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Abstract

Projection of future meteorological patterns such as median temperature and precipitation is necessary
for governments to facilitate civil aviation, forecast agricultural productions, and advise public energy
policies. Various models are proposed based on historical data, such as the short-term 7-day forecast
or the long-term Global Forecast System, to study climate change. The main contribution of the
paper is that it gives a feasible, cost-effective model for median-term projections with statistically
tested accuracies well within the accepted margins of the scientific community. This model is the
starting point to provide general guidelines to governments to forecast levels of energy consumption
for residential cooling in summer and heating in winter to provide energy subsidies for low-income
populations and for organizations supporting countries needing energy assistance. Additionally, mid-
term models are also useful during global energy disruptions. A theoretical model is derived based on
orbital mechanics, planetary science, and astronomy using Newton’s Law of Universal Gravitation
and Kepler’s Laws of Planetary Motions. The model is then optimized with historical data in a specific
region. The model’s predictions are then statistically compared with the actual observed temperature
outside the training data. In sum, the current harmonic oscillator method can be beneficially utilized
by governments to forecast natural phenomena in order to provide timely assistance to respective
populations such as predicting extreme temperature fluctuations in the planning of agricultural
productions.

Keywords: Harmonic oscillators; Newton’s law of gravitation; Kepler’s laws of planetary motion;
orbital mechanics
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1 Introduction

The study of atmospheric phenomena to project weather patterns by mathematical modelling has
a long history. The traditional approach has been gathering vast historical and empirical data and
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fitting them to various dynamical system frameworks consisting of covariant and interdependent
explanatory variables. Although new models have been proposed throughout the years, certain
challenges persist. A key obstacle is that the newer models frequently require ultrafast computing
powers incurring increasingly steep and prohibitive costs to national and local governments. This
challenge is particularly acute for developing countries in need of economic aid and disaster relief.
Secondly, these new computation-heavy models may lack the atmospheric flexibilities unique
to a region due to its specific topographies. Additionally, these costly models can be deficient
at times in providing sufficient information that answers to the administrative tasks of energy
consumption needs for its populations. Indeed, the cost-effective allocations of energy supplies
in a region’s smart energy grid are a perennial challenge to governments at all levels, national,
regional, and local. Vast research has been directed to achieve efficiency in a region’s energy
grid given its specific climate patterns. For example, a recent research paper by Yilmaz studied
the feasibility of generative adversarial networks (GANs) to improve energy efficiency by incor-
porating information and communication technologies in Türkiye energy grid [1]. The paper’s
author was able to demonstrate that trained synthetic load data are effective in reducing prediction
errors in load when historical data and risk management calculations are combined. Putting these
considerations together, the current paper examines the feasibility of harmonic oscillators as a
basic principle in mid-term climate projections. The main objective and contribution of the current
paper is that it gives a feasible, cost-effective model for median-term temperature projections with
statistically tested accuracies well within the accepted margins of the scientific community. The
paper is not the end, but the starting point in developing a cost-effective oscillation model with
higher accuracy and provide certain general guidelines for future research in this direction.
The remainder of this section will review some popular regional climate models in detail. Sec-
tion 2 will broaden the discussion to show the extensive applicability of harmonic oscillators in
biology, chemical engineering, physics, and biochemistry. In Section 3, the paper gives the classical
mechanics background and the basic atmospheric model. Section 4 furnishes the mathematical
model with historical meteorological data in a region. Section 5 shows the statistical analyses of
both the consistency and the predictive feasibility of the model, and finally, Section 6 gives an
overview of future research directions.
Regional climate models are increasingly important in that they consider historical data unique
to the locale and approach projections with the understanding that atmospheric behaviors at the
global level cannot be reasonably construed as a summation of mesoscale regional ensembles.
Different regional climate models coexist including Modele Atmospheric Regionale (MAR) de-
veloped by University of Grenoble in France, Advanced Regional Prediction System (ARPS) by
University of Oklahoma, and Aire Limitée Adaptation Dynamique Développement International
(ALADIN) developed and shared by 16 European and African countries. One particular advanced
regional model that has gained notice is the Regional Atmospheric Modelling System (RAMS)
by Colorado State University. With a projection scale of a few hundred square kilometers, RAMS
utilizes the nonlinear finite-difference method fine-tuned by historical data to produce projections.
The troposphere is divided into 3D grid intervals of equal volume Dq where q is a discretized
stochastic variable. Time t is also considered as a discrete variable. Observations are made at
discrete points in time tn = t0 + nDt for n = 0, 1, 2, 3, . . . , and Dt is the sampling time interval.
The probability that the stochastic state variable q is in the volume grid i at time tn is given by
the relation fi(tn)Dq. Probability density function f at the next time interval tn+1 is given by the
discretized sum of current states

fi (tn+1) = fi (tn) +
∑

i ′
D i

′

i fi ′ (tn). (1)
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In the above relation, Di
′

i is the probability transition matrix from the i-th state to the i
′
-th state.

The coefficients in the transition matrix satisfy D i
′

i = Wi
′

i − δii ′
∑

p Wp
i ′

where Wk ′
j values are the

transition coefficients updated in real-time by historical data in the recent past and normalized to
conserved probability

∑
i
′

Wi
′

i = 1. (2)

One challenge has been striking a balance between the desired resolution in the phase space
on the one hand and the availability of computing resources and historical data on the other.
Another challenge is that while the estimate of the transition improves with growing time series
length, there is a threshold time series length beyond which forecast accuracies do not improve
significantly. The RAMS climate projection system uses the HPE Cray supercomputer at 800
petaFlops to handle the ever-increasing need for vast computations. Other regional climate
models such as MAR face even more challenges as different terrains and topographies across
the Mediterranean require more variabilities to be incorporated into the computations, further
straining government agencies’ tight budgets in times of inflation, natural disasters, and energy
supply disruptions. It is with these considerations, feasible and cost-effective mathematical models
based on historical data become a focus of research.

2 Applicability of harmonic oscillators

A harmonic oscillator exemplifies the simplicity of the smooth transfer between kinetic energy
and potential energy. The equation of the phase space of the harmonic oscillator is a second-order
differential equation with initial values. The long-term asymptotic behaviors can be understood
through the presence and the nature of damping in the system. Applications of harmonic oscilla-
tors abound in nearly all branches of natural, social, and behavioral science ranging from physics,
biology, chemistry, ecology, economics, financial mathematics, and game theory to psychology. In
ecology, Koshkin and Meyers showed recently in 2022 that a stressed predator-prey system can be
modelled by harmonic oscillators where asymptotic limits can collapse into an attractor point in
the Lotka-Volterra differential equation system [2]. Setting x(t) and y(t) to be the populations of
the two species at time t respectively. The Lotka-Volterra system describes the interdependence
between the prey population density x(t) and the predator population density y(t), respectively,
as

dx
dt

= y(α − βx),

dy
dt

= x(−γ + δy), (3)

where α, β, and γ are dynamical system constants and δ is a system parameter describing the
species-specific covariance relation between prey’s population and the growth rate of predator’s
population. Koshkin and Meyers defined the energy of the predator-prey harmonic oscillator
system to be V(x, y) ≡ x2 + by2, where b is also a constant of the system. Each constant C
represents an integral energy level of the predator-prey system

x2 + by2 = C. (4)
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The time derivatives of V along the trajectories of the system are given by

V̇(x, y) ≡ ∇V • (ẋ, ẏ) =
∂V
∂x

ẋ +
∂V
∂y

ẏ. (5)

Denoting the point (x(t), y(t)) as p(t) in the graph of two species, the Ω-limit is defined as the
asymptotic behavior of the system

ωp ≡
{

q ∈ R2| p(tk) −→ q as t → ∞}
. (6)

Koshkin and Meyers found that if environmental stress expressed as a damping coefficient a > 0
is present in the system, the derivative of the energy in the long-term limit is negative

d
dt

V(x, y) =
∂V
∂x

ẋ +
∂V
∂y

ẏ = −2ax2 < 0, (7)

and the damped predator-prey oscillator system enters into a closed trajectory of energy ellipses
and eventually collapses to a single-point Ω-limit q [2]. Harmonic oscillation also has numerous
applications in chemical engineering, industrial engineering, and material science. In chemical
engineering, certain cyclic hydrocarbon compounds such as benzene exhibits strong chemical
stability due to the perfect symmetry in its six carbon-to-carbon and carbon-to-hydrogen covalent
bonds. This stability of the benzene molecule causes intermolecular stacking to occur due to
resonance delocalization of its electrons in the outer p atomic orbitals. The stable benzene molecule
forms a double-deck crystalline structure in this type of intermolecular stacking whose noncovalent
binding strength is modelled excellently by harmonic oscillators that utilize the periodic growth
and decay of positive electrostatic potential on one benzene molecule relative to the negative
electrostatic potential on the other benzene molecule in the above-described stacked structure.
The electrostatic potential on a benzene molecule with resonance delocalization is given by the
quantum harmonic potential

U(x) =
1
2

mω2x2. (8)

Here m is the molecular mass of benzene and ω is the angular frequency of the harmonic oscillation
exhibited by the periodic increase and decrease in electrostatic potentials. In particular, the
chemical stability of benzene due to the symmetry of its intra-molecular covalent bonds results in
a slow evaporative property manifested by its distinct sweet aroma which is termed aromaticity in
chemical engineering. The aromaticity of most cyclic hydrocarbon compounds is thus described
excellently by a harmonic oscillation model with benzene as a reliable benchmark in industries. In a
recent study, Arpa et al. [3] refined the harmonic oscillator model of aromaticity by reparametrizing
the oscillation parameters of the classic carbon-to-carbon bond strength in acyclic hydrocarbon
compounds ethane and ethylene. The researchers achieved the reparametrization of the harmonic
oscillator model by approximating the aromaticity parameter α given as

α =
2(

Rs − Ropt
)2

+
(

Rd − Ropt
)2 . (9)
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In Equation (9), Rs is the mean length of the pure single carbon-to-carbon bonds and Rd is the mean
length of the pure double carbon-to-carbon bonds in ethane and ethylene and Ropt is the optimal
carbon-to-carbon bond length in fully aromatic inert benzene experimentally measured to be
1.398-angstrom using neutron diffraction at 15 Kelvin. Thus, harmonic oscillator models are also
important in chemical and industrial engineering research because these aromatic hydrocarbons
are the backbone of industrial solvents, adhesives, plastics, and petrochemicals.

In quantum physics, harmonic oscillators are ubiquitous and are used extensively to model
quantum phenomena. For example, Özdemir et al. [4] compared two types of computational bases
in quantum entanglement. Denoting the initial state of an entangled system as ρ and the final
state as ρ ′, the two states are related by a quantum phase operation E : ρ→ E(ρ). One example of
the quantum phase operation is the Kraus formalism given by

E(ρ) =
∑

µ

Eµρ E†
µ. (10)

The operator Eµ acts on the Hilbert space HS of the entangled system and satisfies the completeness
relation

∑
µ E†

µEµ = I. Since a quantum system is never isolated and always interacts with
its environment, the interaction introduces noise in quantum computation and information
processing. This interaction is represented at time t = 0 in the entangled state as

ρ(0) = ρS(0)⊗ ρE(0). (11)

The evolution of the time-dependent entangled system is given by

ρ(t) = U(t)ρS(0)⊗ ρE(0)U†(t), (12)

where U = e−iHt/ℏ. The Kraus representation of an entangled system is one where energy
dissipation occurs via a damping process as a system interacts with its environment. Özdemir
et al. [4] discovered that the Kraus representation for a single qubit whose computation basis is
defined by the bosonic number states {∥0⟩ , ∥1⟩} are given by the operators

A0(t) = |0⟩ ⟨0| +√
η |1⟩ ⟨1|,

A1(t) =
√

1 − η |0⟩ ⟨1|, (13)

where
√

1 − η is the probability of the entangled system losing one qubit up to time t. The study
compared the fidelities of the qubit states for the no-photon-decay event, the one-photon-decay
event, and the two-photon-decay event. For example, it was discovered that the energy dissipation
between the event of a one-photon-decay and two-photon decay up to time t, given as a damped
harmonic oscillator with the above operator basis {Ai(t)} exhibits a long-term fidelity behavior
proportional to polynomial growths

lim
t→∞ F1(t)− F2(t) ∝ η +O

[
η2

]
. (14)

The harmonic oscillator has also found applications in biochemistry. For example, it is well-known
that insulin and insulin-like growth factors 1 and 2, denoted as IGF1 and IGF2 have similar
chemical structures. Although their precise mechanism of action is still unclear, it is known
that these hormones activate two closely related receptor tyrosine-kinases called the insulin
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receptor and IGF1 receptor respectively. Differences in the chemical kinetics of ligand binding and
activations of receptors by insulin and IGF1 are generally thought to be the determining factors
of their specificity. However, the receptors’ ligand binding mechanisms show complex allosteric
properties such as dependence on receptor disassociation rates. As a result, a more robust theory
of receptor kinetics proved challenging for decades.
Kiselyov et al. [5] used harmonic oscillators to provide a valuable mathematical model for receptor
kinetics. Using the concept that the active configuration of the receptors has higher free energy
compared to that of the inactive configuration, Kiselyov et al. [5] modeled the behavior of the
receptor mechanism near the point of activation as a harmonic oscillator. The idea is that separate
subunits of the receptor are rigid bodies connected by covalent bonds similar to an elastic spring
on a harmonic oscillator. In the model, the energy of the receptor oscillates harmonically when
the receptor is in thermal equilibrium with the buffer. The energy of the receptor, as a result of
random collisions with the buffer molecules, has a probability distribution given by the Maxwell
formula

dP
dE

=
1

KT
e−E/KT, (15)

where P, E, and T are the probability, energy, and temperature of the ensemble, respectively, and k
is the Boltzmann constant. The above distribution implies that the fraction of the insulin receptors
having sufficient activation energy for binding is given by∫∞

Eactivation

1
KT

e−E/KTdE. (16)

By tagging select sites alternately with regular and radioactive binding ligands, De Meyts et al. [5]
were able to theorize the binding reaction kinetics. For example, for sites 1 and 2 on the insulin
receptors, the chemical equilibrium of the level of r1×2 is given by

r1×2 =
rtotkcr/ (kcr + d2)

1 +
d1d2

a1 (kcr + d2) /L

, (17)

where L and rtot are the insulin concentration and total receptor levels respectively and the di’s
are the percentages of sites 1 and 2 remaining unbounded after insulin dissociation, kcr is the
critical kinetic constant, and a1 is the dependence rate factor of site 1. Numerous other models of
harmonic oscillators exist in natural science, behavioral science, and social science.
This paper is assembling a harmonic oscillator model of climate cycles with classic variables such
as temperature. A word of caution is in order. In mathematical modelling, the current paper is
fully aware that there exist explanatory models other than harmonic oscillators that can account
for these natural phenomena. For example, in a recent paper, Mishra et al. [6] were able to combine
the finite volume method and the Newton-Raphson method to study the calcium distribution
across the membrane of a cholangiocyte cell and found that the diffusion rate follows a cutoff
inverse sigmoid function. In addition, temperature itself can act with more complexity in natural
phenomena that cannot be accounted for by a simple system of differential operators.
For example, in another recent study, Shah et al. [7] showed that temperature can cause convective
flows across stratified surfaces in autocatalysis reactions in microorganisms. Thus, at times, a
model based on these well-known mathematical frameworks alone is insufficient to provide
explanatory power in studying some natural phenomena such as the movement of chemicals or
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macro-particles across membranes or layers. At both the micro-level and the macro-level, natural
phenomena can indeed exhibit more complexity than any simple but elegant mechanism alone
can aptly capture. For example, the above-mentioned sigmoid saturation model, in contrast to a
model of oscillators that shows periodicity, was successfully utilized as the activation function
in a study of artificial intelligence-assisted detection methods of melanoma performed by Orhan
and Yavşan [8]. In the study, the researchers chose the sigmoid function as the activation function
in testing six classification algorithms’ accuracy in melanoma detection models built on the
convoluted neural network or CNN-based deep learning AI’s. Among the six algorithms thus
trained, the MobileNet algorithm achieved an accuracy rate of 89.4% in cancer detection [8]. In
another study, Joshi et al. [9] considered a mathematical model that is framed to investigate
the role of buffer and calcium concentration on fibroblast cells. Thus, future research should
keep in mind that mathematical modelling of these natural or social phenomena may involve a
multi-dimensional approach.

3 The classical harmonic oscillator

Harmonic oscillators are in essence the idealization of the continuous and reversible process of the
transfer of kinetic energy into potential energy in a mass-spring system. The classical harmonic
oscillator is best reified by the mass-spring system. The system has a natural equilibrium position
where the mass and the restorative force of the spring are at static rest. Displacement of the
mass away from the natural equilibrium position by a distance of x causes a restorative force
F1 proportional to the magnitude of the displacement and opposite in direction given by Hooke’s
law F1 = −kx where k is the spring constant. The force F1 causes a potential energy U(x) to be
stored in the mass-spring system given by

U(x) = −

∫ x

0
F1du =

k
2

x2. (18)

Potential energy is continuously transferred to kinetic energy as the mass is moving from the
stretched or compressed position to the equilibrium position. Denote the velocity of the mass as v,
kinetic energy F2 in the system with mass m at velocity v is given by 1

2 mv2. By Newton’s second
law of motion, one obtains F2 = ma. Since a = d2x

dt2 , one has

F2 = m
d2x
dt2 . (19)

The conservation of energy means the sum of these two forces should be equal in magnitude and
opposite in direction,

m
d2x
dt2 = −kx. (20)

Normalizing both side by the mass m and re-writing k
m = ω2, where ω is the angular frequency,

one has a linear second-order differential equation

d2x
dt2 + ω2x = 0. (21)

The general solution of Eq. (17) giving the position x of the mass as a function of time t is
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x(t) = Aeiωt + Be−iωt. (22)

Using Euler’s identity eiπ = −1, the above solution x(t) can be rewritten in trigonometric terms.
The period of motion is given by T = 2π

ω and the frequency is given by f = 1
T = ω

2π . Should the
system be subjected to damping, a positive damping constant β appears in the linear term dx

dt

d2x
dt2 +

β

m
dx
dt

+ ω2x = 0. (23)

Setting β
m = 2λ, the damped case Eq. (19) further splits into three subcases according to the rates

of deceleration given by the parity of λ2 − ω2. For example, in the underdamped case where
λ2 − ω2 < 0, the solution becomes infinitely periodic and the oscillation flattens as t → ∞

x(t) = e−λt
[
c1 sin

√
λ2 − ω2t + c2 cos

√
λ2 − ω2t

]
. (24)

Overall, the free classical harmonic oscillator is an idealization of a perpetual motion machine in
which energy exchanges forms without incurring any loss. In laboratories, retarding elements
such as friction cause damping and eventually results in a cessation of periodic motion.

4 Basic Newton-Keplerian planetary model

The angular frequency ω in the harmonic oscillation relation Eq. (21) model is closely related to
Kepler’s laws of planetary motion and available astronomical data. Kepler’s third law states that
the ratio between the square of a planet’s orbital period T and its semi-major axis a is constant
within the solar system. Let Ms denote the mass of the Sun, m denote the mass of a planet, r be
its mean distance from the star, and ω be the angular velocity. Since the gravitational force is
balanced by the centrifugal force, Newton’s law of universal gravitation means

mrω2 = G
Ms • m

r2 . (25)

Theorem 1 The square of the period T is proportional to the cube of the mean distance from the star.

Proof The angular frequency is defined as the mean angular speed measured in radians, thus one
has

ω =
2π

T
. (26)

Squaring the above relation gives

[
2π

T

]2
= G

Ms

r3 . (27)

Inverting the above relation, one has

r3

T2 = G
Ms

4π2 . (28)

Since Ms and G are constants, one has the proportionality T2 ∝ r3. This completes the proof. ■
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In most solar systems, the orbits of the planets around their stars are elliptical. Let a and b
denote the semi-major and semi-minor axes of the two-body system respectively, then one has the
following theorem:

Theorem 2 The orbital period T is a function of both the semi-major and semi-minor axes a and b,
respectively.

Proof Since Ms ≫ m, one can simplify the dynamics of the system as a two-body system with
specific angular momentum h being the angular momentum L normalized by the mass of the
planet, h = L

m . Let h = ∥h∥. In a gravitationally bounded two-body system where the planet’s
displacement can be measured by angular movement, the infinitesimal operators of angle dθ, time
dt, and area dA are related as follows

dt =
r2

h
dθ,

dA =
r2

2
dθ. (29)

Simplifying the differential operator relations above, one has dt = 2
h dA. Further simplification

leads to

dA
dt

=
h
2

. (30)

Since h as the modulus of the mean normalized angular momentum specific to a planet-star system
in question is a constant, this implies that the rate of change in the area swept out by the planet
rotating around the star dA

dt is also a constant, thus giving the Kepler’s second law: the planet
sweeps out equal areas in equal time. Performing a contour integration of the above identity over
the full elliptical orbit of the planet to obtain the orbital period T, one has the following geometric
identity relating the orbital period to the semi-major and minor axes and angular momentum:

T =

∮
dt =

∮
2
h

dA =
2πab

h
.

■
In subsequent discussions, the mean angular displacement is denoted by ω where ω = T

C where
the normalizing factor C is the cycle number in one complete orbital revolution. Additionally, the
mean angular displacement is denoted by ω. With these notations, Kepler’s second law states that
ω is given by

ω =
2πab

t
√

p
√

Ms + m
, (31)

where p is a parameter specific to the elliptical orbit of the two-body system related to the
semi-major and semi-minor axes a and b by p = b2

a and t is the time for one orbit revolution.
Normalizing the semi-major axis a to unity, the above relation reduces to b√

p = 1. Hence, Eq. (29)

gives ω = 2π
t
√

Ms+m
. Reducing the mass of the Sun to unity, one has ω = 2π

t
√

1+m
. Given the

periodic nature of harmonic oscillators described above and the numerous applications across
disciplines discussed in the last section, it is natural to infer that the cycles of seasonal changes
such as annual cycles of monthly median temperature or lengths of daylight durations can also



Alexander Munson | 225

be modelled by harmonic oscillations. Absent any sudden cosmic changes that adversely affect
meteorological conditions such as monthly temperature, seasonal precipitations, or atmospheric
pressure in a region, most data variables follow a periodic pattern within a year whose anomalies
can be corrected by parametric statistics such as goodness of fit tests or analysis of variance tests.
To that end, a rational model for monthly median temperature T in a region can be reasonably
given by the coefficient-free harmonic oscillator

T(m) =
iA
2

[
e−iω(m−c1) − eiω(m−c1)

]
+

B
2

[
eiω(m−c2) + e−iω(m−c2)

]
+ D. (32)

In the above model, m is time given in months, the amplitude given by
√

A2 + B2 is modeled as an
approximation of the difference between the highest monthly median temperature and the lowest
monthly median temperature, the period of the oscillation is given by 2π

ω , and the undetermined
coefficients ci’s are phase shifts and D is the vertical shift. Certain observations about a time-
dependent atmospheric dynamics model are worthy of mention. First, since meteorology variables
in shorter time intervals exhibit more random behaviors, the longer interval of months is used.
Hence, there arises the consideration of which method of time-keeping should be utilized, be it the
lunar calendar or other types. Second, once a particular method of time-keeping is selected, there
is the additional consideration of the uneven residue of the orbital period of the Earth around the
Sun and how the residue is accounted for in the model. Third, there is also the consideration of
the axial precession of the Earth.

Table 1. Monthly median temperatures of New York City from July 2017 to July 2021

Month Temperature Month Temperature Month Temperature Month Temperature Month Temperature

Jan -1 Jan 0.5 Jan 3.5 Jan 2

Feb 5.5 Feb 2.5 Feb 4.5 Feb 1

Mar 5 Mar 6 Mar 8 Mar 7.5

Apr 10 Apr 13.5 Apr 10 Apr 12.5

May 19.5 May 17 May 16 May 17.5

Jun 22.5 Jun 22 Jun 22.5 Jun 23

Jul 24 Jul 26.5 Jul 26.5 Jul 26.6 Jul 24

Aug 23 Aug 26 Aug 23.5 Aug 25

Sept 20.5 Sept 21.5 Sept 21 Sept 20

Oct 17.5 Oct 14 Oct 15.5 Oct 13.5

Nov 8 Nov 7 Nov 6.5 Nov 11.7

Dec 2 Dec 3.5 Dec 3.5 Dec 3.5

2017 2018 2019 2020 2021

The precession is caused by the westward movements of the equinoxes along the ecliptic relative
to visually fixed stars in the heavens. Although the axial precession has a period of approximately
25,798 years, the choice of longer time variables can introduce anomalies in the model. There
exist other considerations in addition to the ones mentioned above. The harmonic oscillator
model at present is one among a whole set of mathematical models utilized to understand the
complexity of atmospheric dynamics. Hence, the parameters of the model can and should be
improved as more accurate data become available. In the present discussion, the monthly median
temperature in New York City is utilized. These monthly median temperatures were collected
from July 2017 to July 2021 available on public domains [10]. It should be stressed that different
public domains may post slightly different monthly median temperatures for the same region. The
above temperatures are monthly median temperatures. Observe that the median temperatures
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above exhibit sinusoidal wave patterns with maximum between the months of June and August of
each year and minimum between the months of December and February. A connected scatterplot
in Excel was used to visualize these data points. To further visualize the data, the months were
coded with the first month, July of 2017 as 7 and each subsequent month having an increment of 1,
thus converting categorical data into ordinal-numeric data ready for modeling and parametric
statistical analysis. Notice in the scatterplot, a rapid increase in median temperatures between
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Figure 1. Connected scatterplot of monthly median temperatures of New York City

5◦ and 20◦ spanned three months out of a year. These three months are typically March, April,
and May in the spring. Conversely, a rapid decrease in median temperatures between 21◦ and 7◦

also spanned three months out of a year. These three months are typically September, October,
and November in the fall. Also notice that the change in temperature between December of a
year through February of the following year is usually less than 6◦ in general. This latter pattern
was also exhibited in the three-month period between June and August of a year. For example,
in the year 2019, the median temperatures in June, July and August were 21.5◦, 26.5◦, and 23.5◦

respectively. This indicates a temperature increase of only 5◦ in the three-month period in 2019.

This sequential pattern of rapid temperature increases between March, April, and May, followed
by a period of minimal change, and the subsequent rapid decrease in September, October, and
November which is turn followed by a period of minimal change in December, January, and
February coincides well with that of a classical harmonic oscillator. Recall in the harmonic
oscillator, the mass moves rapidly as it crosses the equilibrium position and moves slowly
when the mass is close to the overstretched or over-compressed positions. Relation (26) gives
a workable model of mean angular displacement per unit of time calculated in earth days as
ω = 0.01720209895 radians/day. In the current model, if one were to use months to minimize the
effects of random meteorological anomalies, setting the uneven monthly residue to zero gives
ω = 0.516062969 radians/month. Allowing for 31 days in a month gives a higher monthly angular
displacement of ω = 0.533365067 radians/month. To optimize the monthly median temperatures
specific to New York City from July, 2017 to July 2021, the intermediate value ω = 0.523598776
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was used for the model. In the next section, a visual proximity test was conducted and a parametric
statistical test was also conducted to see how closely optimize the actual data. Thus, based on the
available data, a harmonic oscillator model of the monthly median temperature T as a function of
time measured in month m in New York City from July 2017 to July 2021 can be given as

T(m) =
8.95

2
[(1 + i)e−0.523598776i(m−5.5) + (1 − i)e0.523598776i(m−5.5)] + 13.4. (33)

In this region-specific model, it is assumed that the phase angle ϕ = tan−1
[

A
B

]
is π

4 radians, thus
setting A = B in the coefficient-free oscillator in Eq. (30). The magnitude of the amplitude is
modelled by trimmed minimum of the data set with the extreme cold month of January 2018
removed. Thus, the difference between the maximum and trimmed minimum is 26.6L’ − 0.5L’ =
26.1L’ with an observed difference of 26.1L’

2
∼= 13.1L’. To fit the data sufficiently, the model utilized

an amplitude of √
A2 + B2 =

√
8.952 + 8.952 ∼= 12.7L’ (34)

whose difference is comfortably within 97% of the observed amplitude.

5 Numerical simulations and statistical analysis of the model

To test how closely the harmonic oscillator model approximates the actual data. A visual proximity
test by superimposing the predicted temperatures and the actual data on the same graph shows
the feasibility of the harmonic oscillator model trained on actual data when sufficient data were
utilized as training data.
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Figure 2. Comparison of monthly median temperatures of New York City compared to predicted by the
harmonic oscillator model

Notice that in the overstretched and over-compressed regions in the visual proximity graph, the
model’s predicted temperatures T(m) given as orange points approximate the actual temperature
data given as blue dots well. In the equilibrium position, some variations can be observed.
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For example, in October of 2017, the predicted median temperature was 13.399◦ and the actual
recorded temperature was 17.5◦. This pair constitutes the pair with the largest deviation. During
the other months near the equilibrium point, the deviations were visibly smaller.
To complete the statistical analysis, a goodness of fit test was utilized to examine the predictive
power of the harmonic oscillator model. The goodness of fit test is a parametric test that measures
the deviation of the data points E expected by a hypothesized model and the actually observed
field data O using the χ2 distribution. The test statistic is given by

χ2 =
∑ (O − E)2

E
. (35)

For example, for the months between July 2017 and January 2018, the observed monthly median
temperatures and the expected monthly median temperatures are given in the following table of
partial results.

Table 2. Partial observed vs. predicted monthly temperatures of New York City

(O-E)
2

E

2017 7 24 26.0572 -2.0572 0.1624

8 23 24.3615 1.3615 0.0761

9 20.5 19.7286 0.7714 0.0302

10 17.5 13.4 4.1 1.2545

11 8 7.0714 0.9286 0.1219

12 2 2.4385 -0.4385 0.0789

2018 13 -1 0.7428 -1.7428 4.0891

Coded Month Observed Temperature O Expected Temperature E O - EYear

Recall that the χ2 distribution is a right-skewed distribution and that the goodness of fit test based
on the χ2 distribution is premised on the null hypothesis that the observed values are close to the
expected values predicted by the model. Thus, at a preset significance level, one rejects the null
hypothesis if the χ2 the test statistic is high, implying significant deviations between the observed
and the predicted values. Conversely, a low test statistic fails to reject, implying the observed
values and the predicted values are statistically and sufficiently close not to warrant a rejection at
the preset significance level.
With a degree of freedom at k − 1 = 48, at α = 0.10 significance level, the χ2 test fails to
detect significant statistical differences between the actual monthly median temperatures and the
predicted monthly median temperatures by the model at 90% confidence level demonstrating
the consistency of the model. To further test the consistency of the model, the author put the
model to the test with higher statistical rigor at the α = 0.05 significance level. The test statistic
is 34.7312 with a p-value above the null hypothesis rejection level again. Thus, both goodness
of fit statistical tests failed to detect significant statistical differences between the actual monthly
median temperatures and the predicted monthly median temperatures by the model at the 90%
and 95% confidence levels. In addition to consistency, goodness of fit tests were also performed
on historical data entirely outside of the training data used in the construction of the model in
order to test the model’s predictive power. Actual observed monthly median temperatures in New
York City in the 12-month period from August, 2021 to July 2022 from the same public domain
were statistically compared with model’s predicted temperature at both the α = 0.05 significance
level and the α = 0.01 significance level. At both significance levels, the goodness of fit test
gave an F-ratio of 0.0605 and could not detect statistically significant differences between the
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predicted median monthly temperature and the observed median temperature thereby supporting
the predictive power of the cost-effective harmonic oscillation model.

6 Discussion and further research directions

The current research gives a vantage point to investigate the feasibility of using harmonic os-
cillators to model atmospheric dynamics, thus opening the possibilities in forecasting energy
consumption and other areas of public policy related to climate science. Natural questions include
but are not limited to in what ways can the model be improved; should damping be present
in the model; if so, what are the causes of damping; what mechanism should be used in the
model to account for axial precession of Earth, and can the same approach be utilized to analyze
periodic cycles of annual precipitation. Numerous other questions and considerations exist in
this direction. As such, the current paper is a starting point. This section will first discuss certain
climate-specific research directions in the future, then it will broaden the discussion to include
certain philosophical implications in the generalized harmonic oscillator model going forward.
Based on the research presented, a possible area of future research to refine the current harmonic
oscillator model is to fine-tune the mid-term monthly model by incorporating fluid dynamics with
fractional calculus. In many areas of applied mathematics, fractional calculus has increasingly
proved to hold explanatory power. For example, Ahmed et al. [11] have recently discovered a
fractional calculus model using Caputo-Fabrizio fractional-order PDE to study the evolution of
the cholera epidemic. The model thus derived contained a system composed of four fractional
differential equations with input variables such as size of susceptible population and symptomatic
infected population. Moreover, a theorem of the uniqueness and existence of solutions to the
Caputo-Fabrizio fractional-order cholera model was also found. In atmospheric science, it is
well-established that shorter-term atmospheric behaviors such as weekly median temperature
or weekly precipitation in extreme weather conditions such as hurricanes can be modeled more
accurately by hydrodynamic ensembles. For example, a hurricane is a moving frame of low
hydrodynamic depressions with high atmospheric convection and an enclosed equatorial atmo-
spheric circulation spreading to higher latitudes. In the analysis of these lower-than-mid-term
projections, turbulent fluids in the hurricane column such as air or water vapors observe fractional
conservation of mass in hydrodynamic behaviors given by

−
∂αρqi
∂xα

i
=

Γ(α + 1)
´xα+2

∂

∂t

(
´x3nρ

)
. (36)

In the above equation, the standard control volume’s 3D lengths are given as ´xi for i = 1, 2, 3, ρ

is the mean air/water vapor density, qi is the specific hydrodynamic discharge passing through
the i-th face of the standard control volume, Γ(α + 1) is the gamma function, n is the porosity
parameter of the air/water vapor mixture, and ∂α

∂xα
i

is the α-th fractional derivative.
For example, Wheatcraft et al. [12] were able to utilize the above fractional calculus relation to study
non-linear hydrodynamic flux in control volumes. The research showed that the hydrodynamic
divergence term in the fractional mass conservation equation is the fractional convergence and
that the scaling term in the fractional conservation of mass is in fact scale-invariant. Combining
these latter considerations together with the research presented in the current paper, a more
comprehensive mid-term or short-to-mid-term atmospheric model can be reasonably given by
a system of both differential and fractional differential equations in which the master harmonic
oscillator model first gives the overall projections, then the fractional derivative transient model
modifies the above macro projections with more short-term refinement.
Another further research direction is to consider the philosophical nature of physical variables
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present in the model. For example, is the meaning of mass m used in the definition of angular
frequency ω limited to the total mass of the gravitationally bound two-body problem consisting
of Sun and Earth with the negligible mass of the Moon absorbed into the approximation for
computation purposes or are there more generalized epistemological ensembles that can account
for harmonic oscillations in these vastly disparate natural and social phenomenological settings.
This is a particularly important direction of future research based on the presented results. A
review of the literature on the applications of the harmonic oscillator in natural sciences and
social sciences shows that the meaning of the modelled variables can have discipline-specific
interpretations in some cases while eludes satisfactory interpretations in others. For example,
an application of the harmonic oscillator where the authors gave a plausible interpretation of
the meaning of the modelled variables is a quantum spatial-periodic harmonic model of equity
market with price limits by Meng et al. [13]. The authors of the study examined the price action
movement of equities modelled as a fundamental particle moving, vibrating, and undergoing
excitations in a quantum potential well with energy given as

V(x) =
mω2x2

2
. (37)

The authors reasoned that the energy band structures of the quantum harmonic oscillator model
correspond to the non-linear market relations such as inter-band positive correlations and intra-
band negative correlations between volatility and the transaction volume in unit time. The
probability of locating the equity at price x modelled as the statistical location of the fundamental
particle is given as the square modulus of the generalized Schrodinger wave function with a duly
coupled Gaussian

|φ(x)|2 =

√
mω

πℏ
e−mωx2/ℏ. (38)

The authors posited that the modelled variables m, ω, ℏ are interpreted as the mean total market
capitalization of the equity, period of the equity fluctuation cycles, and most importantly the
uncertainty of the irrational transaction volume of the equity respectively. To fit the model with
a market circuit where trading is halted in the presence of extreme equity valuation volatilities,
the authors further imposed a periodic boundary condition when the price exceeds $d above the
mean daily moving average or drops $d below the identical mean daily moving average given as

φ(x) = e−ikd φ(x + d). (39)

where k is the one-dimensional Bloch wave number. With the market circuit thus modelled, the
price of the equity is given as

φ(ξ) = e−
ξ2
2 [A•H1(ξ) + B•H2(ξ)] . (40)

where Hi’s are the first and the second Hermite polynomials and the parameters A and B are the
constants specific to the equity in consideration. Thus modelled, the authors were able to obtain
the solution of the equity wave function in Eq. (38) as[

H1

(
−βd

2

)
− e−ikdH1

(
βd
2

)]
•
[

H
′
2

(
−βd

2

)
− e−ikdH

′
2

(
βd
2

)
+ βde−ikdH2

(
βd
2

)]
, (41)
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where β is a re-parametrization constant coupling the price of the equity to ξ

ξ = βx =
√

mω/ℏ•x. (42)

It is worthy of consideration to note that the authors further inferred from the model that the
reduced Planck constant ℏ is the limit of irrational agency in equity trading, that is, in the perfectly
rational market, ℏ → 0.
One can ask: in the limit, is the efficient market hypothesis or EMH tenable? If financial information
is made transparent, symmetric, and accessible to all market participants such as to all institutional
investors and individual investors, can the rational market be a frictionless harmonic oscillator
where the only uncertainty is the most natural quantum price fluctuations captured by a geometric
Brownian motion Xt?

φ(ξ) ∼= Aeiξt + Be−iξt + Xt. (43)

If these conditions are tenable, then the logarithmic price of an equity Pt at time t is a simple linear
sum of the expected value of the equity Et and the stochastic discount factor Mt

log Pt+1 = log Mt + Et • log Pt. (44)

A natural question is: what would a rational trading strategy be in the stated limit? These and
other long-term considerations should be investigated by the mathematical modelling community.
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