

POLİTEKNİK DERGİSİ

JOURNAL of POLYTECHNIC

ISSN: 1302-0900 (PRINT), ISSN: 2147-9429 (ONLINE)

URL: http://dergipark.org.tr/politeknik

Real-time scalable system for face tracking in

multi-camera

Çoklu kameralarda gerçek zamanlı

ölçeklenebilir yüz tanıma sistemi

Yazar(lar) (Author(s)): Mehmet F. OZDEMIR1, Davut HANBAY2

ORCID1 0000-0003-3563-054X

ORCID2: 0000-0003-2271-7865

To cite to this article: Özdemir M. F. and Hanbay D., “Real-time scalable system for face tracking in multi-

camera”, Journal of Polytechnic, *(*): *, (*).

Bu makaleye şu şekilde atıfta bulunabilirsiniz: Özdemir M. F. ve Hanbay D., “Real-time scalable system

for face tracking in multi-camera”, Politeknik Dergisi, *(*): *, (*).

Erişim linki (To link to this article): http://dergipark.org.tr/politeknik/archive

DOI: 10.2339/politeknik.1332952

http://dergipark.org.tr/politeknik
http://dergipark.org.tr/politeknik/archive

Real-Time Scalable System For Face Tracking In Multi-Camera

Highlights

 The proposed system is a real-time face tracking system in a multi-camera environment.

 DeepSORT-based new design is recommended to make face tracking more stable and faster.

 A cost-oriented, effective fault-tolerant and scalable system is proposed.

Graphical Abstract

In this study, a real-time, multi-camera, deep learning-based face tracking system was developed.

Figure. System architecture

Aim

The aim of the proposed system is to realize a real-time facial recognition system using images from multiple cameras.

Design & Methodology

The system was designed with image processing algorithms and deep learning models.

Originality

A real-time facial recognition system has been designed. In addition, the deep learning model has been replaced with

the face recognition model ArcFace in DeepSORT.

Findings

In the proposed system, when an image is input into the system, it can be displayed on the web page after

approximately 127 ms.

Conclusion

The more stable face tracking was achieved and, the proposed system was shown to be stable, efficient, and cost-

effective.

Declaration of Ethical Standards

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee

permission and/or legal-special permission.

Real-Time Scalable System For Face Tracking In

Multi-Camera

Araştırma Makalesi / Research Article

Mehmet F. OZDEMIR1*, Davut HANBAY1
1Dept. of Computer Engineering, Inonu University, Malatya, 44280, Türkiye

(Geliş/Received : 26.07.2023 ; Kabul/Accepted : 01.03.2024 ; Erken Görünüm/Early View : 14.03.2024)

 ABSTRACT

Face detection and tracking have become increasingly popular in recent years. It has critical importance in security, defense, and

robotics applications uses encountered in everyday life. For this purpose, many decision support or expert systems have been

developed using artificial intelligence and machine learning. Thanks to the developments in the field of deep learning and hardware

many effective and reliable face tracking systems have been realized. However there are still very few real-time scalable end-to-

end systems. Also, the realization of this system on multiple cameras is a real challenge. In this study, a real-time, multi-camera,

deep learning-based face tracking system has been developed. In the realized system, SCRFD model is used for face detection,

ArcFace model is used for face recognition, and an updated DeepSORT algorithm is used for more stable face tracking. In addition,

Apache Kafka stream processing system and Socket.IO bidirectional communication library were used to process multi-camera

data in real-time and scalable. In the proposed system, when an image is input into the system, it can be displayed on the web page

after approximately 127 ms.

Keywords: Face recognition, face tracking, deep learning, multi-camera.

Çoklu Kameralarda Gerçek Zamanlı Ölçeklenebilir

Yüz Tanıma Sistemi

ÖZ

Yüz tespiti ve takibi son yıllarda giderek daha popüler bir başlık hâline gelimiştir. Günlük yaşamda karşılaşılan güvenlik, savunma

ve robotik uygulamaları kullanımlarında kritik öneme sahiptir. Bu amaçla yapay zeka ve makine öğrenmesi kullanılarak birçok

karar destek ve uzman sistem geliştirilmiştir. Derin öğrenme ve donanım alanında yaşanan gelişmeler sayesinde birçok etkili ve

güvenilir yüz takip sistemi hayata geçirilmiştir. Ancak hala çok az sayıda gerçek zamanlı ölçeklenebilir uçtan uca sistem

bulunmaktadır. Ayrıca bu sistemin birden fazla kamerada gerçekleştirilmesi gerçek bir zorluktur. Bu çalışmada gerçek zamanlı,

çoklu kameralı, derin öğrenme tabanlı bir yüz takip sistemi geliştirilmiştir. Gerçekleştirilen sistemde yüz tespiti için SCRFD

modeli, yüz tanıma için ArcFace modeli, daha stabil yüz takibi için güncellenmiş DeepSORT algoritması kullanılmıştır. Ayrıca

çoklu kamera verilerinin gerçek zamanlı ve ölçeklenebilir şekilde işlenmesi için Apache Kafka akış işleme sistemi ve Socket.IO

çift yönlü iletişim kütüphanesi kullanılmıştır. Önerilen yaklaşımda sisteme bir görüntü girdi olarak verildiğinde yaklaşık 127 ms

sonra web sayfasında görüntülenebilmektedir.

Anahtar Kelimeler: Yüz tanıma, yüz takibi, derin öğrenme, çoklu-kamera.

1. INTRODUCTION

Computers and other electronic devices that we use in our

daily lives allow us to develop human-machine

interaction systems. One of the most valuable areas for

the development of these systems is computer vision.

There are many studies on computer vision in the

literatüre [1-7]. Face detection and face recognition are

only two of the studied subfields of computer vision.

There are many real-time face recognition approaches in

the world today. While most of them provide single-

camera solutions, some have extended their success to

multi-camera. Moreover, it is not an easy process to

implement real-time face recognition in multi-camera

systems. Because many difficulties are encountered

when face recognition is desired in multi-camera

systems.

The first is that the image streams from each camera must

be processed independently and simultaneously. At the

same time, the system should be designed to be

distributed and scalable. In other words, as the number of

cameras increases then the system load should be

distributed accross more than one server. Apache Kafka

[8] provides a real-time platform, best known as open-

source distributed event streaming. It is widely used for

real-time processing, high-performance data pipelines,

stream processing, data integration, and mission-critical

applications. It also provides a scalable platform and

*Sorumlu Yazar (Corresponding Author)

e-posta : mfatih.ozdemir@inonu.edu.tr

forms backbone for independent and simultaneous

processing of each camera.

The second is to prevent data loss by building a fault-

tolerant system. Fault tolerance is essential when even a

single piece of data matters. Apache Kafka is a fault-

tolerant platform in terms of being a distributed system.

Topics can be divided into Partitions and copies can be

kept in different brokers. Thus, if one of the brokers

breaks down or becomes inoperable, it can be continued

by other brokers without data loss.

The other is that it is difficult to combine face detection

and face recognition in a stable, efficient, and low-cost

system. First of all, face detection and recognition

algorithms should be handled separately. In face

detection, there are deep learning models [1,9-11] as well

as many traditional methods [12-14]. It can be said that

deep learning models give more successful results than

traditional models. Among the popular deep learning

models for face detection, MTCNN [9], Tinaface [10],

and SCRFD [11] are given below.

MTCNN [9] has proposed a deep cascading multitasking

framework that takes advantage of the natural correlation

between detection and alignment to improve their

performance. It uses a cascading architecture with three

stages of deep convolutional networks, which are

designed for face and landmark position prediction. In

the MTCNN model, a three-stage stepped image pyramid

is created. In the first stage, it obtains regression vectors

of the candidate facial windows and their bounding boxes

with the proposal network (P-Net). After the candidates

are calibrated, non-maximum suppression (NMS) is used

to combine highly overlapping candidates. In the second

stage, another CNN called the Refined Network (R-Net)

is used to eliminate the false candidates from all the

candidates from the first stage. In the last stage, the

output of five facial landmark positions is obtained using

the output network (O-Net).

TinaFace [10] is one of the successful models that has

taken its place in literature. It uses ResNet50 [15] as a

backbone. It is also stated that all modules and techniques

in TinaFace are easily applicable based on general object

detection. TinaFace achieved 92.4% AP in WIDER

FACE’s [16] hard dataset. Tinaface model adopts several

approaches. First, it has been stated that face detection is

actually a one-class generic object detection. Therefore,

it deals with face detection with techniques in generic

object detection. Secondly, TinaFace provides a

powerful, simple basic method based on generic object

detection. It achieves an average accuracy (AP) of 92.1%

on hard settings on the test subset of WIDER FACE with

single scale and single model. The final version of the

model achieves 92.4% AP on hard settings on the test

subset with test time augmentation (TTA).

In addition to success, models that can be applied in real-

time are newly added to the literature. SCRFD [11] is one

of the models that is successful and also suitable for real-

time. By making some improvements to TinaFace, they

presented a more efficient and successful model. First,

they state that face detection is more efficient under VGA

resolution. In addition, they obtained more training

examples for shallow stages. Secondly, they designed a

simplified search field between the different components

of a face detector. As a result, their model is more than 3

times faster and 3.86% more successful than TinaFace.

In face recognition, although there are traditional

methods such as Eigenface [17], deep learning

approaches are more popular. Face recognition is actually

nothing but trying to correctly determine the identity of a

person. Therefore, face recognition process needs to

correctly extract the real features of face. Deep learning

models such as SphereFace [18], CosFace [19], ArcFace

[20], ElasticFace-Arc [21] can be shown among

successful models in literature for face recognition.

These models deal with the open set deep face

recognition problem, where ideal face features are

expected to have a maximum within-class distance

smaller than minimum inter-class distance in a given

metric space. In the open set approach, the identities in

train and test dataset are expected to be completely

different from each other. In this approach, after the

features of face are extracted in the face recognition

system, comparison is made using the nearest neighbor

metric. On the other hand, in the closed set approach to

face recognition, the identities of the training data set

must be included in the test data set. In the next step,

prediction is performed on the closed model. However,

obtaining learning characteristics in the open set system

is often difficult due to the large intra-class variation and

high inter-class similarity. Therefore, these models have

tried to optimize Softmax function, which allows

learning angular discriminative features. It was observed

that ArcFace was similar to ElasticFace-Arc and more

successful than SphereFace and CosFace. The accuracy

of these models on various datasets are as follows:

 SphereFace, face recognition model trained

using A-Softmax, achieved face recognition

accuracy of 99.42% in LFW [22] 95% in YTF

[23] and 75.76% in MegaFace Rank-1 [24].

 CosFace achieved face recognition accuracy of

99.73% in LFW, 97.6% in YTF, 84.26% in

MegaFace Challenge 1 Rank-1 and 77.06% in

MegaFace Challenge 2 Rank-1.

 ElasticFace-Arc, trained on the MS1MV2

dataset, reached an accuracy of 99.82% in LFW

and 98.81% in MegaFace Challenge 2 Rank-1.

 ArcFace, trained on the MS1MV2 dataset,

which is the semi-automatic refined version of

the MS-Celeb-1M dataset, reached an accuracy

of 99.83% in LFW dataset and 98.02% in YTF

dataset.

Another challenge is the near real-time viewing of

processed images by the end user, which is essential

where security is critical. Therefore, a communication

line between end user and system should be established

and data transmission should be made in real time. There

are many communication approaches in this field.

However, WebSocket API is one of the most suitable

approach for real-time bi-directional data transfer. This

communication protocol establishes a bidirectional

connection over TCP and is well suited for real-time

applications. On the other hand, Socket.IO library

provides some additional features to WebSocket API. A

more efficient and stable communication can be

established with these improvements. In some systems,

the current frame from the camera stream is considered

irrelevant to the previous frame. This prevents

information from previous frames from being used.

Therefore, the previously detected object must be

associated with the current frame. There are many

models for this in the literature. Among these algorithms,

SORT (Bewley et al. 2016), DeepSORT (Wojke,

Bewley, and Paulus 2018), Bytetrack (Y. Zhang et al.

2022) and OCSort (Cao et al. 2023) algorithms are only

interested in tracking the object, regardless of object

detection. Since DeepSORT is a more successful model

and has re-identification, it is used in the proposed

system, which avoids repeating the face recognition

process in each frame, and realizes a more stable and

lower cost system.

2. RELATED WORKS

There are many studies in the field of multi-camera face

recognition in the literature. Each of these studies tries to

realize multi-camera face recognition with different

perspectives. However, the common goal of all of them

is to build a multi-camera face recognition system.

Jason et al. proposed a model for common face

recognition from video sequences in a multi-camera

environment [29]. In this study, they benefited from

inter-camera collaboration. This collaboration resulted in

high recognition performance in common and non-

common fields of view. In the non-common field-of-

view approach, it is stated that an object predicts the

appearance using last viewed location with inter-camera

collaboration. Performance data of the proposed model

were obtained in the experiment using four cameras. This

study aimed to predict the direction of a target leaving the

field of view of a camera, as well as time-of- arrival

model between the appearances of targets in the cameras.

Z. Lian et al. proposed a multiple fusion-based real-time

face tracking system [30]. In this system, after the face

was detected by MTCNN, they presented a feature

fusion-based method for face tracking. They used shape,

motion and appearance features to measure object

similarity. A convolutional neural network was used to

extract appearance features. Motion and shape features

were extracted using the Kalman filter [31]. It has been

stated that a more stable tracking process was achieved

thanks to its features combined with adjustable weights.

H. Badave et al. proposed a new approach to face

recognition using multi-camera head pose estimation

[32]. The purpose of the approach was to identify the

person more efficiently by estimating the head pose. The

study was about choosing the most ideal camera

according to direction of the human head using a multi-

camera system. The system uses facial landmark

estimation-based face recognizer. It was tested on more

than one person.

In this study, a face detecting and tracking system using

deep learning with multi-camera was proposed. The

study was tested on multi-camera images of 4 people. In

addition, the system components were executed on the

same computer. As a result, after a camera image was

detected and applied to the proposed system, the

processed image in the web interface was obtained in

approximately 127 ms.

The organization of the paper is as follow materail and

methods used are briefly explained in third section.

application steps are explained in fourth section. In fifth

section, conclusions are shared.

3. MATERIAL AND METHOD

In this section, we introduced briefly the basics of used

methods.

3.1. SCRFD

Although great advances have been made in face

detection, an efficient face detection with low

computational cost and high precision has not been fully

achieved. SCRFD [11] is a successful model for solving

these problems. In TinaFace-based SCRFD model,

multi-scale features are obtained by passing images

through the FPN network in the feature extractor. Then,

in the neck part, the multi-scale features on the backbone

are combined. Finally, in the head section, face boxes and

scores are predicted. The model combines two simple but

effective approaches. These are,

1. Sample Redistribution (SR) approach is used,

which increases the number of images in the

training dataset.

2. Based on a carefully defined search

methodology, Computation Redistribution (CR)

approach is used, which reallocates computation

between different components of the model

(backbone, neck, and head).

Efficiency-Accuracy balance has been given great

importance for detailed experiments performed on the

WIDER FACE [16] dataset and SCRFD family proposed

in a wide variety of computational forms. The proposed

submodel SCRFD-34GF [11] outperforms the TinaFace

[10] model by 3.86%. It also offers more than 3 times

faster performance on VGA resolution images. Although

TinaFace achieves impressive results in face detection, it

has a high computational cost. In the SCRFD model,

efficient face detection is performed under a fixed VGA

resolution (640×480) instead of using a large resolution

to reduce computational cost. Also, most of the faces in

WIDER FACE are smaller than 32×32 pixels, so the

prediction takes place in shallow stages. It was thought

that it would be useful to obtain more training samples to

further improve the estimation. Sample redistribution

method with a large image cropping strategy is used to

increase the number of images in the training dataset.

In Table 1, Accuracy and efficiency of SCRFD-34GF in

the WIDER FACE validation set is compared with other

approaches. As seen in the comparison, with the updates,

the accuracy of the SCRFD-34 has increased and the

inference time has reduced.

Table 1. Accuracy and efficiency of different methods on the

WIDER FACE validation set [11]

Method Easy Medium Hard Infer(ms)

DSFD [4] 94.29 91.47 71.39 55.6

RetinaFace [1] 94.92 91.90 64.17 21.7

HAMBox [3] 95.27 93.76 76.75 25.9

TinaFace [10] 95.61 94.25 81.43 38.9

SCRFD-34GF [11] 96.06 94.92 85.29 11.7

The structure of a face detector has a computational

distribution. It is important in determining its accuracy

and efficiency. Therefore, the model was revised with CR

in the study. In this approach, the search area in the model

was reduced by controlling the degrees of freedom. In

addition, random samples were taken from different

components of the model for architectures with different

configurations on the backbone, neck, and head. Then, it

was calculated bootstrap based on statistics of the models

and predicted the probable range in which the best

models fall. As a result, a simplified search field was

designed by CR among different components of the

model (backbone, neck and head).

3.1. ArcFace

In many face recognition studies, it is emphasized that

one of the main difficulties in training in deep

convolutional neural networks is design of loss functions

that can increase discriminative power. ArcFace [20]

model also uses the same approach and uses a new loss

function. ArcFace, the proposed face recognition model

to obtain highly distinctive features, has a clear geometric

interpretation as it fits the geodetic distance on a

hypersphere precisely with its new loss function. The

proposed face recognition model ArcFace uses a new loss

function to obtain highly distinctive features. The model

has a clear geometric interpretation as it fits geodetic

distance on hypersphere exactly with the help of the new

loss function.

𝐿1 = −
1

𝑁
 ∑ 𝑙𝑜𝑔

𝑒
𝑊𝑦𝑖

𝑇 𝑥𝑖 + 𝑏𝑦𝑖

∑ 𝑒
𝑊𝑗

𝑇𝑥𝑖+ 𝑏𝑗𝑛
𝑗=1

𝑁
𝑖=1 (1)

The Softmax loss function shown in Equation 1 is

reinterpreted for Arcface. In Equation 1, N represents

batch size and n represents class number. 𝑥𝑖 represents

deep attributes of i sample belonging to 𝑦𝑖 class. 𝑊𝑗 refers

to j column of W weight. 𝑏𝑗 represents bias value.

𝐿2 = −
1

𝑁
 ∑ 𝑙𝑁

𝑖=1 𝑜𝑔
𝑒

𝑠 𝑐𝑜𝑠𝜃𝑦𝑖

𝑒
𝑠 𝑐𝑜𝑠𝜃𝑦𝑖 + ∑ 𝑒

𝑠 𝑐𝑜𝑠𝜃𝑗𝑛
𝑗=1, 𝑗 ≠ 𝑦𝑖

 (2)

In the loss function proposed in Equation 2, which was

created by adding new improvements, bias value is

accepted as zero. In addition, 𝑐𝑜𝑠𝜃 value is included in

the loss function by using 𝜃 angle between 𝑊𝑗 and 𝑥𝑖 in

𝑊𝑗
𝑇𝑥𝑖 = |𝑊𝑗|. |𝑥𝑖| . 𝑐𝑜𝑠𝜃𝑗 . 𝑐𝑜𝑠𝜃 is included in the loss

function by using angle 𝜃 between 𝑊𝑗 and 𝑥𝑖 . 𝑊𝑗 value is

normalized with 𝑙2 form to obtain |𝑊𝑗| = 1 and also

embedding property value |𝑥𝑖| is scaled with 𝑠 value after

normalizing with 𝑙2 form in the same way. The

normalization step ensures that the predictions depend

only on angle between feature and weight, and thus

embedding features are distributed over a hypersphere of

radius 𝑠.

𝐿3 = −
1

𝑁
 ∑ 𝑙𝑁

𝑖=1 𝑜𝑔
𝑒

𝑠 𝑐𝑜𝑠(𝜃𝑦𝑖
+𝑚)

𝑒
𝑠𝑐𝑜𝑠(𝜃𝑦𝑖

+𝑚)
+ ∑ 𝑒

𝑠 𝑐𝑜𝑠𝜃𝑗𝑛
𝑗=1, 𝑗 ≠ 𝑦𝑖

 (3)

The embedding features extracted in model are

distributed around each feature center in hypersphere. An

additional angular margin value m is added between 𝑥𝑖

and actual reference value weight 𝑊𝑦𝑖
 in equation 3 to

simultaneously improve within-class density and inter-

class mismatch of embedding features. Finally, the

obtained embedding features can be compared using the

cosine similarity metric.

ArcFace has been compared to facial recognition models

that train a large-scale image database containing many

face pairs and a large-scale video dataset. As a result of

extensive experimental evaluations against other

advanced face recognition models, it has been stated that

ArcFace performs consistently well and can be easily

implemented with negligible computational overhead.

ArcFace trained on MS1MV2 dataset which is the semi-

automatic refined version of MS-Celeb-1M dataset. Its

verification performance is an accuracy of 99.83% in

LFW [22] dataset and 98.02% in YTF [23] dataset as

shown in Table 2.

Table 2. Verification performance of different approaches on

LFW and YTF Datesets [20]

Method LFW YTF

FaceNet [33] 99.63 95.10

Marginal Loss [34] 99.48 95.98

SphereFace [18] 99.42 95.0

SphereFace++ [35] 99.47 -

CosFace [19] 99.73 97.6

MSIMV2, R100, ArcFace [20] 99.83 98.02

3.2. DeepSORT

DeepSORT [26] is an algorithm that takes only tracking

objects as a task. It differs from both object detection and

object tracking approaches. DeepSORT has introduced a

new approach by integrating appearance information into

new algorithm to improve the performance of the SORT

[25] algorithm. As a result of the experimental

evaluations, it was stated that the new improvements

reduced the number of ID switches by 45% and a

competitive performance was achieved at high FPS

speeds. While SORT performs well overall in terms of

tracking accuracy, it causes a relatively high number of

ID switches. The reason is that the association metric

with state estimation uncertainty is only correct.

Therefore, SORT algorithm falls short in handling

occlusions. DeepSORT overcomes this problem by

replacing the association metric with one that combines

movement and appearance information. In particular, a

trained convolutional neural network is implemented to

distinguish pedestrians in a large-scale person dataset.

Thanks to integration of this network, it makes the

implementation of the system easy, efficient and

applicable to online scenarios. it also increases durability

against misses and occlusions.

First, the features are extracted from the convolutional

neural network using detected objects. The extracted

features are passed through a sequential series of distance

measurement algorithms. These algorithms are

Mahalanobis and Cosine distance measurement

calculations. Mahalanobis distance is an association

metric that works better when motion uncertainty is low.

However, unexplained camera movements can cause

rapid displacements in the image plane. This makes the

Mahalanobis distance a rather useless metric during

occlusions. Therefore, it was necessary to add the Cosine

distance measurement metric as a second metric.

Mahalanobis distance provides information specifically

for short-term predictions, while the Cosine distance is

useful in re-identification after long periods of occlusions

where movement is less distinctive. In addition, Kalman

filter [31] is used with a constant velocity motion and

linear observation model. It tries to predict the next state

of objects based on their previous state.

3.3. Apache Kafka

Apache Kafka [8] is an open-source distributed event

streaming system. This platform is commonly used for

high-performance data pipelines, data integration, flow

analytics, and mission-critical applications. Apache

Kafka is a real-time data capture application from event

sources such as videos, sensors, databases, mobile

devices, cloud services, and software applications. In

addition, processing event streams retrospectively and

routing event streams to different target technologies are

among the most basic tasks. Kafka combines the

following three key features so that it can be

implemented with a single end-to-end tested solution for

event streaming scenarios:

 Publishing (writing) and subscribing (reading)

event streams of data is its most important

feature.

 Durable and reliable storage of event streams is

another feature.

 Another feature is that it allows event streams to

be processed as they occur or backward.

All these functions are delivered as a flexible, highly

scalable, fault-tolerant, and secure platform. If any server

fails in a distributed architecture in Kafka, the remaining

servers can continue to stream without any data loss. It

has support for Java, Scala, Go, Python, C/C++, and

many other programming languages for Kafka clients. In

Kafka, producers are client applications that write events

to Kafka. Consumers are applications that read and

process these events by subscribing to them. In Kafka,

producers and consumers work separately and

independently.

Events are organized in such a way that topics are stored

permanently. In other words, a topic can be likened to a

folder in a file system and events to files in a folder.

Unlike traditional queue messaging systems, events are

not deleted for a period of time after consumption based

on the setting made. How long events should be retained

via the per-topic configuration setting is defined on the

platform. According to the settings, old events are

deleted.

3.4. Socket.IO

Socket.IO [36] is a library that provides bidirectional,

real-time and event-based communication between

server and client. The library is built as a lightweight

wrapper around WebSocket API. In addition, Socket.IO

provides the additional features listed below in addition

to a plain WebSocket API.

 Enables the HTTP long polling option in case

the WebSocket connection with the reliability

cannot be established.

 It supports auto reconnection.

 It buffers the packets.

 It has the information whether the package has

arrived or not.

 It can broadcast to all clients.

 It can split application logic on a single shared

connection.

Socket.IO client connects to the HTTP long polling

transport by default. The main reason for this is that it

may not always be possible to establish a WebSocket

connection due to corporate proxies, personal firewalls,

and antivirus software. WebSocket connection failure

means that the real-time application waits for a certain

amount of time to start exchanging data. This harms user

experience in real-time applications. Because of HTTP

long polling step works pretty much anywhere, so it’s

used in the first place so there’s an immediate connection.

Then, an attempt is made to upgrade HTTP long polling

connection to a WebSocket connection. If the upgrade is

successful, HTTP long-polling stops, and the session

switches to the WebSocket connection. If unsuccessful,

HTTP long-polling connection remains open and

continues to be used.

4. APPLICATION

In this study, real-time face tracking is performed over a

multi-camera system using deep learning techniques.

One of the biggest problems in video streaming systems

is that they can not respond to requests instantly. In

addition, it is important that the images taken from the

camera are processed quickly without any loss.

Therefore, the Apache Kafka tool is used as the backbone

of the system. It serves as a high tolerance buffer for a

real-time system. Images taken from Apache Kafka were

processed in the fastest way with the constructed chain

structure. Then, Apache Kafka was used again for

database saving operations that would create a

bottleneck. With the designed system, it is aimed to take

quick action by detecting many problems that may cause

alarms by interpreting the image with minimum delay in

security or defense.

Figure 1. Flowchart for a camera

As seen in Figure 1, the flowchart is given for a camera,

which is the smallest functioning part of the system. The

frames reading from the camera is inserted to Apache

Kafka via a producer process to avoid any loss due to

image processing bottleneck. Then, a consumer process

is run to read from Apache Kafka to process the image.

The incoming image is first sent to the face detection

model. The faces are cropped from the image with the

resulting face bounding boxes and their embedding

features are extracted. Finally, the embedding features

are compared with cosine similarity to find out who it

belongs to. Thus, the results found are sent back to

Apache Kafka to be inserted in the database.

Apache Kafka is used as the backbone of the system.

Using Apache Kafka as the backbone of the system

provides many advantages. Essentially, it provides a

unified, high-throughput, low-latency, and scalable

platform for processing real-time data streams. It

provides a fault-tolerant structure for places where data

is critical. The data stream in the system is completely

managed by Apache Kafka. The data stream in the multi-

camera environment is provided simultaneously via

Apache Kafka. A control program is used to manage the

simultaneous operations. This code runs as a service on

the Linux server to manage Apache Kafka processes,

producers and consumers at specified time intervals. This

program is responsible for restarting Apache Kafka

producers or consumers when they are stopped. In

addition, the images streaming to Apache Kafka are

processed using a chain of responsibility structure. The

first step in the chain of responsibility is face detection.

Then there is the face recognition step, which includes

face tracking. A new approach has been obtained by

adding a face recognition model to the DeepSORT

tracking algorithm in face tracking. Thus, stable,

effective and low-cost face tracking is provided in the

system.

After the face recognition step, the processed images are

displayed on the web using the Socket.IO library. In the

last step, a log record is added to the PostgreSQL

database using the person, camera, and timestamp

information. PostgreSQL [37] database is used for all

persistent data in the system.

The operation of the system, whose working summary is

given above, can be explained in detail in four steps:

 Stage 1: the images streamed from the camera

are saved in Apache Kafka.

 Stage 2, the images read from Apache Kafka are

given to a chain of responsibility structure for

processing.

 Stage 3, log records are created in the database

by using the person identified, timestamp, and

camera information.

 Stage 4, the processed images are displayed on

the web.

At Stage 1 is to run a separate producer process for each

camera. Each producer sends the images streamed from

the cameras to the corresponding Apache Kafka topic.

Each topic is created with the primary key value of the

camera. Images are read from the camera using the read

function in the OpenCV library. The images are

converted to textitjpeg image format using the OpenCV

imencode function. Finally, a byte array of the converted

textitjpeg image is sent to Apache Kafka.

At Stage 2, the images stored in Apache Kafka are read

for processing by the consumer process. Consumers run

as separate processes for each camera. After the

consumer connects to the Apache Kafka server, it

subscribes to the corresponding topic. It then sends the

image to the next step for processing. The consumer is

constantly listening for new data on the topic. After the

jpeg bytes of the image are read from the topic, they are

converted to their original format using the OpenCV

imencode function. Finally, the images are sent to the

chain of responsibility structure

Images read by consumers from Apache Kafka topics are

processed sequentially in the chain of responsibility

structure. The main purpose of choosing the chain of

responsibility design pattern at this step is to provide

flexibility for adding new models. Thus, age detection,

gender detection etc. models can be easily integrated into

the system whenever required.

The chain of responsibility in the system consists of four

handlers. As shown in Figure 2, chain of responsibility is

used sequentially. First, "Face Detection Handler" is used

for face detection and "Face Tracking Handler" is used

for face tracking. "Web Socket Handler" is used to send

the image to the website and store it in the shared

memory. "Database Handler" is used to insert the log

record into the database.

Figure 2. Handler chain

The "Face Detection Handler" uses a highly accurate and

highly efficient SCRFD face detection model. After the

image is given to the model, face bounding boxes are

obtained as output. The images to be given to the model

input are resized to 640x640. The resulting face bounding

boxes are passed to the next step, the "Face Tracking

Handler”.

In the "Face Tracking Handler", ArcFace face

recognition model is integrated into the DeepSORT

tracking algorithm with a new approach as shown in

Figure 3.

Face features are extracted by the convolutional neural

network (CNN) in the DeepSORT algorithm. 128 feature

maps are obtained at the output of the CNN. These

features are used to measure whether the newly

discovered faces match the tracking faces. To do this,

DeepSORT has a two-step process. First, nearest

neighbor distance metrics were used. The distances were

computed using Cosine and Mahalanobis. Matching was

then performed using the Hungarian algorithm. In the

second step, intersection over union (IoU) is used to

measure overlaps for remaining mismatch detections and

tracks. After this step, unmatched tracks that have

reached the maximum age are deleted. Otherwise,

tracking is started or continued.

Figure 3. Face tracking model

Face recognition was performed on those whose face

tracking was started or continued in DeepSORT. This is

done for faces that are detected for the first time or for

faces that previously failed face recognition. ArcFace

was used as the face recognition model. ArcFace has a

proven track record and is preferred because of its high

accuracy rate. In this model, each face is fed into the

network with an input size of 112x112. Face embedding

features of size 512 are obtained in the model output.

Then, cosine distances are calculated between the face

embedding features in the model output and the face

embedding features of the people inserted in the

database. As a result, face recognition is performed using

cosine distances. Face recognition is retried every 10

frames if it is unsuccessful. To speed up the process, face

embedding features of people are loaded from the

database into memory. The in-memory data is stored in a

key-value structure. As a result, a stable and fast face

tracking system has been established in this study.

The processed image in the "Face Tracking Handler" is

transferred to the "Web Socket Handler". The purpose of

this handler is to send the processed image to the web

application at any time. Therefore, streaming images are

transferred to shared memory. After the images are

converted to base64 format, they are stored in the shared

memory with a key-value pair. The primary key value of

the camera is used as the key. The primary key value is

the unique value created for the camera in the database.

When the camera control page is opened in the web

application, a bi-directional communication channel is

established with the Socket.IO library and the image

stream is provided. The primary key value of the camera

is used as the address path information in the

communication channel.

"Database Handler is used to insert log records to the

database after Web Socket Handler operation is

completed. The log record consists of the person’s

identity, the camera they appeared in, and the timestamp.

To prevent the real-time system from being affected by

the bottleneck that may occur in the database, the log

record is first sent to the "database" Apache Kafka topic.

Then, the log record on the "database" topic is inserted

into the database by the "DatabaseConsumer" consumer.

Log records for all cameras are sent to the database

Apache Kafka topic. In other words, all log records to be

inserted to the database are collected in the "database"

topic.

The system architecture is shown in Figure 4. The system

uses the Python programming language. Thanks to

Apache Kafka, a horizontally scalable system can be

built as the number of cameras increases. In addition,

possible data loss can be prevented by storing images in

different Apache Kafka partitions for the same Topic.

A real-time face tracking system that can operate in a

multi-camera environment is proposed. To make this

system to work more stable, a new DeepSORT algorithm

including face recognition algorithm is used. As a result

of the study, an end-to-end system was designed and the

images were presented on the web with low latency.

The study was conducted on a computer with an AMD

Ryzen 5 5600X processor, NVIDIA RTX 3060 graphics

card, and 16 GB of memory using the PyTorch machine

learning library. The study was performed on multiple

camera images. During the measurements, the average of

the results obtained from 1800 frames was taken.

According to the measurements, after the image was

entered into the system, it could be displayed on the web

page with a delay of approximately 127 ms.

Approximately 59 ms of this time is spent on face

detection and 34 ms of this time is spent on face tracking.

On the other hand, when the DeepSORT algorithm is not

used, it was displayed on the web page with a delay of

143 ms. The significance of not using the DeepSORT

algorithm is that the face detection model outputs directly

to the face tracking model in every frame.

Figure 4. System architecture

5. CONCLUSION

The system used SCRFD for face detection and ArcFace

for face recognition. Cost-effective face detection was

achieved with SCRFD. ArcFace provided an efficient

face recognition model. Face tracking was achieved by

combining face detection, face recognition, and

DeepSORT algorithms. The use of DeepSORT in face

tracking contributed to the efficiency of the system by

using the previous image data. In addition, DeepSORT

continues face tracking even if the face is not detected or

recognized. Thus, more stable face tracking was

achieved. As a result, the proposed system was shown to

be stable, efficient, and cost-effective.

Apache Kafka event streaming platform and Socket.IO

bidirectional communication library are used for the

proposed system. Thanks to Apache Kafka, input/output

(IO) operations are realized in real time without

interruption. In addition, the fault-tolerant structure of

Apache Kafka prevents possible data loss. At the

operating system level, separate processes are created for

each camera. This results in a scalable system and more

efficient use of resources.

As a result, one frame in the camera given as input to the

proposed system for the multi-camera environment could

be displayed at the output with a delay of 127 ms. In

addition, most of the time was used for face recognition

in the system.

In future studies, a less costly and more successful study

can be conducted by using different face detection or face

recognition algorithms. In addition, the effects and

success of the distributed system can be tested in multi-

camera environments. In addition, a stability and

efficiency study can be done with different object

tracking approaches instead of DeepSORT. A more

stable system can be created by optimizing the matching

algorithms in DeepSORT. A more efficient system can

be created by using different deep learning models in

DeepSORT.

ACKNOWLEDGEMENT

This study was supported by Inonu University Scientific

Research Projects Coordination Unit (BAP) with the

project coded FYL-2021-2449.

DECLARATION OF ETHICAL STANDARDS

The author(s) of this article declare that the materials and

methods used in their studies do not require ethics

committee approval and/or legal-specific permission.

AUTHORS’ CONTRIBUTIONS

Mehmet Fatih ÖZDEMİR: Developed the system

architecture. Performed the experiments.

Davut HANBAY: Analyse the results.

CONFLICT OF INTEREST

There is no conflict of interest in this study.

REFERENCES

[1] Deng J., Guo J., Ververas E., Kotsia I., Zafeiriou S.,

"Retinaface: Single-shot multi-level face localisation in

the wild", Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition , 5202-5211, (2020).

[2] Hanbay K., Alpaslan N., Talu M., Hanbay D., Karci A.,

Kocamaz A., "Continuous rotation invariant features for

gradient-based texture classification", Computer Vision

and Image Understanding , 132: 87-101, (2015).

[3] Liu Y., Tang X., Han J., Liu J., Rui D., Wu X.,

"HAMBox: Delving Into Mining High-Quality Anchors

on Face Detection", Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern

Recognition (CVPR), (2020).

[4] Li J., Wang Y., Wang C., Tai Y., Qian J., Yang J., Wang

C., Li J., Huang F., "DSFD: Dual Shot Face Detector",

Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR),

(2019).

[5] Üzen H., Hanbay K., "Yaya Özellik Tanıma için LM

Filtre Temelli Derin Evrişimsel Sinir Ağı", Politeknik

Dergisi , 23: 605–613, (2020).

[6] AKYEL C., ARICI N., "U-Net-RCB7: Image

Segmentation Algorithm", Politeknik Dergisi , 26: 1555–

1562, (2023).

[7] KARADAĞ B., ARI A., "Akıllı Mobil Cihazlarda

YOLOv7 Modeli ile Nesne Tespiti", Politeknik Dergisi ,

26: 1207–1214, (2023).

[8] Apache ., "Apache Kafka" , https://kafka.apache.org

[9] Zhang K., Zhang Z., Li Z., Qiao Y., "Joint Face Detection

and Alignment Using Multitask Cascaded Convolutional

Networks", IEEE Signal Processing Letters , 23: 1499-

1503, (2016).

[10] Zhu Y., Cai H., Zhang S., Wang C., Xiong Y., "Tinaface:

Strong but simple baseline for face detection", arXiv

preprint arXiv:2011.13183 , (2020).

[11] Guo J., Deng J., Lattas A., Zafeiriou S., "Sample and

Computation Redistribution for Efficient Face

Detection", (2021).

[12] Viola P., Jones M., "Rapid object detection using a

boosted cascade of simple features", Proceedings of the

2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. CVPR 2001, (2001).

[13] Mita T., Kaneko T., Hori O., "Joint haar-like features for

face detection", Tenth IEEE International Conference

on Computer Vision (ICCV'05) Volume 1, 1619-1626,

(2005).

[14] Zhang L., Chu R., Xiang S., Liao S., Li S., "Face

Detection Based on Multi-Block LBP Representation",

Advances in Biometrics, Berlin, Heidelberg, 11-18,

(2007).

[15] He K., Zhang X., Ren S., Sun J., "Deep residual learning

for image recognition", Proceedings of the IEEE

Computer Society Conference on Computer Vision and

Pattern Recognition , 2016-Decem: 770-778, (2016).

[16] Yang S., Luo P., Loy C., Tang X., "WIDER FACE: A

Face Detection Benchmark", Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 5525-5533, (2016).

[17] Turk M., Pentland A., "Eigenfaces for recognition",

Journal of cognitive neuroscience , 3: 71-86, (1991).

[18] Liu W., Wen Y., Yu Z., Li M., Raj B., Song L.,

"SphereFace: Deep Hypersphere Embedding for Face

Recognition", 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 6738-6746,

(2017).

[19] Wang H., Wang Y., Zhou Z., Ji X., Gong D., Zhou J., Li

Z., Liu W., "CosFace: Large Margin Cosine Loss for

Deep Face Recognition", 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 5265-

5274, (2018).

[20] Deng J., Guo J., Xue N., Zafeiriou S., "ArcFace: Additive

angular margin loss for deep face recognition",

Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition , 2019-

June: 4685-4694, (2019).

[21] Boutros F., Damer N., Kirchbuchner F., Kuijper A.,

"ElasticFace: Elastic Margin Loss for Deep Face

Recognition", Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, 1578-1587, (2022).

[22] Huang G., Mattar M., Berg T., Learned-Miller E.,

"Labeled faces in the wild: A database forstudying face

recognition in unconstrained environments", Workshop

on faces in'Real-Life'Images: detection, alignment, and

recognition, (2008).

[23] Wolf L., Hassner T., Maoz I., "Face recognition in

unconstrained videos with matched background

similarity", CVPR 2011, 529-534, (2011).

[24] Kemelmacher-Shlizerman I., Seitz S., Miller D., Brossard

E., "The MegaFace Benchmark: 1 Million Faces for

Recognition at Scale", 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

4873-4882, (2016).

[25] Bewley A., Ge Z., Ott L., Ramos F., Upcroft B., "Simple

online and realtime tracking", Proceedings -

International Conference on Image Processing, ICIP ,

2016-Augus: 3464-3468, (2016).

[26] Wojke N., Bewley A., Paulus D., "Simple online and

realtime tracking with a deep association metric",

Proceedings - International Conference on Image

Processing, ICIP , 2017-Septe: 3645-3649, (2018).

[27] Zhang Y., Sun P., Jiang Y., Yu D., Weng F., Yuan Z.,

Luo P., Liu W., Wang X., "ByteTrack: Multi-Object

Tracking by Associating Every Detection Box", , (2022).

[28] Cao J., Pang J., Weng X., Khirodkar R., Kitani K.,

"Observation-centric sort: Rethinking sort for robust

multi-object tracking", Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern

Recognition, 9686-9696, (2023).

[29] Rambach J., Huber M., Balthasar M., Zoubir A.,

"Collaborative multi-camera face recognition and

tracking", 2015 12th IEEE International Conference on

Advanced Video and Signal Based Surveillance (AVSS),

1-6, (2015).

[30] Lian Z., Shao S., Huang C., "A Real Time Face Tracking

System based on Multiple Information Fusion",

Multimedia Tools and Applications , 79: 16751-16769,

(2020).

[31] Welch G., Bishop G., Others ., "An introduction to the

Kalman filter", (1995).

[32] Badave H., Kuber M., "Head Pose Estimation Based

Robust Multicamera Face Recognition", 2021

International Conference on Artificial Intelligence and

Smart Systems (ICAIS), 492-495, (2021).

[33] Schroff F., Kalenichenko D., Philbin J., "FaceNet: A

Unified Embedding for Face Recognition and

Clustering", Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

(2015).

[34] Deng J., Zhou Y., Zafeiriou S., "Marginal loss for deep

face recognition", Proceedings of the IEEE conference

on computer vision and pattern recognition workshops,

60--68, (2017).

[35] Liu W., Lin R., Liu Z., Liu L., Yu Z., Dai B., Song L.,

"Learning towards minimum hyperspherical energy",

Advances in neural information processing systems ,

31:, (2018).

[36] Rauch G., "Socket.IO" , https://socket.io

[37] Stonebraker M., Rowe L., "The Design of POSTGRES",

ACM SIGMOD Record , 15:, (1986).

