated employing presented 
formulations from referred sources. Mathematical 
model of aircraft was developed in convenient 
representations to study its dynamic behavior. Then 
appropriate control systems for both longitudinal and 
lateral dynamics of modeled system were designed. The 
PID control method is widely utilized in the aviation 
industry due to its combination of simplicity and 
performance. In addition to the classical PID approach, 
the LQR method, recognized as a modern control 
technique, has been implemented as an alternative 
approach within the control systems structure.  

2. Flight Dynamics and Modes of Motion; State 

Space Equations 

The study commenced by deriving the flight dynamic 
equations and identifying the associated parameters. 
The resulting model will be presented in both state-
space and transfer function formats, encompassing both 
longitudinal and lateral behaviors. The characteristics of 
these motions and their modes will be elucidated 
through the examination of the eigenvalues of the state 
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matrix. The state space representation of an aircraft is a 
mathematical presentation that describes the dynamic 
behavior of that aircraft using a set of state variables and 
input-output equations. This representation is 
commonly used in control engineering and flight 
dynamics analysis.  
The state space model can be articulated in the 
subsequent manner (Eq 1): 

  �̇� = 𝐴𝑥 + 𝐵𝑢 , 𝑦 = 𝐶𝑥 (1) 

A :State Matrix 

B :Input Matrix  

C :Output Matrix 

x :State Vector, Longitudinal; 〖x=[u,w,q,θ]〗^T 

x :State Vector, Lateral; 〖x=[ u,w,q,θ]〗^T 

u :Input Vector 

Developing a specific state space representation for an 
aircraft requires detailed knowledge of the aircraft's 
dynamics, aerodynamics, and control systems. The three 
matrices A to C are typically determined through system 
identification techniques, simulations, or flight test data 
analysis. Once the state space model is established, it can 
be used for various analyses, including stability analysis, 
control design, and performance evaluation.  
The initial aim of this investigatin is to determine the 
matrices A and B, which are constructed using stability 
derivatives. The system matrix (state matrix) and input 
matrix (control matrix) for the longitudinal motion of the 
aircraft are provided as follows: 

𝐴 = [

𝑋𝑢 𝑋𝑤 0 −𝑔
𝑍𝑢 𝑍𝑤 𝑢0 0

𝑀𝑢 + 𝑀�̇�𝑍𝑢 𝑀𝑤 + 𝑀�̇�𝑍𝑤 𝑀𝑞+𝑀�̇�𝑢0 0

0 0 1 0

] (2) 

𝐵 = [

𝑋𝛿𝑒
𝑋𝛿𝑇

𝑍𝛿𝑒
𝑍𝛿𝑇

𝑀𝛿 + 𝑀�̇�𝑍𝛿 𝑀𝛿𝑇
+𝑀�̇�𝑍𝛿𝑇

0 0

] (3) 

Parameters inside matrices are combination of the 
stability derivatives. All these elements will be calculated 
separately. 

𝑋𝑢 =
1

𝑚

𝜕𝑋

𝜕𝑢
=

−𝑄𝑆(𝐶𝐷𝑢+2𝐶𝐷0)

𝑚𝑢0
 (4) 

𝑋𝑊 =
𝑄𝑆(𝐶𝐿0−𝐶𝐷𝛼)

𝑚𝑢0
 (5) 

𝑍𝑢 =
−𝑄𝑆(𝐶𝐿𝑢+2𝐶𝐿0)

𝑚𝑢0
 (6) 

𝑍𝑤 =
−𝑄𝑆(𝐶𝐷0+𝐶𝐿𝛼)

𝑚𝑢0
 (7) 

𝑀𝑢 =
𝑄𝑆𝑐

𝑢0𝐼𝑦
𝐶𝑚𝑢

 (8) 

𝑀�̇� =
−𝑄𝑆𝑐2

2𝑢0
2𝐼𝑦

𝐶𝑚�̇�
 (9) 

𝑀𝑤 =
𝑄𝑆𝑐

𝑢0𝐼𝑦
𝐶𝑚𝛼

 (10) 

𝑀𝑞 =
𝑄𝑆𝑐2

2𝑢0𝐼𝑦
𝐶𝑚𝑞

 (11) 

𝑍𝛿𝑒
=

−𝑄𝑆

𝑚
𝐶𝑍𝛿𝑒

 (12) 

𝑀𝛿𝑒
=

𝑄𝑆𝑐

𝐼𝑦
𝐶𝑚𝛿𝑒

 (13) 

𝑋𝛿𝑒
=

1

𝑚

𝜕𝑋

𝜕𝛿𝑒
 (14) 

𝑋𝛿𝑇
=

1

𝑚

𝜕𝑋

𝜕𝛿𝑇
 (15) 

Which the including constants are as follow: 

𝐶𝐿𝑢
=

𝑀2

1−𝑀2 𝐶𝐿0
 (16) 

𝐶𝑚�̇�
= −2𝜂𝐶𝐿𝛼𝑡

𝑉𝐻
𝑙𝑡

𝑐

𝑑𝜀

𝑑𝛼
 (17) 

𝑉𝐻 =
𝑆𝑡𝑙𝑡

𝑆𝑤𝑐𝑤
 (18) 

𝑑𝜀

𝑑𝛼
=

2𝐶𝐿𝛼𝑤

𝜋𝐴𝑅𝑤
 (19) 

𝐶𝑚𝑢
=

𝜕𝐶𝑚

𝜕𝑀
𝑀 (20) 

𝐶𝑍𝛿𝑒
= −𝐶𝐿𝛼𝑡

𝜏. 𝜂
𝑆𝑡

𝑆
 (21) 

𝐶𝑚𝛿𝑒
= 𝐶𝑍𝛿𝑒

𝑙𝑡

𝑐
 (22) 

Initial flight condition is supposed to be an altitude of 
30,000 ft and flying angle of attack to be five degrees. 
Starting from atmospheric calculation using given 
altitude and Mach number. Temperature at an altitude is 
calculated using equation 𝑇𝐼𝑆𝐴 = 𝑇0 − 𝐵ℎ and B is 2°C 
drop in temperature for each 1000 ft ascent. Under ISA 
conditions, at sea level T0=15°C so 𝑇𝐼𝑆𝐴 = −45°𝐶 =

228.15 𝐾 at desired altitude. Speed of sound calculated 
using (Eq 23): 

𝑎 = √𝛾𝑅𝑇 = 303 𝑚/𝑠 (23) 

𝛾 :specific heat ratio (~1.4 for normal air at S.T.P) 

𝑅 :gas constant (287.26 for air) 

𝑇 :absolute temperature (k) 

Then the initial speed of the aircraft can be reached 
using (Eq 24): 

𝑢0 = 𝑀 × 𝑎 = 0.6 × 303 = 182 
𝑚

𝑠
 (24) 

For calculating air density, following equation (Eq 25) is 
used: 

𝜌

𝜌0
= (1 −

𝐵ℎ

𝑇0
)

𝑔

𝑅𝐵
(

𝑇0

𝑇0−𝐵ℎ
) = 0.374 (25) 

Air density at sea level (ρ0) is 1.225 kg/m3 so at the given 
altitude ρ=0.46 kg/m3 then dynamic pressure can be 
obtained using (Eq 26): 

𝑄 =
𝜌𝑢0

2

2
= 7618.52 (26) 
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The Table 1 contains the mass and geometric attributes 
of the aircraft. The mathematical model is based on 
streamlined high-fidelity data sourced from NASA 
Langley wind-tunnel experiments performed on a scaled 
model of the studying airplane (Nguyen et al., 1979). “𝒍𝒕” 
and “𝑺𝒕 “will be calculated using model geometry, further 
explanation is shown in Fig. 1 (Wikimedia drawing). ” 𝑪𝑳𝜶𝒕

” 

for biconvex airfoil of tail at M=0.6 achieved 2.86 from 
literature (Nguyen et al., 1979). It’s assumed that 𝜂 = 1. 
Calculated data are listed in Table 2. Before starting to 
calculate stability derivatives, the required 
nondimensional coefficients can be found in Table 3 
from literature (Nguyen et al., 1979) or obtained using 
given above relations (Eq 16-22).

Table 1. Geometric Characteristics of the Aircraft 

Parameter Weight 
[N] 

𝑰𝑿 
[kg.m2] 

𝑰𝒀 
[kg.m2] 

𝑰𝒁 
[kg.m2] 

𝑰𝑿𝒁 
[kg.m2] 

b 
[m] 

S 
[m2] 

c 
[m] 

CG 
location 

AR HT rc 
[m] 

HT tc 
[m] 

𝒃𝒕 
[m] 

Value 91188 12875 75674 85552 1331 9.144 27.87 3.45 0.35 c 3.0 3.03 0.64 5.48  

Table 2.Geometric Characteristics of the Horizontal Tail 

Parameter 𝒍𝒕[m] 𝑺𝒕[m2] VH d𝜀/dα 𝑪𝑳𝜶𝒕
 

Value 4.4 10.05 0.46 1.35 2.86 

Table 3.Non-Dimensional Derivatives of Longitudinal Stability 

Parameter 𝑪𝑫𝟎
 𝑪𝑳𝟎

 𝑪𝒎𝒒
 𝑪𝑳𝜶

 𝑪𝑿𝒒
 𝑪𝒁𝒒

 𝑪𝒎𝜶
 𝑪𝑳𝜶𝒘

 𝑪𝑫𝜶
 𝑪𝑳𝒖

 𝑪𝒎�̇�
 𝑪𝒎𝒖

 𝑪𝒁𝜹𝒆
 𝑪𝒎𝜹𝒆

 
Value 0.006 0.367 -5.45 3.11 2.46 -30.5 0.092 6.36 0.285 0.206 -4.530 0.159 -1.031 -1.315 

 

Fig. 1. Three view drawing of the F-16 aircraft (Wikimedia drawing), Linear dimensions are in meters 

Table 4.Engine Characteristics 

Parameter 𝐈𝐝𝐥𝐞 𝐓𝐡𝐫𝐮𝐬𝐭 
[N] 

𝐌𝐚𝐱𝐢𝐦𝐮𝐦 𝐓𝐡𝐫𝐮𝐬𝐭 
[N] 

Military Thrust 
[N] 

Value 1557 41300 20728 

Table 5.Longitudinal Stability Derivatives 

Parameter 𝑿𝒖 𝑿𝑾 𝒁𝒖 𝒁𝒘 𝑴�̇� 𝑴𝒖 𝑴𝒘 𝑴𝒒 𝒁𝜹𝒆
 𝑴𝜹𝒆

 𝑿𝜹𝒆
 𝑿𝜹𝑻

 
Value −0.0016 0.0103 -0.1179 -0.3907 0.0023 0.0085 0.0049 -0.5 23.5329 -12.7322 3.651 4.2711 
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Now the main parameters, i.e., stability derivatives can 
be achieved using mentioned relations (Eq 4-15). They 
are listed in Table 5 and thus forming of state and input 
matrices is feasible anymore. Two intended matrices 
(Eq 2&3) are introduced in the following: 

𝐴 = [

−0.0016 0.0103 0 −9.8
−0.1179 −0.3907 182 0
0.0082 0.0040 −0.0814 0

0 0 1 0

] (27) 

𝐵 = [

3.6510 4.2711
23.5329 0

−12.6781 0
0 0

] (28) 

Previous matrices indicate longitudinal motion of the 
aircraft. The lateral motion is studied in the succeeding. 
State matrix “A” and Input matrix “B” are introduced 
below: 

𝐴 =

[
 
 
 
 
𝑌𝛽

𝑢0

𝑌𝑝

𝑢0
0

𝑔𝑐𝑜𝑠𝜃0

𝑢0

𝐿𝛽 𝐿𝑝 𝐿𝑟 0

𝑁𝛽 𝑁𝑝 𝑁𝑟 0

0 1 0 0 ]
 
 
 
 

    𝐵 =

[
 
 
 
 0

𝑌𝛿𝑟

𝑢0

𝐿𝛿𝑎
𝐿𝛿𝑟

𝑁𝛿𝑎
𝑁𝛿𝑟

0 0 ]
 
 
 
 

 (29) 

Parameters inside matrices are a combination of the 
stability derivatives. All these elements will be calculated 
separately as previously it’s done for longitudinal 
section. 

𝑌𝛽 =
𝑄𝑆

𝑚
𝐶𝑌𝛽

 (30) 

𝐿𝛽 =
𝑄𝑆𝑏

𝐼𝑥
𝐶𝑙𝛽

 (31) 

𝑁𝛽 =
𝑄𝑆𝑏

𝐼𝑧
𝐶𝑛𝛽

 (32) 

𝑌𝑝 =
𝑄𝑆𝑏

2𝑚𝑢0
𝐶𝑌𝑝  (33) 

𝑌𝑟 =
𝑄𝑆𝑏

2𝑚𝑢0
𝐶𝑌𝑟 (34) 

𝐿𝑝 =
𝑄𝑆𝑏2

2𝐼𝑥𝑢0
𝐶𝑙𝑝  (35) 

𝐿𝑟 =
𝑄𝑆𝑏2

2𝐼𝑥𝑢0
𝐶𝑙𝑟

 (36) 

𝑁𝑝 =
𝑄𝑆𝑏2

2𝐼𝑥𝑢0
𝐶𝑛𝑝

 (37) 

𝑁𝑟 =
𝑄𝑆𝑏2

2𝐼𝑥𝑢0
𝐶𝑛𝑟

 (38) 

𝑌𝛿𝑟
=

𝑄𝑆

𝑚
𝐶𝑌𝛿𝑟

 (39) 

𝐿𝛿𝑟
=

𝑄𝑆𝑏

𝐼𝑥
𝐶𝑙𝛿𝑟

 (40) 

𝐿𝛿𝑎
=

𝑄𝑆𝑏

𝐼𝑥
𝐶𝑙𝛿𝑎

 (41) 

𝑁𝛿𝑟
=

𝑄𝑆𝑏

𝐼𝑧
𝐶𝑛𝛿𝑟

 (42) 

𝑁𝛿𝑎
=

𝑄𝑆𝑏

𝐼𝑧
𝐶𝑛𝛿𝑎

 (43) 

Due to accessibility of all needed non dimensional 
coefficients from direct data or guessing using available 
plots in literature (Nguyen et al., 1979). There is no need 
to recalculate them, these data are listed in Table 6. The 
vertical tail characteristics are listed in Table 7 to be used 
for determining some coefficients that have to be 
calculated. 

𝐶𝑙𝛿𝑎
=

2𝐶𝐿𝛼𝑤
𝜏

𝑆𝑏
∫ 𝑐𝑦

𝑦2

𝑦1
𝑑𝑦 (44) 

𝐶𝑛𝛿𝑎
= 2𝐾𝐶𝐿0

𝐶𝑙𝛿𝑎
 (45) 

For simplification of presented relation in (Eq 44) an 
illustration of the model is shown in Fig.2, an equation 
can be developed to determine (Eq 44). Using Thales’s 
theorem for blue triangle in the Fig.2, it’s been resulted: 

(𝑐−𝑐𝑡)

(𝑐𝑟−𝑐𝑡)
=

𝑏

2
−𝑦

𝑏/2
     →    𝑐 = 𝑐𝑟 −

(𝑐𝑟−𝑐𝑡)

(
𝑏

2
)

𝑦 (46) 

By substituting of this term instead of “c” integral term 
in (Eq 44) will be solved easily: 

∫ 𝑐𝑦
𝑦2

𝑦1
𝑑𝑦 = ∫ (𝑐𝑟𝑦 −

(𝑐𝑟−𝑐𝑡)
𝑏

2

𝑦2)𝑑𝑦
𝑦2

𝑦1
  

=
𝑐𝑟

2
𝑦2|

𝑦2

𝑦1
−

(𝑐𝑟−𝑐𝑡)
3𝑏

2

𝑦3|
𝑦2

𝑦1
 (47) 

Two recently calculated derivatives have been included 
in Table 6. The elements of the studying matrices have 
been obtained using  (Eq 30-43), and the resulting 
parameters are listed in Table 8. The state and input 
matrices for lateral motion can be formed using relations 
of (Eq 29). Controllability and observability matrices of 
“A” are full rank, i.e., state matrix “A” is controllable and 
observable. 

𝐴 = [

−0.1504 0.0021 −0.9970 0.0538
−28.0786 −1.6441 0.3334 0
5.4806 −0.0810 −1.5039 0

0 1 0 0

] (48) 

𝐵 = [

0 0.0252
47.9237 9.5907
−1.4297 −1.9086

0 0

] (49) 

 

Table 6.Non-Dimensional Derivatives of Lateral Stability 

Parameter 𝑪𝒀𝒓
 𝑪𝒏𝒓

 𝑪𝒍𝒓 𝑪𝒍𝜷 𝑪𝒀𝜷
 𝑪𝒀𝒑

 𝑪𝒏𝒑
 𝑪𝒍𝒑 𝑪𝒏𝜷

 𝑪𝒀𝜹𝒓
 𝑪𝒍𝜹𝒓

 𝑪𝒏𝜹𝒓
 𝑪𝒍𝜹𝒂

 𝑪𝒏𝜹𝒂
 

Value 0.939 -0.397 0.088 -0.186 -1.199 0.679 -0.021 -0.434 0.241 0.201 0.064 -0.084 0.318 -0.063 
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Fig. 2.Top View of the F-16, to Determine Some Geometric Dimensions (Wikimedia drawing). 

Table 7. Geometric Characteristics of the Vertical Tail 

Parameter 𝑺𝒗 
[m2] 

𝑺𝑹 
[m2] 

τr τa 𝑺𝒇 
[m2] 

K lv 
[m] 

zv 
[m] 

Vv 𝑪𝑳𝜶𝒗
 

Value 4.0 1.08 0.49 0.40 2.78 -0.27 3.8 1.3 0.06 2.86 

Table 8.Lateral Stability Derivatives 

Parameter 𝒀𝜷 𝑳𝜷 𝑵𝜷 𝒀𝒑 𝒀𝒓 𝑳𝒑 𝑳𝒓 𝑵𝒑 𝑵𝒓 𝒀𝜹𝒓
 𝑳𝜹𝒓

 𝑳𝜹𝒂
 𝑵𝜹𝒓

 𝑵𝜹𝒂
 

Value -27.38 -28.08 5.481 0.389 0.538 -1.644 0.333 -0.081 -1.504 4.588 9.591 47.92 -1.908 -1.429 

3. Flight Dynamics and Modes of Motion; Transfer 

Functions 

A very useful concept in the analysis and design of 
control systems is the transfer function. The transfer 
function gives the relationship between the output of 
and input to a system. In the case of aircraft dynamics, it 
specifies the relationship between the motion variables 
and the control input. To avoid undue mathematical 
complexity, simpler mathematical models are developed 
using longitudinal and lateral approximation so that the 
idea behind various autopilots can be examined (Nelson, 
1998). For longitudinal modes, short-period (Eq 50) and 
phugoid mode (Eq 51) are introduced. 

∆𝛼

∆𝛿𝑒
=

𝐴𝑠+𝐵

𝐴𝑠2+𝐵𝑠+𝐶
       ,        

∆𝑞

∆𝛿𝑒
=

𝐴𝑠+𝐵

𝐴𝑠2+𝐵𝑠+𝐶
 (50) 

∆𝑢

∆𝛿𝑒
=

𝐴𝑠+𝐵

𝐴𝑠2+𝐵𝑠+𝐶
       ,         

∆𝜃

∆𝛿𝑒
=

𝐴𝑠+𝐵

𝐴𝑠2+𝐵𝑠+𝐶
 (51) 

Table 9.Constants A, B and C in the (Eq 50) and (Eq 51). 

Fraction 
part 

A B C 

Short-Period 
∆𝜹 1 −(𝑀𝑞 + 𝑀�̇� + 𝑍𝛼/𝑢0) 𝑍𝛼𝑀𝑞/𝑢0 − 𝑀𝛼 
∆𝜶 𝑍𝛿/𝑢0 𝑀𝛿 − 𝑀𝑞𝑍𝛿/𝑢0 - 
∆𝒒 𝑀𝛿 + 𝑀�̇�𝑍𝛿/𝑢0 𝑀𝛼𝑍𝛿/𝑢0 − 𝑀𝛿𝑍𝛼/𝑢0 - 

Phugoid 
∆𝜹 1 −𝑋𝑢 −𝑍𝑢𝑔/𝑢0 
∆𝒖 𝑋𝛿 𝑔𝑍𝛿/𝑢0 - 
∆𝜽 −𝑍𝛿/𝑢0 𝑋𝑢𝑍𝛿/𝑢0 − 𝑋𝛿𝑍𝑢/𝑢0 - 

The values of present constants in above equations are 
listed in Table 9. 

Table 10.Transfer Functions of Longitudinal Modes 

Modes 
Short-Period 

∆𝛼

∆𝛿𝑒
 

(0.1293)𝑠 + (−12.7968)

𝑠2 + (0.4721)𝑠 + (−0.6964)
 

∆𝒒

∆𝜹𝒆
 

(−12.7863)𝑠 + (5.0898)

𝑠2 + (0.4721)𝑠 + (−0.6964)
 

Phugoid 
∆𝒖

∆𝜹𝒆
 

(3.6510)𝑠 + (1.2684)

𝑠2 + (0.0016)𝑠 + (0.0063)
 

∆𝜽

∆𝜹𝒆
 

(−0.1293)𝑠 + (0.0021)

𝑠2 + (0.0016)𝑠 + (0.0063)
 

Substituting model characteristics in contents of Table 9 
and using (Eq 50-51), resulted transfer functions are 
listed in Table 10. 
The below relations (Eq 52) also used in (Eq 50) 
determination. 

𝑀𝛼 = 𝑢0𝑀𝑤   ,   𝑀�̇� = 𝑢0𝑀�̇�   ,   𝑍𝛼 = 𝑢0𝑍𝑤 (52) 

The same process is applying for lateral modes; Roll 
dynamics (Eq 53) and Dutch roll mode (Eq 54). 

∆𝑝

∆𝛿𝑎
=

𝐿𝛿𝑎

𝑠−𝐿𝑝
       ,       

∆∅

∆𝛿𝑎
=

𝐿𝛿𝑎

𝑠(𝑠−𝐿𝑝)
 (53) 

∆𝛽

∆𝛿𝑟
=

𝐴𝑠+𝐵

𝐴𝑠2+𝐵𝑠+𝐶
      ,      

∆𝑟

∆𝛿𝑟
=

𝐴𝑠+𝐵

𝐴𝑠2+𝐵𝑠+𝐶
 (54) 

∆𝛽

∆𝛿𝑎
=

𝐴𝑠+𝐵

𝐴𝑠2+𝐵𝑠+𝐶
      ,      

∆𝑟

∆𝛿𝑎
=

𝐴𝑠+𝐵

𝐴𝑠2+𝐵𝑠+𝐶
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Table 11.Constants A, B and C in the (Eq 54) For Dutch 
Roll Mode 

Fraction 
part 

A B C 

∆𝜹 1 −(𝑌𝛽 + 𝑢0𝑁𝑟)/𝑢0 (𝑌𝛽𝑁𝑟 − 𝑌𝑟𝑁𝛽

+ 𝑢0𝑁𝛽)/𝑢0 
𝜹𝒓 ∆𝜷 𝑌𝑟/𝑢0 (𝑌𝑟𝑁𝛿𝑟

− 𝑌𝛿𝑟
𝑁𝑟

− 𝑢0𝑁𝛿𝑟
)/𝑢0 

- 

∆𝒓 𝑁𝛿𝑟
 (𝑁𝛽𝑌𝛿𝑟

− 𝑌𝛽𝑁𝛿𝑟
)/𝑢0 - 

𝜹𝒂 ∆𝜷 0 (𝑌𝑟𝑁𝛿𝑎
− 𝑢0𝑁𝛿𝑎

)/𝑢0 - 
∆𝒓 𝑁𝛿𝑎

 −𝑌𝛽𝑁𝛿𝑎
/𝑢0 - 

Presented constants in (Eq 54) detailed in Table 11. Using 
model characteristics in (Eq 53-54), resulted transfer 
functions for lateral modes are listed in Table 12. 

Table 12.Transfer Functions of Lateral Modes 

Modes 
Roll Dynamics 

∆𝑝

∆𝛿𝑎
 

47.9237

𝑠 + 1.6441
 

∆∅

∆𝛿𝑎
 

47.9237

𝑠(𝑠 + 1.6441)
 

Dutch Roll 
∆𝛽

∆𝛿𝑟
 

(0.0029)𝑠 + (1.9408)

𝑠2 + (1.6543)𝑠 + (5.6906)
 

∆𝑟

∆𝛿𝑟
 

(−1.9086)𝑠 + (−0.1489)

𝑠2 + (1.6543)𝑠 + (5.6906)
 

∆𝛽

∆𝛿𝑎
 

(1.4254)

𝑠2 + (1.6543)𝑠 + (5.6906)
 

∆𝑟

∆𝛿𝑎
 

(−1.4297)𝑠 + (−0.2150)

𝑠2 + (1.6543)𝑠 + (5.6906)
 

Eigenvalues of matrix A are roots of the characteristic 
equation of system and are obtained by solving this 
equation: |𝜆𝐼 − 𝐴| = 0. Matrix A for short-period mode is 
shown in (Eq 55). 

𝐴 = [
𝑍𝛼/𝑢0 1

𝑀𝛼 + 𝑀�̇�𝑍𝛼/𝑢0 𝑀𝑞 + 𝑀�̇�
]→𝐴𝑠ℎ =

[
−0.3907 1
0.7282 −0.0814

] (55) 

Eigenvalues for short period mode are resulted “λ1= -
1.1033”, “λ2= 0.6312”. This mode is including an unstable 
pole in the right side of the origin. Eigenvalues for 
phugoid mode are “λ1,2= -0.0008 ± 0.0767i” which shows 
almost a stable situation. Matrix A for phugoid mode is 
shown in (Eq 56).  

𝐴 = [
𝑋𝑢 −𝑔

−
𝑍𝑢

𝑢0
0

]→𝐴𝑝ℎ = [
−0.0016 −9.81
0.0006 0

] (56) 

Determined eigenvalue for roll mode can be acquired 
using (Eq 57) that is resulted”𝝀𝒓𝒐𝒍𝒍 = −𝟏. 𝟔𝟒𝟒𝟏” which is a 
stable and reasonable root in the left side of the origin. 

𝜆𝑟𝑜𝑙𝑙 = 𝐿𝑝 (57) 

For Dutch roll mode we neglected rolling moment 
equation and stated that depend on sideslip and yawing 
rate as is shown in (Eq 58). Eigenvalues for Dutch roll 

mode are “λ1,2= -0.8272 ± 2.2374i”. These values indicate a 
stable situation for this mode.  

[∆�̇�
∆�̇�

] = [
𝑌𝛽/𝑢0 (𝑌𝑟/𝑢0) − 1

𝑁𝛽 𝑁𝑟
] [

∆𝛽
∆𝑟

]→𝐴 =

[
−0.1504 −0.9970
5.4806 −1.5039

] (58) 

Furthermore, it is important to mention that the spiral 
mode, which is considered one of the lateral modes, has 
not been considered in this study. The corresponding 
eigenvalue for the spiral mode has been determined to 
be “𝝀𝒔𝒑𝒊𝒓𝒂𝒍 = −𝟏. 𝟒𝟑𝟖𝟖”. Typically, this value is in close 
proximity to the origin.  
This pole arrangement on s-plane is usual for an aircraft 
with aft CG (Denieul et al., 2017). As manufacturer says 
and pilots confirm; this aircraft is very unstable. 
Moreover, flap effectiveness of this kind of elevator 
(Stabilator) is one. All these are preconditions for having 
an agile vehicle. For simulation, engine is supposed to 
work in half of its maximum thrust (𝛿𝑇 = 0.5) that is about 
in military thrust range (Nguyen et al., 1979). For lateral 
states behavior, roll angle is the most affected to aileron 
input, after that roll rate is sensitive to this control 
surface. Rudder deflection causes sideslip and yaw 
moment, since yaw and roll motions inevitably related to 
each other, as a lateral motion we study, both yaw and 
roll rates and also sideslip and roll angles are affected 
enormously 

4. Control Modelling; Autopilot Design 

In previous section it was discussed about two types of 
aircraft stability and achieved related mathematical 
model in both state space and transfer function 
representations. In this section the objective is 
embedding an appropriate controller in these models 
and reaching desired and reasonable states. A simple 
pitch control autopilot has been developed to maintain 
longitudinal stability of the model; using conventional 
PID and LQR, trying to hold pitch angle close to desired 
input as much as possible without any noise in final 
signal. By using inner rate feedback loop we are able to 
stabilize system. The model’s block diagram is shown in 
Fig. 3. 
In the event that the PID controller parameters (namely, 
the gains of the proportional, integral, and derivative 
terms) are inappropriately selected, the controlled 
process input may become unstable, exhibiting a 
diverging output, either with or without oscillations, and 
limited solely by saturation or mechanical failure. The 
underlying cause of instability lies in an excessive gain, 
especially in the presence of significant lag. Generally, 
response stabilization is imperative, ensuring the 
absence of oscillations under all combinations of process 
conditions and set points, although, on certain 
occasions, marginal stability (bounded oscillation) may 
be deemed acceptable or desirable. Introducing a PID 
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controller to an F-16 aircraft will lead to an enhanced 
steady-state solution, reduced rise time, and an 

improved transient response, thus yielding greater 
accuracy in its performance (Sayegh, 2014). 

 

Fig. 3. Pitch/Roll autopilot block diagram in state space form using PID controller

It can be demonstrated that if the system is state-
controllable, it becomes feasible to devise a linear 
control law that can achieve any desired closed-loop 
eigenvalue structure. For a single-input system, the 
control law is represented by (Eq 59), where "η" denotes 
the control input, and "k" is a column matrix or vector of 
unknown gains. The Bass-Gura method offers a 
straightforward approach to determine the gains 
required for a specific eigenvalue structure. The plant 
matrix, in general, may not be in the companion form. If 
the system is not in the companion form, we can employ 
a transformation using (Eq 60), wherein "V" denotes the 
controllability test matrix, "W" forms a triangular matrix 

based on the coefficients of the open-loop characteristic 
equation, and "�̅�" and "a" represent the coefficients of the 
desired closed-loop characteristic equation and the 
coefficients of the open-loop plant matrix characteristic 
equation, respectively (Nelson, 1998). This parameters 
for studying model are listed in Table  13. By 
incorporating the "k" parameter into the block diagram 
illustrated in Fig. 3, and leveraging the inner loop(s) and 
PID controller, a robust methodology can be established 
to address instability and achieve desirable outcomes 
within the control systems architecture. 

𝜂 = −𝑘𝑇𝑥 (59) 

𝑘 = [(𝑉𝑊)𝑇]−1[�̅� − 𝑎] (60) 

Table 13.Performance values of PID 

a �̅� V W 
longitudinal 

0.4737 0.8 
[

3.7 0.2 100.4 0
23.5 −2317 1115 −2151

−12.7 1.2 −9.4 6
0 −12.7 1.2 −9.4

] [

1 0.47 −0.69 0.64
0 1 0.47 −0.69
0 0 1 0.47
0 0 0 1

] - 0.6942 0.8 
0.0640 0.1 
0.0268 0.1 

Lateral 
3.2984 3.3 

[

0 1.5 3.9 −22
48 −79 87 −247

−1.4 −1.7 17.4 −11.8
0 48 −79 87

] [

1 3.29 8.49 13.22
0 1 3.29 8.49
0 0 1 3.29
0 0 0 1

] 8.4961 8.5 
13.2236 13.2 
2.1735 2 

 

Fig. 4. Pitch/Roll autopilot block diagram using LQR controller

LQR controller as a modern control approach is another 
strategy which is used here to build the pitch autopilot. 
This autopilot’s block diagram including state-space 
matrices and controller gains is shown in Fig. 4.  

Results from two approaches are shown in Fig. 5. For 
longitudinal pitch control. Investigating the results for 
Pitch revealed that rise time from PID method is about 
0.1 second, settling time for two percent of final value is 
around 1 second, with 14 percent overshoot. Without 
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accounting on inner loop, the system at most could be 
marginally stable with lots of disturbing oscillations and 
here the importance of the inner loop in increasing 

damping of the system is obvious. From LQR results rise 
time was around 2.3 seconds and settling time around 4 
seconds with no overshoot, which is too slow. 

 

Fig. 5. Pitch control using top) PID down) LQR controller 

In the F16 aircraft, both the aileron and the stabilator, 
which functions as a differential tail, contribute to roll 
and lateral motion to enhance maneuverability. When 
the aileron is deflected by 4 degrees, the differential tail 
deflects approximately 1 degree. However, the 
involvement of the differential tail in the system has not 

been considered in this study. The roll attitude autopilot 
design is presented in Fig. 3, while the control block 
diagram for the roll autopilot, utilizing the LQR 
approach, is depicted in Fig. 4. The system's response to 
these configurations is illustrated in Fig. 6.

 

Fig. 6. Roll control using top) PID down) LQR controller 
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5. Results and Discussion 

PID control is a classical control method widely used in 
various engineering applications, including aircraft 
control systems. It operates based on error feedback, 
continuously adjusting the control inputs (control 
surfaces) in proportion to the contrast between the 
desired and current states. On the other hand LQR is a 
modern control technique based on optimal control 
theory. It considers a cost function that quantifies the 
system's performance and aims to minimize it. LQR is 
capable of providing an optimal control law that balances 
the trade-off between control effort and performance. 
The choice between PID and LQR control for the F-16 
pitch and roll autopilot design depends on several 
factors, including performance requirements, 
implementation complexity, and available resources. 
LQR generally provides superior performance compared 
to PID control in terms of precision, stability, and ability 
to handle disturbances. LQR's optimal control 
formulation allows for fine-tuning control efforts to 
achieve desired performance. PID control is relatively 
straightforward to implement and tune. It has been used 
successfully in many control systems, including older 
aircraft models. However, it may require more tuning 
effort to achieve desired performance. LQR is more 
adaptable to various operating conditions and can 
handle a broader range of aircraft dynamics. As aircraft 
become more advanced and incorporate additional 
complexities, LQR's flexibility becomes advantageous. 
PID control is computationally lighter and may be 
preferred for systems with limited processing power. 
LQR, being an optimal control approach, might require 
more computational resources. Finally, the 
implementation complexity and available resources 
should also be taken into consideration when making the 
final design decision. 
Whitin this study, the PID controller yields a rise time of 
approximately 0.2 seconds and a settling time of about 3 
seconds for two percent of the final value, accompanied 
by an overshoot of 8 percent. On the other hand, 
employing the LQR approach results in a rise time of 
around 2 seconds and a settling time of approximately 4 
seconds, with no overshoot. The second approach 
demonstrates the absence of overshoot; however, it is 
slower in comparison. In contrast, the first approach 
exhibits a slight overshoot, which is inevitable, but offers 
significantly faster performance. The detailed results 
obtained from the simulations are presented in Table 14. 
The outcomes for both the pitch and roll autopilots are 
deemed satisfactory and reasonable when compared to 
the existing literature (Ahmed et al., 2019), (Stachowiak 
and Bosworth, 2004) and (Lu and Wu, 2005). Here, 
considerably superior outcomes are achieved in 
comparison to those presented in the initial literature. 

Moreover, it is important to acknowledge that a variety 
of results may be observed within an acceptable range, 
attributable to the collection of information from diverse 
sources under distinct operating conditions. 
Furthermore, by altering the Q and R matrices in the LQR 
strategy, superior results can be attained. Nevertheless, 
it is preferable to adhere to the main approach to avoid 
the complexities of model instability and ensure the 
validity of the simulation data. 

6. Conclusions 

Within this study, state-space representations were 
constructed for both longitudinal and lateral dynamics 
of the system. Additionally, transfer functions were 
derived to describe the dynamic modes. Subsequently, 
two autopilots were designed for pitch and roll control, 
employing both PID and LQR methods. The PID 
technique has demonstrated its remarkable 
effectiveness in the design of autopilots, surpassing the 
performance achieved by the LQR control system. This 
superiority is evident in Table 14, where the results of the 
PID approach outperform those of the LQR control 
system across various performance criteria under this 
typical simulation conditions.   

Table 14.Performance values of PID and LQR 

Method Rise time Settling time Overshoot 
Pitch Autopilot 

PID 0.10 s 1.07 s 13.9 % 
LQR 2.28 s 3.85 s 0 

Roll Autopilot 
PID 0.17 s 2.88 s 7.9 % 
LQR 2.18 s 3.75 s 0 

In future research endeavors, it is recommended to 
enhance the realism of the study by incorporating the 
dynamics of actuators through the utilization of 
appropriate transfer functions. Additionally, the 
dynamic representations obtained can be employed to 
design additional autopilot systems using both the PID 
and LQR approaches. While it can be acknowledged that 
modern control theories, such as "Adaptive Control", 
"Model Predictive Control (MPC)", "Sliding Mode Control 
(SMC)", "H-infinity Control", "Fuzzy Logic Control" and 
"Neural Networks" are known to exhibit robust 
performance in autopilot design and contribute to the 
overall effectiveness and safety of aircraft operations, 
The primary aim of this study was to establish a 
comprehensive understanding of the principles 
underlying analytical modelling of aircraft dynamics and 
the analysis of its control systems. The main focus was 
to take the initial step in this field of study with precision, 
thereby establishing a solid groundwork for future 
research and exploration. 
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Nomenclature 

S.T.P : Standard Temperature and Pressure 
b : Wing Span 
S : Wing Area 
c : Mean Aerodynamic Chord  
CG : Centre of Gravity 
AR : Wing Aspect Ratio 
HT : Horizontal Tail 
rc : Root Chord 
tc : Tip Chord 
bt : Tail Span 
lt : Distance Between CG and Aerodynamic Centre of HT 
St : Horizontal Tail Area 
VH : Tail Volume Ratio 
d𝜀/dα : Downwash Change 
𝜂 : Flap Effectiveness 
Sv : Vertical Tail Area 
SR : Rudder Area 
τr : Rudder Effectiveness 
τa : Flaperon Effectiveness 
Sf : Flaperon Area 
K : Empirical Factor 
VT : Vertical Tail 
lv : Horizontal Range Between Aerodynamic Centre of 
  VT and CG 
Zv :Vertical Range Between Aerodynamic Centre of VT 
  and CG 
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