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Real-Time Scalable System For Face Tracking In Multi-Camera 

Highlights 

 The proposed system is a real-time face tracking system in a multi-camera environment. 

  DeepSORT-based new design is recommended to make face tracking more stable and faster. 

 A cost-oriented, effective fault-tolerant and scalable system is proposed. 

Graphical Abstract 

In this study, a real-time, multi-camera, deep learning-based face tracking system was developed. 

 

 

 

Figure. System architecture 

Aim 

The aim of the proposed system is to realize a real-time facial recognition system using images from multiple cameras.  

Design & Methodology 

The system was designed with image processing algorithms and deep learning models.  

Originality 

A real-time facial recognition system has been designed. In addition, the deep learning model has been replaced with 

the face recognition model ArcFace in DeepSORT.  

Findings 

In the proposed system, when an image is input into the system, it can be displayed on the web page after 

approximately 127 ms.  

Conclusion 

The more stable face tracking was achieved and, the proposed system was shown to be stable, efficient, and cost-

effective.  

Declaration of Ethical Standards 

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee 

permission and/or legal-special permission. 
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 ABSTRACT 

Face detection and tracking have become increasingly popular in recent years. It has critical importance in security, defense, and 

robotics applications uses encountered in everyday life. For this purpose, many decision support or expert systems have been 

developed using artificial intelligence and machine learning. Thanks to the developments in the field of deep learning and hardware 

many effective and reliable face tracking systems have been realized. However there are still very few real-time scalable end-to-

end systems. Also, the realization of this system on multiple cameras is a real challenge. In this study, a real-time, multi-camera, 

deep learning-based face tracking system has been developed. In the realized system, SCRFD model is used for face detection, 

ArcFace model is used for face recognition, and an updated DeepSORT algorithm is used for more stable face tracking. In addition, 

Apache Kafka stream processing system and Socket.IO bidirectional communication library were used to process multi-camera 

data in real-time and scalable. In the proposed system, when an image is input into the system, it can be displayed on the web page 

after approximately 127 ms. 

Keywords: Face recognition, face tracking, deep learning, multi-camera. 

 

Çoklu Kameralarda Gerçek Zamanlı Ölçeklenebilir 

Yüz Tanıma Sistemi 

ÖZ 

Yüz tespiti ve takibi son yıllarda giderek daha popüler bir başlık hâline gelimiştir. Günlük yaşamda karşılaşılan güvenlik, savunma 

ve robotik uygulamaları kullanımlarında kritik öneme sahiptir. Bu amaçla yapay zeka ve makine öğrenmesi kullanılarak birçok 

karar destek ve uzman sistem geliştirilmiştir. Derin öğrenme ve donanım alanında yaşanan gelişmeler sayesinde birçok etkili ve 

güvenilir yüz takip sistemi hayata geçirilmiştir. Ancak hala çok az sayıda gerçek zamanlı ölçeklenebilir uçtan uca sistem 

bulunmaktadır. Ayrıca bu sistemin birden fazla kamerada gerçekleştirilmesi gerçek bir zorluktur. Bu çalışmada gerçek zamanlı, 

çoklu kameralı, derin öğrenme tabanlı bir yüz takip sistemi geliştirilmiştir. Gerçekleştirilen sistemde yüz tespiti için SCRFD 

modeli, yüz tanıma için ArcFace modeli, daha stabil yüz takibi için güncellenmiş DeepSORT algoritması kullanılmıştır. Ayrıca 

çoklu kamera verilerinin gerçek zamanlı ve ölçeklenebilir şekilde işlenmesi için Apache Kafka akış işleme sistemi ve Socket.IO 

çift yönlü iletişim kütüphanesi kullanılmıştır. Önerilen yaklaşımda sisteme bir görüntü girdi olarak verildiğinde yaklaşık 127 ms 

sonra web sayfasında görüntülenebilmektedir. 

Anahtar Kelimeler: Yüz tanıma, yüz takibi, derin öğrenme, çoklu-kamera. 

 

1. INTRODUCTION 

Computers and other electronic devices that we use in our 

daily lives allow us to develop human-machine 

interaction systems. One of the most valuable areas for 

the development of these systems is computer vision. 

There are many studies on computer vision in the 

literatüre [1-7]. Face detection and face recognition are 

only two of the studied subfields of computer vision. 

There are many real-time face recognition approaches in 

the world today. While most of them provide single-

camera solutions, some have extended their success to 

multi-camera. Moreover, it is not an easy process to 

implement real-time face recognition in multi-camera 

systems. Because many difficulties are encountered 

when face recognition is desired in multi-camera 

systems.  

The first is that the image streams from each camera must 

be processed independently and simultaneously. At the 

same time, the system should be designed to be 

distributed and scalable. In other words, as the number of 

cameras increases then the system load should be 

distributed accross more than one server. Apache Kafka 

[8] provides a real-time platform, best known as open-

source distributed event streaming. It is widely used for 

real-time processing, high-performance data pipelines, 

stream processing, data integration, and mission-critical 

applications. It also provides a scalable platform and 
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forms backbone for independent and simultaneous 

processing of each camera. 

The second is to prevent data loss by building a fault-

tolerant system. Fault tolerance is essential when even a 

single piece of data matters. Apache Kafka is a fault-

tolerant platform in terms of being a distributed system. 

Topics can be divided into Partitions and copies can be 

kept in different brokers. Thus, if one of the brokers 

breaks down or becomes inoperable, it can be continued 

by other brokers without data loss. 

The other is that it is difficult to combine face detection 

and face recognition in a stable, efficient, and low-cost 

system. First of all, face detection and recognition 

algorithms should be handled separately. In face 

detection, there are deep learning models [1,9-11] as well 

as many traditional methods [12-14]. It can be said that 

deep learning models give more successful results than 

traditional models. Among the popular deep learning 

models for face detection, MTCNN [9], Tinaface [10], 

and SCRFD [11] are given below. 

MTCNN [9] has proposed a deep cascading multitasking 

framework that takes advantage of the natural correlation 

between detection and alignment to improve their 

performance. It uses a cascading architecture with three 

stages of deep convolutional networks, which are 

designed for face and landmark position prediction. In 

the MTCNN model, a three-stage stepped image pyramid 

is created. In the first stage, it obtains regression vectors 

of the candidate facial windows and their bounding boxes 

with the proposal network (P-Net). After the candidates 

are calibrated, non-maximum suppression (NMS) is used 

to combine highly overlapping candidates. In the second 

stage, another CNN called the Refined Network (R-Net) 

is used to eliminate the false candidates from all the 

candidates from the first stage. In the last stage, the 

output of five facial landmark positions is obtained using 

the output network (O-Net). 

TinaFace [10] is one of the successful models that has 

taken its place in literature. It uses ResNet50 [15] as a 

backbone. It is also stated that all modules and techniques 

in TinaFace are easily applicable based on general object 

detection. TinaFace achieved 92.4% AP in WIDER 

FACE’s [16] hard dataset. Tinaface model adopts several 

approaches. First, it has been stated that face detection is 

actually a one-class generic object detection. Therefore, 

it deals with face detection with techniques in generic 

object detection. Secondly, TinaFace provides a 

powerful, simple basic method based on generic object 

detection. It achieves an average accuracy (AP) of 92.1% 

on hard settings on the test subset of WIDER FACE with 

single scale and single model. The final version of the 

model achieves 92.4% AP on hard settings on the test 

subset with test time augmentation (TTA). 

In addition to success, models that can be applied in real-

time are newly added to the literature. SCRFD [11] is one 

of the models that is successful and also suitable for real-

time. By making some improvements to TinaFace, they 

presented a more efficient and successful model. First, 

they state that face detection is more efficient under VGA 

resolution. In addition, they obtained more training 

examples for shallow stages. Secondly, they designed a 

simplified search field between the different components 

of a face detector. As a result, their model is more than 3 

times faster and 3.86% more successful than TinaFace. 

In face recognition, although there are traditional 

methods such as Eigenface [17], deep learning 

approaches are more popular. Face recognition is actually 

nothing but trying to correctly determine the identity of a 

person. Therefore, face recognition process needs to 

correctly extract the real features of face. Deep learning 

models such as SphereFace [18], CosFace [19], ArcFace 

[20], ElasticFace-Arc [21] can be shown among 

successful models in literature for face recognition. 

These models deal with the open set deep face 

recognition problem, where ideal face features are 

expected to have a maximum within-class distance 

smaller than minimum inter-class distance in a given 

metric space. In the open set approach, the identities in 

train and test dataset are expected to be completely 

different from each other. In this approach, after the 

features of face are extracted in the face recognition 

system, comparison is made using the nearest neighbor 

metric. On the other hand, in the closed set approach to 

face recognition, the identities of the training data set 

must be included in the test data set. In the next step, 

prediction is performed on the closed model. However, 

obtaining learning characteristics in the open set system 

is often difficult due to the large intra-class variation and 

high inter-class similarity. Therefore, these models have 

tried to optimize Softmax function, which allows 

learning angular discriminative features. It was observed 

that ArcFace was similar to ElasticFace-Arc and more 

successful than SphereFace and CosFace. The accuracy 

of these models on various datasets are as follows: 

 SphereFace, face recognition model trained 

using A-Softmax, achieved face recognition 

accuracy of 99.42% in LFW [22] 95% in YTF 

[23] and 75.76% in MegaFace Rank-1 [24]. 

 CosFace achieved face recognition accuracy of 

99.73% in LFW, 97.6% in YTF, 84.26% in 

MegaFace Challenge 1 Rank-1 and 77.06% in 

MegaFace Challenge 2 Rank-1. 

 ElasticFace-Arc, trained on the MS1MV2 

dataset, reached an accuracy of 99.82% in LFW 

and 98.81% in MegaFace Challenge 2 Rank-1. 

 ArcFace, trained on the MS1MV2 dataset, 

which is the semi-automatic refined version of 

the MS-Celeb-1M dataset, reached an accuracy 

of 99.83% in LFW dataset and 98.02% in YTF 

dataset. 

Another challenge is the near real-time viewing of 

processed images by the end user, which is essential 

where security is critical. Therefore, a communication 

line between end user and system should be established 

and data transmission should be made in real time. There 

are many communication approaches in this field. 



 

 

However, WebSocket API is one of the most suitable 

approach for real-time bi-directional data transfer. This 

communication protocol establishes a bidirectional 

connection over TCP and is well suited for real-time 

applications. On the other hand, Socket.IO library 

provides some additional features to WebSocket API. A 

more efficient and stable communication can be 

established with these improvements. In some systems, 

the current frame from the camera stream is considered 

irrelevant to the previous frame. This prevents 

information from previous frames from being used. 

Therefore, the previously detected object must be 

associated with the current frame. There are many 

models for this in the literature. Among these algorithms, 

SORT (Bewley et al. 2016), DeepSORT (Wojke, 

Bewley, and Paulus 2018), Bytetrack (Y. Zhang et al. 

2022) and OCSort (Cao et al. 2023) algorithms are only 

interested in tracking the object, regardless of object 

detection. Since DeepSORT is a more successful model 

and has re-identification, it is used in the proposed 

system, which avoids repeating the face recognition 

process in each frame, and realizes a more stable and 

lower cost system. 

 

2. RELATED WORKS 

There are many studies in the field of multi-camera face 

recognition in the literature. Each of these studies tries to 

realize multi-camera face recognition with different 

perspectives. However, the common goal of all of them 

is to build a multi-camera face recognition system. 

Jason et al. proposed a model for common face 

recognition from video sequences in a multi-camera 

environment [29]. In this study, they benefited from 

inter-camera collaboration. This collaboration resulted in 

high recognition performance in common and non-

common fields of view. In the non-common field-of-

view approach, it is stated that an object predicts the 

appearance using last viewed location with inter-camera 

collaboration. Performance data of the proposed model 

were obtained in the experiment using four cameras. This 

study aimed to predict the direction of a target leaving the 

field of view of a camera, as well as time-of- arrival 

model between the appearances of targets in the cameras. 

Z. Lian et al. proposed a multiple fusion-based real-time 

face tracking system [30]. In this system, after the face 

was detected by MTCNN, they presented a feature 

fusion-based method for face tracking. They used shape, 

motion and appearance features to measure object 

similarity. A convolutional neural network was used to 

extract appearance features. Motion and shape features 

were extracted using the Kalman filter [31]. It has been 

stated that a more stable tracking process was achieved 

thanks to its features combined with adjustable weights. 

H. Badave et al. proposed a new approach to face 

recognition using multi-camera head pose estimation 

[32]. The purpose of the approach was to identify the 

person more efficiently by estimating the head pose. The 

study was about choosing the most ideal camera 

according to direction of the human head using a multi-

camera system. The system uses facial landmark 

estimation-based face recognizer. It was tested on more 

than one person. 

In this study, a face detecting and tracking system using 

deep learning with multi-camera was proposed. The 

study was tested on multi-camera images of 4 people. In 

addition, the system components were executed on the 

same computer. As a result, after a camera image was 

detected and applied to the proposed system, the 

processed image in the web interface was obtained in 

approximately 127 ms. 

The organization of the paper is as follow materail and 

methods used are briefly explained in third section. 

application steps are explained in fourth section. In fifth 

section, conclusions are shared. 

 

3. MATERIAL AND METHOD 

In this section, we introduced briefly the basics of used 

methods. 

3.1. SCRFD 

Although great advances have been made in face 

detection, an efficient face detection with low 

computational cost and high precision has not been fully 

achieved. SCRFD [11] is a successful model for solving 

these problems. In TinaFace-based SCRFD model, 

multi-scale features are obtained by passing images 

through the FPN network in the feature extractor. Then, 

in the neck part, the multi-scale features on the backbone 

are combined. Finally, in the head section, face boxes and 

scores are predicted. The model combines two simple but 

effective approaches. These are, 

1. Sample Redistribution (SR) approach is used, 

which increases the number of images in the 

training dataset. 

2. Based on a carefully defined search 

methodology, Computation Redistribution (CR) 

approach is used, which reallocates computation 

between different components of the model 

(backbone, neck, and head). 

Efficiency-Accuracy balance has been given great 

importance for detailed experiments performed on the 

WIDER FACE [16] dataset and SCRFD family proposed 

in a wide variety of computational forms. The proposed 

submodel SCRFD-34GF [11] outperforms the TinaFace 

[10] model by 3.86%. It also offers more than 3 times 

faster performance on VGA resolution images. Although 

TinaFace achieves impressive results in face detection, it 

has a high computational cost. In the SCRFD model, 

efficient face detection is performed under a fixed VGA 

resolution (640×480) instead of using a large resolution 

to reduce computational cost. Also, most of the faces in 

WIDER FACE are smaller than 32×32 pixels, so the 

prediction takes place in shallow stages. It was thought 

that it would be useful to obtain more training samples to 

further improve the estimation. Sample redistribution 



 

 

method with a large image cropping strategy is used to 

increase the number of images in the training dataset. 

In Table 1, Accuracy and efficiency of SCRFD-34GF in 

the WIDER FACE validation set is compared with other 

approaches. As seen in the comparison, with the updates, 

the accuracy of the SCRFD-34 has increased and the 

inference time has reduced. 

 

Table 1. Accuracy and efficiency of different methods on the 

WIDER FACE validation set [11] 

Method Easy Medium Hard Infer(ms) 

DSFD [4] 94.29 91.47 71.39 55.6 

RetinaFace [1] 94.92 91.90 64.17 21.7 

HAMBox [3] 95.27 93.76 76.75 25.9 

TinaFace [10] 95.61 94.25 81.43 38.9 

SCRFD-34GF [11] 96.06 94.92 85.29 11.7 

 

The structure of a face detector has a computational 

distribution. It is important in determining its accuracy 

and efficiency. Therefore, the model was revised with CR 

in the study. In this approach, the search area in the model 

was reduced by controlling the degrees of freedom. In 

addition, random samples were taken from different 

components of the model for architectures with different 

configurations on the backbone, neck, and head. Then, it 

was calculated bootstrap based on statistics of the models 

and predicted the probable range in which the best 

models fall. As a result, a simplified search field was 

designed by CR among different components of the 

model (backbone, neck and head). 

 

3.1. ArcFace 

In many face recognition studies, it is emphasized that 

one of the main difficulties in training in deep 

convolutional neural networks is design of loss functions 

that can increase discriminative power. ArcFace [20] 

model also uses the same approach and uses a new loss 

function. ArcFace, the proposed face recognition model 

to obtain highly distinctive features, has a clear geometric 

interpretation as it fits the geodetic distance on a 

hypersphere precisely with its new loss function. The 

proposed face recognition model ArcFace uses a new loss 

function to obtain highly distinctive features. The model 

has a clear geometric interpretation as it fits geodetic 

distance on hypersphere exactly with the help of the new 

loss function.  

𝐿1 =  −
1

𝑁
 ∑  𝑙𝑜𝑔

𝑒
𝑊𝑦𝑖

𝑇  𝑥𝑖 + 𝑏𝑦𝑖

∑ 𝑒
𝑊𝑗

𝑇𝑥𝑖+ 𝑏𝑗𝑛
𝑗=1

𝑁
𝑖=1                 (1) 

The Softmax loss function shown in Equation 1 is 

reinterpreted for Arcface. In Equation 1, N represents 

batch size and n represents class number. 𝑥𝑖 represents 

deep attributes of i sample belonging to 𝑦𝑖  class. 𝑊𝑗 refers 

to j column of W weight. 𝑏𝑗 represents bias value. 

 

𝐿2 =  −
1

𝑁
 ∑ 𝑙𝑁

𝑖=1 𝑜𝑔
𝑒

𝑠 𝑐𝑜𝑠𝜃𝑦𝑖

𝑒
𝑠 𝑐𝑜𝑠𝜃𝑦𝑖 + ∑ 𝑒

𝑠 𝑐𝑜𝑠𝜃𝑗𝑛
𝑗=1, 𝑗 ≠ 𝑦𝑖

    (2) 

In the loss function proposed in Equation 2, which was 

created by adding new improvements, bias value is 

accepted as zero. In addition, 𝑐𝑜𝑠𝜃 value is included in 

the loss function by using 𝜃 angle between 𝑊𝑗 and 𝑥𝑖 in 

𝑊𝑗
𝑇𝑥𝑖 = |𝑊𝑗|. |𝑥𝑖| . 𝑐𝑜𝑠𝜃𝑗 . 𝑐𝑜𝑠𝜃 is included in the loss 

function by using angle 𝜃 between 𝑊𝑗 and 𝑥𝑖 . 𝑊𝑗  value is 

normalized with 𝑙2 form to obtain |𝑊𝑗| = 1 and also 

embedding property value |𝑥𝑖| is scaled with 𝑠 value after 

normalizing with 𝑙2 form in the same way. The 

normalization step ensures that the predictions depend 

only on angle between feature and weight, and thus 

embedding features are distributed over a hypersphere of 

radius 𝑠. 

𝐿3 =  −
1

𝑁
 ∑ 𝑙𝑁

𝑖=1 𝑜𝑔
𝑒

𝑠 𝑐𝑜𝑠(𝜃𝑦𝑖
+𝑚)

𝑒
𝑠𝑐𝑜𝑠(𝜃𝑦𝑖

+𝑚)
+ ∑ 𝑒

𝑠 𝑐𝑜𝑠𝜃𝑗𝑛
𝑗=1, 𝑗 ≠ 𝑦𝑖

     (3) 

The embedding features extracted in model are 

distributed around each feature center in hypersphere. An 

additional angular margin value m is added between 𝑥𝑖 

and actual reference value weight 𝑊𝑦𝑖
 in equation 3 to 

simultaneously improve within-class density and inter-

class mismatch of embedding features. Finally, the 

obtained embedding features can be compared using the 

cosine similarity metric. 

ArcFace has been compared to facial recognition models 

that train a large-scale image database containing many 

face pairs and a large-scale video dataset. As a result of 

extensive experimental evaluations against other 

advanced face recognition models, it has been stated that 

ArcFace performs consistently well and can be easily 

implemented with negligible computational overhead. 

ArcFace trained on MS1MV2 dataset which is the semi-

automatic refined version of MS-Celeb-1M dataset. Its 

verification performance is an accuracy of 99.83% in 

LFW [22] dataset and 98.02% in YTF [23] dataset as 

shown in Table 2. 

 

Table 2. Verification performance of different approaches on 

LFW and YTF Datesets [20] 

Method LFW YTF 

FaceNet [33] 99.63 95.10 

Marginal Loss [34] 99.48 95.98 

SphereFace [18] 99.42 95.0 

SphereFace++ [35] 99.47 - 

CosFace [19] 99.73 97.6 

MSIMV2, R100, ArcFace [20] 99.83 98.02 

 

3.2. DeepSORT 

DeepSORT [26] is an algorithm that takes only tracking 

objects as a task. It differs from both object detection and 

object tracking approaches. DeepSORT has introduced a 

new approach by integrating appearance information into 

new algorithm to improve the performance of the SORT 



 

 

[25] algorithm. As a result of the experimental 

evaluations, it was stated that the new improvements 

reduced the number of ID switches by 45% and a 

competitive performance was achieved at high FPS 

speeds. While SORT performs well overall in terms of 

tracking accuracy, it causes a relatively high number of 

ID switches. The reason is that the association metric 

with state estimation uncertainty is only correct. 

Therefore, SORT algorithm falls short in handling 

occlusions. DeepSORT overcomes this problem by 

replacing the association metric with one that combines 

movement and appearance information. In particular, a 

trained convolutional neural network is implemented to 

distinguish pedestrians in a large-scale person dataset. 

Thanks to integration of this network, it makes the 

implementation of the system easy, efficient and 

applicable to online scenarios. it also increases durability 

against misses and occlusions. 

First, the features are extracted from the convolutional 

neural network using detected objects. The extracted 

features are passed through a sequential series of distance 

measurement algorithms. These algorithms are 

Mahalanobis and Cosine distance measurement 

calculations. Mahalanobis distance is an association 

metric that works better when motion uncertainty is low. 

However, unexplained camera movements can cause 

rapid displacements in the image plane. This makes the 

Mahalanobis distance a rather useless metric during 

occlusions. Therefore, it was necessary to add the Cosine 

distance measurement metric as a second metric. 

Mahalanobis distance provides information specifically 

for short-term predictions, while the Cosine distance is 

useful in re-identification after long periods of occlusions 

where movement is less distinctive. In addition, Kalman 

filter [31] is used with a constant velocity motion and 

linear observation model. It tries to predict the next state 

of objects based on their previous state. 

 

3.3. Apache Kafka 

Apache Kafka [8] is an open-source distributed event 

streaming system. This platform is commonly used for 

high-performance data pipelines, data integration, flow 

analytics, and mission-critical applications. Apache 

Kafka is a real-time data capture application from event 

sources such as videos, sensors, databases, mobile 

devices, cloud services, and software applications. In 

addition, processing event streams retrospectively and 

routing event streams to different target technologies are 

among the most basic tasks. Kafka combines the 

following three key features so that it can be 

implemented with a single end-to-end tested solution for 

event streaming scenarios: 

 Publishing (writing) and subscribing (reading) 

event streams of data is its most important 

feature. 

 Durable and reliable storage of event streams is 

another feature. 

 Another feature is that it allows event streams to 

be processed as they occur or backward. 

All these functions are delivered as a flexible, highly 

scalable, fault-tolerant, and secure platform. If any server 

fails in a distributed architecture in Kafka, the remaining 

servers can continue to stream without any data loss. It 

has support for Java, Scala, Go, Python, C/C++, and 

many other programming languages for Kafka clients. In 

Kafka, producers are client applications that write events 

to Kafka. Consumers are applications that read and 

process these events by subscribing to them. In Kafka, 

producers and consumers work separately and 

independently. 

Events are organized in such a way that topics are stored 

permanently. In other words, a topic can be likened to a 

folder in a file system and events to files in a folder. 

Unlike traditional queue messaging systems, events are 

not deleted for a period of time after consumption based 

on the setting made. How long events should be retained 

via the per-topic configuration setting is defined on the 

platform. According to the settings, old events are 

deleted. 

 

3.4. Socket.IO 

Socket.IO [36] is a library that provides bidirectional, 

real-time and event-based communication between 

server and client. The library is built as a lightweight 

wrapper around WebSocket API. In addition, Socket.IO 

provides the additional features listed below in addition 

to a plain WebSocket API. 

 Enables the HTTP long polling option in case 

the WebSocket connection with the reliability 

cannot be established. 

 It supports auto reconnection. 

 It buffers the packets. 

 It has the information whether the package has 

arrived or not. 

 It can broadcast to all clients. 

 It can split application logic on a single shared 

connection. 

Socket.IO client connects to the HTTP long polling 

transport by default. The main reason for this is that it 

may not always be possible to establish a WebSocket 

connection due to corporate proxies, personal firewalls, 

and antivirus software. WebSocket connection failure 

means that the real-time application waits for a certain 

amount of time to start exchanging data. This harms user 

experience in real-time applications. Because of HTTP 

long polling step works pretty much anywhere, so it’s 

used in the first place so there’s an immediate connection. 

Then, an attempt is made to upgrade HTTP long polling 

connection to a WebSocket connection. If the upgrade is 

successful, HTTP long-polling stops, and the session 

switches to the WebSocket connection. If unsuccessful, 

HTTP long-polling connection remains open and 

continues to be used. 



 

 

4. APPLICATION 

In this study, real-time face tracking is performed over a 

multi-camera system using deep learning techniques. 

One of the biggest problems in video streaming systems 

is that they can not respond to requests instantly. In 

addition, it is important that the images taken from the 

camera are processed quickly without any loss. 

Therefore, the Apache Kafka tool is used as the backbone 

of the system. It serves as a high tolerance buffer for a 

real-time system. Images taken from Apache Kafka were 

processed in the fastest way with the constructed chain 

structure. Then, Apache Kafka was used again for 

database saving operations that would create a 

bottleneck. With the designed system, it is aimed to take 

quick action by detecting many problems that may cause 

alarms by interpreting the image with minimum delay in 

security or defense. 

 

 
Figure 1. Flowchart for a camera 

 

As seen in Figure 1, the flowchart is given for a camera, 

which is the smallest functioning part of the system. The 

frames reading from the camera is inserted to Apache 

Kafka via a producer process to avoid any loss due to 

image processing bottleneck. Then, a consumer process 

is run to read from Apache Kafka to process the image. 

The incoming image is first sent to the face detection 

model. The faces are cropped from the image with the 

resulting face bounding boxes and their embedding 

features are extracted. Finally, the embedding features 

are compared with cosine similarity to find out who it 

belongs to. Thus, the results found are sent back to 

Apache Kafka to be inserted in the database. 

Apache Kafka is used as the backbone of the system. 

Using Apache Kafka as the backbone of the system 

provides many advantages. Essentially, it provides a 

unified, high-throughput, low-latency, and scalable 

platform for processing real-time data streams. It 

provides a fault-tolerant structure for places where data 

is critical. The data stream in the system is completely 

managed by Apache Kafka. The data stream in the multi-

camera environment is provided simultaneously via 

Apache Kafka. A control program is used to manage the 

simultaneous operations. This code runs as a service on 

the Linux server to manage Apache Kafka processes, 

producers and consumers at specified time intervals. This 

program is responsible for restarting Apache Kafka 

producers or consumers when they are stopped. In 

addition, the images streaming to Apache Kafka are 

processed using a chain of responsibility structure. The 

first step in the chain of responsibility is face detection. 

Then there is the face recognition step, which includes 

face tracking. A new approach has been obtained by 

adding a face recognition model to the DeepSORT 

tracking algorithm in face tracking. Thus, stable, 

effective and low-cost face tracking is provided in the 

system. 

After the face recognition step, the processed images are 

displayed on the web using the Socket.IO library. In the 

last step, a log record is added to the PostgreSQL 

database using the person, camera, and timestamp 

information. PostgreSQL [37] database is used for all 

persistent data in the system. 

The operation of the system, whose working summary is 

given above, can be explained in detail in four steps: 

 Stage 1: the images streamed from the camera 

are saved in Apache Kafka. 

 Stage 2, the images read from Apache Kafka are 

given to a chain of responsibility structure for 

processing. 

 Stage 3, log records are created in the database 

by using the person identified, timestamp, and 

camera information. 

 Stage 4, the processed images are displayed on 

the web. 

At Stage 1 is to run a separate producer process for each 

camera. Each producer sends the images streamed from 

the cameras to the corresponding Apache Kafka topic. 

Each topic is created with the primary key value of the 

camera. Images are read from the camera using the read 

function in the OpenCV library. The images are 

converted to textitjpeg image format using the OpenCV 

imencode function. Finally, a byte array of the converted 

textitjpeg image is sent to Apache Kafka. 

At Stage 2, the images stored in Apache Kafka are read 

for processing by the consumer process. Consumers run 

as separate processes for each camera. After the 

consumer connects to the Apache Kafka server, it 

subscribes to the corresponding topic. It then sends the 

image to the next step for processing. The consumer is 

constantly listening for new data on the topic. After the 

jpeg bytes of the image are read from the topic, they are 

converted to their original format using the OpenCV 



 

 

imencode function. Finally, the images are sent to the 

chain of responsibility structure 

Images read by consumers from Apache Kafka topics are 

processed sequentially in the chain of responsibility 

structure. The main purpose of choosing the chain of 

responsibility design pattern at this step is to provide 

flexibility for adding new models. Thus, age detection, 

gender detection etc. models can be easily integrated into 

the system whenever required. 

The chain of responsibility in the system consists of four 

handlers. As shown in Figure 2, chain of responsibility is 

used sequentially. First, "Face Detection Handler" is used 

for face detection and "Face Tracking Handler" is used 

for face tracking. "Web Socket Handler" is used to send 

the image to the website and store it in the shared 

memory. "Database Handler" is used to insert the log 

record into the database. 

 

 
Figure 2. Handler chain 

 

The "Face Detection Handler" uses a highly accurate and 

highly efficient SCRFD face detection model. After the 

image is given to the model, face bounding boxes are 

obtained as output. The images to be given to the model 

input are resized to 640x640. The resulting face bounding 

boxes are passed to the next step, the "Face Tracking 

Handler”. 

In the "Face Tracking Handler", ArcFace face 

recognition model is integrated into the DeepSORT 

tracking algorithm with a new approach as shown in 

Figure 3. 

Face features are extracted by the convolutional neural 

network (CNN) in the DeepSORT algorithm. 128 feature 

maps are obtained at the output of the CNN. These 

features are used to measure whether the newly 

discovered faces match the tracking faces. To do this, 

DeepSORT has a two-step process. First, nearest 

neighbor distance metrics were used. The distances were 

computed using Cosine and Mahalanobis. Matching was 

then performed using the Hungarian algorithm. In the 

second step, intersection over union (IoU) is used to 

measure overlaps for remaining mismatch detections and 

tracks. After this step, unmatched tracks that have 

reached the maximum age are deleted. Otherwise, 

tracking is started or continued. 

 

 
Figure 3. Face tracking model 

 

Face recognition was performed on those whose face 

tracking was started or continued in DeepSORT. This is 

done for faces that are detected for the first time or for 

faces that previously failed face recognition. ArcFace 

was used as the face recognition model. ArcFace has a 

proven track record and is preferred because of its high 

accuracy rate. In this model, each face is fed into the 

network with an input size of 112x112. Face embedding 

features of size 512 are obtained in the model output. 

Then, cosine distances are calculated between the face 

embedding features in the model output and the face 

embedding features of the people inserted in the 

database. As a result, face recognition is performed using 

cosine distances. Face recognition is retried every 10 

frames if it is unsuccessful. To speed up the process, face 

embedding features of people are loaded from the 

database into memory. The in-memory data is stored in a 

key-value structure. As a result, a stable and fast face 

tracking system has been established in this study. 



 

 

The processed image in the "Face Tracking Handler" is 

transferred to the "Web Socket Handler". The purpose of 

this handler is to send the processed image to the web 

application at any time. Therefore, streaming images are 

transferred to shared memory. After the images are 

converted to base64 format, they are stored in the shared 

memory with a key-value pair. The primary key value of 

the camera is used as the key. The primary key value is 

the unique value created for the camera in the database. 

When the camera control page is opened in the web 

application, a bi-directional communication channel is 

established with the Socket.IO library and the image 

stream is provided. The primary key value of the camera 

is used as the address path information in the 

communication channel. 

"Database Handler is used to insert log records to the 

database after Web Socket Handler operation is 

completed. The log record consists of the person’s 

identity, the camera they appeared in, and the timestamp. 

To prevent the real-time system from being affected by 

the bottleneck that may occur in the database, the log 

record is first sent to the "database" Apache Kafka topic. 

Then, the log record on the "database" topic is inserted 

into the database by the "DatabaseConsumer" consumer. 

Log records for all cameras are sent to the database 

Apache Kafka topic. In other words, all log records to be 

inserted to the database are collected in the "database" 

topic. 

The system architecture is shown in Figure 4. The system 

uses the Python programming language. Thanks to 

Apache Kafka, a horizontally scalable system can be 

built as the number of cameras increases. In addition, 

possible data loss can be prevented by storing images in 

different Apache Kafka partitions for the same Topic. 

A real-time face tracking system that can operate in a 

multi-camera environment is proposed. To make this 

system to work more stable, a new DeepSORT algorithm 

including face recognition algorithm is used. As a result 

of the study, an end-to-end system was designed and the 

images were presented on the web with low latency. 

The study was conducted on a computer with an AMD 

Ryzen 5 5600X processor, NVIDIA RTX 3060 graphics 

card, and 16 GB of memory using the PyTorch machine 

learning library. The study was performed on multiple 

camera images. During the measurements, the average of 

the results obtained from 1800 frames was taken. 

According to the measurements, after the image was 

entered into the system, it could be displayed on the web 

page with a delay of approximately 127 ms. 

Approximately 59 ms of this time is spent on face 

detection and 34 ms of this time is spent on face tracking. 

On the other hand, when the DeepSORT algorithm is not 

used, it was displayed on the web page with a delay of 

143 ms. The significance of not using the DeepSORT 

algorithm is that the face detection model outputs directly 

to the face tracking model in every frame. 

 

 

 
Figure 4. System architecture 

 

5. CONCLUSION 

The system used SCRFD for face detection and ArcFace 

for face recognition. Cost-effective face detection was 

achieved with SCRFD. ArcFace provided an efficient 

face recognition model. Face tracking was achieved by 

combining face detection, face recognition, and 

DeepSORT algorithms. The use of DeepSORT in face 

tracking contributed to the efficiency of the system by 

using the previous image data. In addition, DeepSORT 

continues face tracking even if the face is not detected or 

recognized. Thus, more stable face tracking was 

achieved. As a result, the proposed system was shown to 

be stable, efficient, and cost-effective. 

Apache Kafka event streaming platform and Socket.IO 

bidirectional communication library are used for the 

proposed system. Thanks to Apache Kafka, input/output 

(IO) operations are realized in real time without 

interruption. In addition, the fault-tolerant structure of 

Apache Kafka prevents possible data loss. At the 

operating system level, separate processes are created for 

each camera. This results in a scalable system and more 

efficient use of resources. 

As a result, one frame in the camera given as input to the 

proposed system for the multi-camera environment could 

be displayed at the output with a delay of 127 ms. In 



 

 

addition, most of the time was used for face recognition 

in the system. 

In future studies, a less costly and more successful study 

can be conducted by using different face detection or face 

recognition algorithms. In addition, the effects and 

success of the distributed system can be tested in multi-

camera environments. In addition, a stability and 

efficiency study can be done with different object 

tracking approaches instead of DeepSORT. A more 

stable system can be created by optimizing the matching 

algorithms in DeepSORT. A more efficient system can 

be created by using different deep learning models in 

DeepSORT. 
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