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Abstract. This paper introduces the topological group structure in proximity and especially descriptive prox-
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1. Introduction

Topology concerns about the study of properties preserved under continuous transformations, capturing the concept
of nearness between elements of a set. Over the years, various approaches to topological spaces have been explored,
each offering unique perspectives on the fundamental notions of continuity and proximity [1, 3, 10, 14, 22–24]. One
such approach that has gained significant attention is the nearness theory, which provides an alternative framework for
analyzing topological structures through the concept of descriptive proximity [17].

In nearness theory, the traditional notion of open sets is replaced with a more intuitive concept of near sets, charac-
terized by a binary relation that describes the qualitative closeness between elements in a set. This approach introduces
the notion of proximity spaces, which generalizes the concept of metric spaces and provides a deeper understand-
ing of the relationships between points based on qualitative descriptions rather than precise distances. Furthermore,
in descriptive proximity spaces, proximity relations are tailored to specific features or characteristics, making them
particularly suitable for applications in areas such as data analysis and pattern recognition [14, 18, 19].

The aim of this article is to explore the construction of topological groups within the context of nearness theory,
with a specific focus on proximity and descriptive proximity spaces. As a slightly different concept, the studies [6,
11, 12] combine the ideas of topological space and near groups in order to define topological (or semitopological)
near groups on a nearness approximation space and investigate their features such as group homomorphism of these
groups. Topological groups, which combine algebraic and topological structures, offer a natural setting for studying
the interplay between group operations and continuous mappings [5]. By leveraging the concepts of proximity and
descriptive proximity, we seek to investigate the topological properties of these groups and the implications they hold
for the overall structure of the underlying space.

In Section 2, we provide a concise overview of the fundamental concepts and definitions in nearness theory, and
establish a framework for the subsequent discussions. This includes introducing the concept of proximity relations and
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their axiomatic properties, as well as delving into the qualitative nature of descriptive proximity relations. The main
part of this article presents the construction of topological groups in proximity and descriptive proximity spaces. We
explore the compatibility of group operations with nearness structures, investigating the behavior of near sets under
group multiplication and inversion. We also give interesting examples in terms of the properties of (descriptive) prox-
imal groups. One of the important results explicitly investigates a homomorphism, or more strongly an isomorphism,
between proximal groups. Furthermore, there are important implications about the proximal group setting of isomor-
phism theorems of groups. Section 4 is dedicated to introducing the concept of descriptive proximal groups. Along
with exciting examples in this section, we clearly state that our investigation is not only of theoretical interest but also
holds practical implications. Topological groups constructed within descriptive proximity spaces have the potential to
find applications in diverse fields, ranging from data analysis and pattern recognition to the study of social networks
and cognitive sciences.

In summary, this article endeavors to contribute to the burgeoning field of nearness theory by exploring the topo-
logical group construction within proximity and descriptive proximity spaces. By offering a fresh perspective on the
interplay between group structures and nearness relations, we aim to enrich the understanding of topological properties
in nearness-based settings and open up new avenues for future research.

2. Preliminaries

In this section, we provide a framework for proximity and descriptive proximity spaces. These facts will be fre-
quently used in Section 3 and 4. We first start with presenting the definition of proximity spaces with respect to
Lodato [10], Čech [1], and Efremovič [3].

Let Y be a space. Then, 2Y denotes the power set of Y , i.e., 2Y is the collection of all subsets of Y .

Definition 2.1 ( [10]). Given a nonempty space Y , a relation δ on 2Y is said to be a Lodato proximity, provided that the
following properties hold for all subsets B1, B2, and B3 in Y .

L1. B1 δ B2 implies B2 δ B1.
L2. B1 δ B2 implies that B1 and B2 are nonempty.
L3. B1 ∩ B2 , ∅ implies B1 δ B2.
L4. B1 δ (B2 ∪ B3) if and only if B1 δ B2 or B1 δ B3.
L5. For each b2 ∈ B2, B1 δ B2 and {b2} δ B3 imply B1 δ B3.

Here, B1 δ B2 is interpreted as ”B1 is near B2”, whereas B1 δ B2 is read as ”B1 is far from B2”. Another definition of
the proximity is given by E. Čech [1]: The relation δ on 2Y is said to be a Čech proximity if the properties L1−L4 hold.
In addition, δ is called an Efremovič Proximity [3] provided that the properties of Čech proximity (L1 − L4) satisfy the
extra condition.

EF B1 δ B2 implies that there exists a subset K of Y such that B1 δ K and (Y − K) δ B2.

In this paper, if we want to emphasize the Lodato proximity relation or Čech proximity relation, we use the ex-
pression (L-proximity) or (Č-proximity) for short, respectively. Unless otherwise emphasized, the simple expression δ
refers to Efremovič proximity. Therefore, (Y, δ) is called a proximity space and simply denoted by (pspc). Notice that
Efremovič proximity is stronger than (L-proximity) or (Č-proximity). The discrete proximity (Y, δ), one of the basic
proximity examples, is given by B1 δ B2 if and only if B1 ∩ B2 , ∅ for all B1, B2 ∈ 2Y [13].

It is possible to get a topology τ(δ) induced by a proximity δ on Y . Let K be a subset of (Y, δ). Then it is said to be
closed if and only if clK = K. Thus, the collection of the complements of closed subsets of Y yields a topology τ(δ) on
Y (see Theorem 2.2 of [13]). The set of all points in Y that are near B1 which is defined by

Bδ1 = {y ∈ Y : {y} δ B1},

is known as the closure of a subset B1, indicated by the symbol clB1 [13]. Mathematically, one has Bδ1 = clB1. Then,
by considering Kuratowski closure axioms [8], a topology τ(δ) can be associated with the (pspc) (Y, δ).

In proximity spaces, continuity is defined using the proximity relation instead of open sets. Explicitly, a map
k : (Y1, δ1) → (Y2, δ2) between two (pspc)s is considered continuous (we generally say proximally continuous and
simply denoted by (pcont)) if it preserves proximity; that is, for any subsets B1 and B2 of Y , if B1 is near B2 with
respect to δ1, then k(B1) is near k(B2) with respect to δ2 [3, 23]. If k1 and k2 are two (pcont) maps, then so is their
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composition k1 ◦ k2 [13]. A (pcont) map k : (Y1, δ1) → (Y2, δ2) is said to be a proximal isomorphism if its inverse
k−1 : (Y2, δ2)→ (Y1, δ1) is also (pcont) [13].

When one has two (pspc)s (Y1, δ1) and (Y2, δ2), it is possible to obtain a new (pspc) (Y1 × Y2, δ) by the cartesian
product of them. The cartesian product proximity relation δ is given as follows [9]. For any given subsets (B1 × B2),
(C1 ×C2) ∈ 2Y1×Y2 , (B1 × B2) δ (C1 ×C2) if and only if B1 δ1 C1 and B2 δ2 C2. Assume that (Y, δ) is a (pspc) and V is a
subset of Y . Another new proximity δV , called an induced or subspace proximity, is defined by B1 δV B2 if and only if
B1 δ B2 for all B1, B2 ∈ 2V [13].

The isomorphism theorems are fundamental results in group theory that describe the relationship between groups
and their subgroups, as well as the structure of factor groups. They are also powerful tools in group theory and help
us understand the structural aspects of groups, especially when dealing with homomorphisms and factor groups. They
provide valuable insights into the relationship between groups and their quotients, which allows us to analyze the
structures of groups more effectively. Recall that, given a group (G1, ·) with a normal subgroup N1 ⊆ G1, G1/N1 is
defined as the set {aN1 : a ∈ G1}.

Theorem 2.2 ( [4]). i) Assume that β : G1 → H1 is a homomorphism of groups, the kernel of β, given by

Ker(β) = {g1 ∈ G1 : β(g1) = eH1 } ⊆ G1,

is a normal subgroup, and β(G1) ⊆ H1 is a subgroup. Then, G1/Ker(β) is isomorphic to Im(β).
ii) Given a group G1, and subgroups H1 and N1 of G with N1 being a normal subgroup of G1, we have that

H1N1 ⊆ G1 is a subgroup, N1 ⊆ H1N1 is a normal subgroup, and the intersection H1 ∩ N1 ⊆ H1 is a normal subgroup.
Then H1N1/N1 is isomorphic to H1/(H1 ∩ N1).

iii) Assume that G1 is a group, and N1 and K1 are normal subgroups of G1 with N1 ⊆ K1. Then, (G1/N1)/(K1/N1)
is isomorphic to G1/K1.

In Theorem 2.2, i), ii), and iii) are generally known as First Isomorphism Theorem, Second Isomorphism Theorem,
and Third Isomorphism Theorem, respectively.

A descriptive proximity relation, denoted by δΦ in general, on a nonempty set Y is a binary relation that captures
the concept of nearness or closeness between elements in the set by their descriptions [15–17]. It provides a qualitative
way to compare how close or similar two elements are to each other, without involving precise distance measurements
as in metric spaces.

Consider the nonempty set Y with any element (object) y ∈ Y . Define J as a set of features of the object y. As an
illustration of this, we observe the shape feature of a box as an object in Figure 1. For each j ∈ J, ϕ j is a function from Y
to R and takes any element y to the feature value of it. The set of probe functions is denoted byΦ = {ϕ j} j∈J . An object’s
description can be found in a feature vector Φ. For any subsets B1, B2 ∈ 2Y , B1 δΦ B2 if and only if Φ(B1)∩Φ(B2) , ∅,
where Φ(C1) is given by the sets {Φ(c1) : c1 ∈ C1}. Here, B1 δΦ B2 means that B1 is descriptively near B2 (similarly,
B1 δΦ B2 is used to say B1 is descriptively far from B2) and δΦ is called a descriptive proximity relation on the subsets
of Y . The descriptive intersection for the subsets B1 and B2 of Y is defined by {b ∈ B1 ∪ B2 : Φ(b) ∈ Φ(B1) ∩ Φ(B2)}
and generally denoted by B1

⋂
Φ

B2.

Definition 2.3 ( [2]). Let Y be a nonempty space and B1, B2, and B3 in 2Y . Then, a relation δΦ is said to be a descriptive
Lodato proximity provided that the following properties hold.

DL1. B1 δΦ B2 implies B2 δΦ B1.
DL2. B1 δΦ ∅ for all B1 in 2Y .
DL3. The fact that the descriptive intersection of B1 and B2 is nonempty implies B1 δΦ B2.
DL4. B1 δΦ (B2 ∪ B3) if and only if B1 δΦ B2 or B1 δΦ B3.
DL5. For each b2 ∈ B2, B1 δΦ B2 and {b2} δΦ B3 imply that B1 δΦ B3.

The relation δΦ on 2Y is said to be a descriptive Efremovič proximity if the properties DL1-DL4 hold, and in addition,
DEF B1 δΦ B2 implies that there exists a subset K of Y such that B1 δΦ K and (Y − K) δΦ B2

satisfies.
(Y, δΦ) is called a descriptive proximity space and simply denoted by (dpspc). A map k : (Y1, δΦ1 ) → (Y2, δΦ2 ) be-

tween two (dpspc)s is considered continuous (we generally say descriptive proximally continuous and simply denoted
by (dpcont)) if it preserves descriptive proximity; that is, for any subsets B1 and B2 of Y , if B1 is descriptively near B2
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with respect to δΦ1 , then k(B1) is descriptively near k(B2) with respect to δΦ2 [20]. If k1 and k2 are two (dpcont) maps,
then so is their composition. A (dpcont) map k : (Y1, δΦ1 ) → (Y2, δΦ2 ) is called a descriptive proximal isomorphism if
its inverse k−1 : (Y2, δΦ2 )→ (Y1, δΦ1 ) is also (dpcont) [20].

Let (Y1, δΦ1 ) and (Y2, δΦ2 ) be any (dpspc)s. Then, their cartesian product Y1 ×Y2 admits a cartesian product descrip-
tive proximity relation δΦ defined as follows [21]. For any (B1 × B2), (C1 ×C2) ∈ 2Y1×Y2 , (B1 × B2) δΦ (C1 ×C2) if and
only if B1 δΦ1 C1 and B2 δΦ2 C2. Assume that (Y, δΦ) is a (dpspc) and V is a subset of Y . A descriptive induced (or
subspace) proximity, denoted by δΦV is defined by B1 δΦV B2 if and only if B1 δΦ B2 for all B1, B2 ∈ 2V .

Given two (dpspc)s, (Y1, δΦ1 ) and (Y2, δΦ2 ), the descriptive proximal mapping space YY1
2 is defined as the set

{β : Y1 → Y2 | β is a (dpcont)-map}

having the following descriptive proximity relation δΦ on itself [7]: Let B1, B2 ⊆ Y and {γ j} j∈J and {γ
′

k}k∈K be any
subsets of (dpcont) maps in YY1

2 . We say that {γ j} j∈J δΦ {γ
′

k}k∈K provided that B1 δΦ1 B2 implies that γ j(B1) δΦ2 γ
′

k(B2)
for all j and k.

3. Proximal Groups

Definition 3.1. Let (G1, ·) be a group and δ a proximity relation on G1. Then, (G1, δ, ·) is said to be a proximal group
when

µ1 : G1 ×G1 → G1,

defined by µ1(g1, g
′

1) = g1 · g
′

1 for any g1, g
′

1 ∈ G1, and

µ2 : G1 → G1,

defined by µ2(g1) = g−1
1 for any g1 ∈ G1, are (pcont) maps.

Recall that, for any subsets B1, B2 and B3 of a topological group G1, B−1
1 and B2 · B3 are given by {b−1

1 : b1 ∈ B1}

and {b2 · b3 | b2 ∈ B2, b3 ∈ B3}, respectively.

Example 3.2. Consider R − {0} with a proximity δ, defined by

B1 δ B2 if and only if D(B1, B2) = 0,

where D(B1, B2) represents the distance between sets B1 and B2 in R − {0}, and the group operation · for the subsets of
R − {0}. Then we shall show that (R − {0}, δ, ·) is a proximal group. Define the maps

µ1 : R − {0} × R − {0} → R − {0} and µ2 : R − {0} → R − {0}

with µ1(g1, g
′

1) = g1 · g
′

1 for any g1, g
′

1 ∈ R − {0}, and, µ2(g1) = g−1
1 for any g1 ∈ R − {0}, respectively. First, µ1 is

(pcont). Indeed, for any subsets B1 × B2, C1 × C2 ∈ R − {0} × R − {0}, the fact B1 × B2 is near C1 × C2 implies that
B1 is near C1 and B2 is near C2. This means that D(B1,C1) = 0 and D(B2,C2) = 0, respectively. Therefore, there exist
b1 ∈ B1, b2 ∈ B2, c1 ∈ C1, and c2 ∈ C2 such that d(b1, c1) = 0 and d(b2, c2) = 0. It follows that b1 = c1 and b2 = c2,
i.e., b1 · b2 = c1 · c2. Thus, (B1 · B2) ∩ (C1 · C2) , ∅, which says that (B1 · B2) δ (C1 · C2). Next, we claim that µ2 is
(pcont). Let B1 and B2 be any subsets of R − {0} such that B1 δ B2. Then, D(B1, B2) = 0, that is, there exist b1 ∈ B1
and b2 ∈ B2 such that d(b1, b2) = 0. It follows that b1 = b2, i.e., b−1

1 = b−1
2 . Thus, B−1

1 ∩ B−1
2 , ∅, which says that

B−1
1 δ B−1

2 . Consequently, (R − {0}, δ, ·) forms a proximal group.

Example 3.3. Let G2 be an abelian group, and define the proximity relation δ on G2 as follows: For any sets B1,
B2 ∈ G2, we say B1 δ B2 if and only if B−1

1 ·B2 is of finite order in G2. The map µ1 : G2 ×G2 → G2, µ1(g2, g
′

2) = g2 ·g
′

2,
is (pcont): Let B1 × B2, C1 × C2 ∈ G2 ×G2 be subsets such that B1 × B2 is near C1 × C2. Then, we have that B1 δ C1
and B2 δ C2, i.e., B−1

1 C1 and B−1
2 C2 are of finite order in G2, respectively. Therefore, (B−1

2 C2) · (B−1
1 C1) is of finite order

in G2. Since G2 is an abelian group, (B1B2)−1C1C2 is of finite order in G2, which means that B1 · B2 is near C1 · C2 in
G2 × G2. Moreover, the map µ2 : G2 × G2 → G2, µ2(g2) = g−1

2 , is (pcont): Let B1, B2 ∈ G with B1 δ B2. Then B−1
1 B

is of finite order n in G2, i.e., the n−times product (B−1
1 B2)(B−1

1 B2) · · · (B−1
1 B2) is the identity eG2 of G2. Since G2 is
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abelian, it follows that

(B−1
1 B2)(B−1

1 B2) · · · (B−1
1 B2) = eG2 ⇒ (B2B−1

1 )(B2B−1
1 ) · · · (B2B−1

1 ) = eG2

⇒ B2B−1
1 B2B−1

1 · · · B2B−1
1 = eG2

⇒ eG2 = B1B−1
2 B1B−1

2 · · · B1B−1
2

⇒ (B1B−1
2 )(B1B−1

2 ) · · · (B1B−1
2 ) = eG2 .

Hence, B1B−1
2 is of finite order n in G2, namely, B−1

1 δ B−1
2 in G2. As a result, (G2, δ, ·) forms a proximal group.

Theorem 3.4. Let (G1, δ, ·) be a proximal group and x1 ∈ G1. Then,

Lx1 : G1 → G1,

defined by Lx1 (g1) = x1 · g1, and

Rx1 : G1 → G1,

defined by Rx1 (g1) = g1 · x1, are proximal isomorphisms.

Proof. First, we shall show that Lx1 is a proximal isomorphism. Define a map

νx1 : G1 → G1 ×G1

by νx1 (y1) = (x1, y1). B1 δ B2 implies that ({x1}, B1) δ
′

({x1}, B2) for any subsets B1, B2 ∈ G1, where δ
′

is a proximity
on G1 ×G1. It follows that νx1 is (pcont). Since G1 is a proximal group, µ1 is (pcont). Therefore, Lx1 is (pcont) because
Lx1 = µ1 ◦ νx1 . With the same method, the proximal continuity of L−1

x1
can be easily shown by considering the fact

L−1
x1
= Lx−1

1
.

Hence, Lx1 is a proximal isomorphism. The argument is similar for Rx1 . □

We say that a group G1 has the invertible subset property with respect to a subset B1 ⊆ G1 provided that B1 · B−1
1

is {eG1 } and B−1
1 · B1 is {eG1 }. Note that a group always has an invertible subset property with respect to its one-point

subsets.

Lemma 3.5. Let δ be a proximity and · a group operation on a set G1, respectively. Assume that µ1 : G1 ×G1 → G1,
µ1(g1 · g

′

1) = g1 · g
′

1, is (pcont) and G1 has the invertible subset property with respect to any subset of it. Then (G1, δ, ·)
is a proximal group.

Proof. We shall show that µ2 : G1 → G1, µ2(x1) = x−1
1 is a (pcont) map. Let B1, B2 ⊆ G1 with B1 δ B2. Then, we have

(B−1
1 · B1) δ (B−1

1 · B2). Since B1 is invertible, {eG1 } δ (B−1
1 · B2). It follows that B−1

2 δ (B−1
1 · (B2 · B−1

2 )). Therefore, we
get B−1

2 δ B−1
1 because B2 is invertible. This proves that µ2 is (pcont). □

Theorem 3.6. Let δ be a proximity and · a group operation on a set G1, respectively. Assume that G1 has the invertible
subset property with respect to any subset of it. If δ admits the transitivity property, i.e., B1 δ B2 and B2 δ B3 imply that
B1 δ B3 for any subsets B1, B2, B3 ⊆ G1, then (G1, δ, ·) is a proximal group.

Proof. It is enough to show that µ1 in Definition 3.1 is (pcont) by Lemma 3.5. Let B1 × B2 δ C1 ×C2 in G1 ×G1. Then,
B1 δ C1 and B2 δ C2. B1 δ C1 and the proximal continuity of Rx1 imply that B1 · B2 is near C1 · B2 in G1 ×G1. Similarly,
B2 δ C2 and the proximal continuity of Lx1 imply that C1 · B2 is near C1 · C2 in G1 ×G1. The transitivity property of δ
says that B1 ·B2 is near C1 ·C2 in G1×G1. It follows that µ1(B1×B2) δ µ1(C1×C2), which means that µ1 is (pcont). □

In Theorem 3.6, if we specifically choose the Lodato proximity δ
′

on G1, we need a slightly weaker condition
instead of the transitivity property as follows:

Corollary 3.7. Let δ
′

be a Lodato proximity and · a group operation on a set G1, respectively. Assume that G1 has the
invertible subset property with respect to any subset of it. If δ

′

admits that B1 δ B2 imply {x1} δ B2 for all x1 ∈ B1, then
(G1, δ

′

, ·) is a proximal group.

Proof. Assume that B1 · B2 is near C1 · B2 and C1 · B2 is near C1 · C2 for any B1 × B2 and C1 × C2 in G1 ×G1. Since
C1 · B2 is near C1 · C2, it follows that {c1b2} is near C1 · C2 for all c1b2 ∈ C1 · B2. Therefore, we get B1 · B2 is near
C1 ·C2, which proves that µ1 is (pcont). □
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Proposition 3.8. Let (G1, δ, ·) be a proximal group and H1 a subgroup of G1. Then, (H1, δH1 , ·) is a proximal group.

Proof. Since (G1, δ, ·) is a proximal group,

µ1 : G1 ×G1 → G1, µ1(g1, g
′

1) = g1 · g
′

1

and

µ2 : G1 → G1, µ2(g1) = g−1
1

are (pcont). Then, the restrictions
µ1|H1×H1 : H1 × H1 → H1

defined by µ1|H1×H1 (h1, h
′

1) = h1 · h
′

1 and
µ2|H1 : H1 → H1

defined by µ2|H1 (h1) = h−1
1 are (pcont), respectively. This shows that (H1, δH1 , ·) is a proximal group. □

Note that, in Proposition 3.8, (H1, δH1 , ·) is said to be a proximal subgroup of (G1, δ, ·). As an example, R+ is a
proximal subgroup of R − {0} in Example 3.2.

Proposition 3.9. Given any proximal groups (G1, δ1, ◦) and (G2, δ2, ∗), their cartesian product G1 × G2 is also a
proximal group.

Proof. Since G1 is a proximal group with a proximity δ1 and a group operation ◦, we have that

µ1 : G1 ×G1 → G1, µ1(g1, g
′

1) = g1 ◦ g
′

1 and µ2 : G1 → G1, µ2(g1) = g−1
1

are (pcont). Similarly, from the proximal group construction of G2, we have that

µ
′

1 : G2 ×G2 → G2, µ
′

1(g2, g
′

2) = g2 ∗ g
′

2 and µ
′

2 : G2 → G2, µ
′

2(g2) = g−1
2

are (pcont). Define two maps

µ3 : (G1 ×G2) × (G1 ×G2)→ G1 ×G2

and

µ4 : G1 ×G2 → G1 ×G2

by µ3((g1, g2), (g
′

1, g
′

2)) = (µ1(g1, g
′

1), µ2(g2, g
′

2)) and µ4(g1, g2) = (µ
′

1(g1), µ
′

2(g2)), respectively. Then, µ3 and µ4 are
(pcont) from the definition of cartesian product proximity. Thus, G1 × G2 is a proximal group having the product
proximity δ1 × δ2 on itself. □

Definition 3.10. Let (G1, δ1, ·1) and (G2, δ2, ·2) be proximal groups. Then, η : G1 → G2 is called a homomorphism
of proximal groups, provided that it is (pcont) group homomorphism. Furthermore, η is called an isomorphism of
proximal groups, if it is a group isomorphism and also a proximal isomorphism.

Example 3.11. Consider the antipodal map η : (R, δ,+) → (R, δ,+), η(x) = −x, where δ is given in Example 3.2, and
+ is the usual additive group operation. For B1, B2 ∈ R, B1 δ B2 means that B1 ∩ B2 , ∅. Then, there exists r ∈ R such
that r belongs to both B1 and B2. Since (R,+) is a group, r has an inverse −r in R. It follows that −r belongs to both
−B1 and −B2, i.e., (−B1) ∩ (−B2) , ∅. Therefore,

η(B1) = (−B1) δ (−B2) = η(B2).

Thus, η is (pcont). Similarly, it can be easily shown that η−1 is a (pcont) map. On the other hand, we observe

η(B1 + B2) = −(B1 + B2) = −B1 + (−B2) = η(B1) + η(B2),

which shows that η is a group homomorphism. As a consequence, η is a proximal group isomorphism.

Theorem 3.12. Let η : (G1, δ1, ·1) → (G2, δ2, ·2) be a group homomorphism between two proximal groups G1 and G2
such that they have the invertible subset property with respect to any subset of them. Then, η is a proximal homomor-
phism provided that B1 δ1 {eG1 } implies that η(B1) δ2 {eG2 }.
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Proof. Let B1 δ1 B2 for any B1, B2 ∈ G1. Then, (B1B−1
2 ) δ1 (B2B−1

2 ) = {eG1 } because G1 is a proximal group. It
follows that η(B1B−1

2 ) δ2 η({eG2 }). Since η is a group homomorphism, η(B1B−1
2 ) = η(B1)η(B2)−1 and η({eG1 }) = {eG2 }.

Therefore, we get (η(B1)η(B2)−1) δ2 {eG2 }. G2 is a proximal group, so we find η(B1) δ2 η(B2), which shows that η is
(pcont). □

In the topological setting, the isomorphism theorems from ordinary group theory are not necessarily valid because
an isomorphism of topological groups need not be a bijective homomorphism. For topological groups, for instance,
a native version of the first isomorphism theorem is false: if η : G1 → G2 is a morphism of topological groups (i.e.,
a continuous homomorphism), it is not always true that the induced homomorphism η̃ : G1/Ker(η) → Im(η) is an
isomorphism of topological groups; it will be a bijective, continuous homomorphism, but it need not be a homeomor-
phism. There is a version of the first isomorphism theorem for topological groups, which may be stated as follows: if
η : G1 → G2 is a continuous homomorphism, then the induced homomorphism η̃ : G1/Ker(η) → Im(η) is an isomor-
phism if and only if η is open onto its image. Similarly, the second isomorphism theorem does not hold for topological
groups. However, it is easy to verify that the third isomorphism theorem holds true for topological groups.

Now, with Proposition 3.13, we check whether the isomorphism theorems on proximal groups are satisfied. Before
that, we shall show that (R, δ,+) is a proximal group whenever δ is a discrete proximity or a proximity defined by

B1 δ B2 if and only if D(B1, B2) = 0,

where D(B1, B2) represents the distance between sets B1 and B2 in R, and B1 + B2 is given by the set

{b1 + b2 | b1 ∈ B1, b2 ∈ B2}.

First, assume that δ is a discrete proximity. Define the maps

µ1 : R × R→ R and µ2 : R→ R

with µ1(g1, g
′

1) = g1 + g
′

1 for any g1, g
′

1 ∈ R, and, µ2(g1) = −g1 for any g1 ∈ R, respectively. For any subsets B1 × B2,
C1 × C2 ∈ R × R, the fact B1 × B2 is near C1 × C2 implies that B1 δ C1 and B2 δ C2. This means that B1 ∩ C1 , ∅
and B2 ∩ C2 , ∅, respectively. Therefore, there exist two elements x1, x2 in R such that x1 ∈ B1, x1 ∈ C1, x2 ∈ B2,
and x2 ∈ C2. It follows that x1 + x2 ∈ B1 + B2 and x1 + x2 ∈ C1 + C2, i.e., (B1 + B2) ∩ (C1 + C2) , ∅. Thus,
(B1 + B2) δ (C1 +C2), which says that µ1 is (pcont). Next, we claim that µ2 is (pcont). Let B1 and B2 be any subsets of
R such that B1 δ B2. Then, B1 ∩ B2 , ∅, that is, there exist an element x in R such that x belongs to both B1 and B2.
It follows that −x belongs to both −B1 and −B2, i.e., (−B1) ∩ (−B2) , ∅. Thus, (−B1) δ (−B2), which says that µ2 is
(pcont). Consequently, (R, δ,+) forms a proximal group.

Now, assume that δ is a proximity defined by

B1 δ B2 if and only if D(B1, B2) = 0.

We quickly have that (R, δ,+) is also a proximal group when we consider the usual addition + on R as the group
operation in Example 3.2 by using the facts that b1 = c1 and b2 = c2 imply that b1+b2 = c1+c2 ∈ (B1+B2)∩ (C1+C2),
and b1 = b2 implies that −b1 = −b2 ∈ (−B1) ∩ (−B2).

Note also that, by Proposition 3.8, we observe that (R − {0}, δ,+) is also a proximal group, where δ is a discrete
proximity or a proximity defined by

B1 δ B2 if and only if D(B1, B2) = 0.

Proposition 3.13. i) The First Isomorphism Theorem does not hold for proximal groups.
ii) The Second Isomorphism Theorem does not hold for proximal groups.
iii) The Third Isomorphism Theorem holds for proximal groups.

Proof. i) Let (R, δ1,+) and (R, δ2,+) be two proximal groups, where δ1 is the discrete proximity and δ2 is given by
B1 δ2 B2 ⇔ D(B1, B2) = 0. The identity map

id : (R, δ1,+)→ (R, δ2,+)

is both a (pcont) map and a group homomorphism. Also, the identity map is surjective and Ker(id) only consists of
the identity element of (R,+). However, R/Ker(id), that is proximally isomorphic to R as proximal groups, with the
discrete proximity is not proximally isomorphic to R with the proximity δ2: Since D(B1, B2) = 0 does not always imply
B1 ∩ B2 , ∅ for any B1, B2 ⊆ R, the inverse of the identity map id is not (pcont).
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ii) Let G1 = (R, δ,+) be a proximal group with its subgroup H1 = {2s | s ∈ Qc} and its normal subgroup N1 = Z,
where δ is the proximity δ2 given in i). Then, the intersection of H1 and N1 is empty, which follows that, as proximal
groups, H1 is proximally isomorphic to H1/(H1 ∩N1) as proximal groups. Since D(B1, B2) > 0 for all B1, B2 ⊆ H1, H1
must have the discrete proximity. On the other hand, we have that (H1 + N1)δ = R. Therefore, [(H1 + N1)/N1]δ = R/Z,
which means that (H1 + N1)/N1 cannot have the discrete proximity. Consequently, the map

(H1 + N1)/N1 → H1/(H1 ∩ N1)

is not a group isomorphism of proximal groups.
iii) The proof is similar to the case of topological groups. □

Note that, a continuous map need not be (pcont). However, a (pcont) map is always continuous with respect to
corresponding topologies. Hence, given a proximal group (Y, δ, ·), we have that (Y, τ(δ), ·) is a topological group since
(pcont) maps µ1 and µ2 in Definition 3.1 are also continuous maps with respect to the corresponding topologies. We
say that (Y, τ(δ), ·) is a topological group induced by δ. For instance, when we consider δ as the discrete proximity,
(Y, τ(δ), ·) forms a discrete topological group because τ(δ) is a discrete topology induced by the discrete proximity δ.

Theorem 3.14. Let (G1, δ, ·) be a proximal group. Then, G1 admits an Hausdorff topological group if and only if
{eG1 } δ B1 implies B1 = {eG1 } for B1 ⊆ G1.

Proof. The assertion is clear from the fact that, for a topological group G1, it is Hausdorff if and only if {eG1 } is
closed. □

In a topological group, the axioms T0, T1, and T2 (Hausdorffness) coincide. This means that one can consider the
topological group (G1, δ(τ), ·) as T0 or T1 instead of T2 in Theorem 3.14.

4. Descriptive Proximal Groups

Definition 4.1. Let (G1, ·) be a group and δΦ a descriptive proximity relation on G1. Then, (G1, δΦ, ·) is said to be a
descriptive proximal group when

µ1 : G1 ×G1 → G1,

defined by µ1(g1, g
′

1) = g1 · g
′

1 for any g1, g
′

1 ∈ G, and

µ2 : G1 → G1,

defined by µ2(g1) = g−1
1 for any g1 ∈ G1, are (dpcont) maps.

Recall that a descriptive proximal path from any point g to any point g
′

in (G, δΦ) is a (dpcont) map

µ : I = [0, 1]→ G

with µ(0) = g and µ(1) = g
′

.

Example 4.2. Let X be a set illustrated in Figure 1a), which consists of three boxes A, B, and C. Consider G as the
set of all descriptive proximal paths on X. For any descriptive proximal paths γ1, γ2 in G with γ1(1) = γ2(0), a group
operation ∗ on G is defined by

γ1 ∗ γ2(s) =

γ1(2s), 0 ≤ s ≤ 1/2
γ2(2s − 1), 1/2 ≤ s ≤ 1.

Note that γi(s) ∈ {A, B,C} for each i = 1, 2. Consider Φ as a probe function that determines any descriptive proximal
path by the order of the box names of that path. It effectively disregards the specific geometric details of the path
and focuses solely on the order in which the boxes are visited. For instance, in Figure 1b), the blue path and the
green path are both represented by ABC. Then, δΦ is a descriptive proximity on G. Indeed, two paths are considered
descriptively near if their associated sequences of box names, as determined by Φ, are similar. In other words, paths
are close in terms of δΦ if they traverse the same sequence of boxes, even if the specific geometric details of their paths
differ. As an example, the blue path is descriptively near the green path. Consider the map µ1 : G × G → G given
by µ1(γ1, γ2) = γ1 ∗ γ2. For any (γ1, γ2), (γ3, γ4) ∈ G × G, the fact (γ1, γ2) is descriptively near (γ3, γ4) implies that
γ1 δΦ γ3 and γ2 δΦ γ4. Then, for all s1, s2 ∈ [0, 1], we have that γ1(s1) = γ3(s1) and γ2(s2) = γ4(s2). It follows that
γ1 ∗ γ2 = γ3 ∗ γ4, which means that γ1 ∗ γ2 is descriptively near γ3 ∗ γ4. Hence, µ1 is (dpcont). Moreover, the map
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µ2 : G → G defined by µ2(γ) = γ−1 is (dpcont). Indeed, for any γ1, γ2 ∈ G, γ1 δΦ γ2 implies that γ1(s) = γ2(s) for
all s ∈ [0, 1]. Therefore, γ−1

1 (s) = γ−1
2 (s) for all s ∈ [0, 1]. This shows that γ−1

1 δΦ γ
−1
2 , and finally, (G, δΦ, ◦) is a

descriptive proximal group.

Figure 1. a) The picture X consists of boxes labelled A, B, and C.
b) The blue path ABC is descriptively near the green path. Orders of the paths are equal to each
other.

Theorem 4.3. Let (G1, δΦ, ·) be a descriptive proximal group and x1 ∈ G1. Then,

Lx1 : G1 → G1,

defined by Lx1 (g1) = x1 · g1, and

Rx1 : G1 → G1,

defined by Rx1 (g1) = g1 · x1, are descriptive proximal isomorphisms.

Proof. The proof is parallel with Theorem 3.4 since the composition of (dpcont) maps is again (dpcont). □

Remark 4.4. For a descriptive proximal group (G1, δΦ, ·) and a subgroup H1 of G1, we say that (H1, δΦH1
, ·) is a

descriptive proximal subgroup of (G1, δΦ, ·).

Example 4.5. Consider the additive group (R,+) and assume that Zc denotes the set of all non-integer elements in R.
Let Φ = {ϕ1, ϕ2} be the probe function such that ϕ1 : R → R and ϕ2 : R → R are defined by ϕ1(y) = trunc(y) and

ϕ2(y) =

y, y ∈ Zc

y + 0.3, y ∈ Z
for any y ∈ R, respectively. Here, the function trunc(y) truncates y ∈ R to an integer by

removing the fractional part of the number. For example, trunc(−3.4) = −3 and trunc(5.6) = 5. Note that ϕ1(y) ∈ Z
and ϕ2(y) ∈ Zc. To show that

µ1 : R × R→ R, µ1(y1, y2) = y1 + y2,

is (dpcont), we shall show that B1×B2 is descriptively near C1×C2 implies that (B1+B2) δΦ (C1+C2) for any B1×B2,
C1 × C2 ∈ R × R. Since B1 × B2 is descriptively near C1 × C2, we have that B1 is descriptively near C1 and B2 is
descriptively near C2. When we consider B1 δΦ C1 (i.e., Φ(B1) ∩ Φ(C1) , ∅), there are some cases as follows.
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• There exists b1 ∈ R such that b1 ∈ B1 ∩C1.
• There exist b1 ∈ Z and c1 ∈ Z

c such that b1 ∈ B1 and c1 ∈ C1 with trunc(c1) = b1.
• There exist b1 ∈ Z and c1 ∈ Z

c such that b1 ∈ B1 and c1 ∈ C1 with c1 = b1 + 0.3.
The cases are hold when we focus on B2 δΦ D2 (i.e., Φ(B2) ∩ Φ(D2) , ∅):

• There exists b2 ∈ R such that b2 ∈ B2 ∩C2.
• There exist b2 ∈ Z and c2 ∈ Z

c such that b2 ∈ B2 and c2 ∈ C2 with trunc(c2) = b2.
• There exist b2 ∈ Z and c2 ∈ Z

c such that b2 ∈ B2 and c2 ∈ C2 with c2 = b2 + 0.3.
For all cases, we have that Φ(B1 + B2)∩Φ(C1 +C2) , ∅. This means that B1 + B2 is descriptively near C1 +C2. Now,
define

µ2 : R→ R, µ2(y) = −y.

Let B1, B2 ∈ 2R with B1 δΦ B2. Then, there are three cases again.
• There exists b1 ∈ R such that b1 ∈ B1 ∩ B2.
• There exist b1 ∈ Z and b2 ∈ Z

c such that b1 ∈ B1 and b2 ∈ B2 with trunc(b2) = b1.
• There exist b1 ∈ Z and b2 ∈ Z

c such that b1 ∈ B1 and b2 ∈ B2 with b2 = b1 + 0.3.
In each case we find that −B1 is descriptively near −B2:

• If there is a real number b1 ∈ B1 ∩ B2, then the real number −b1 belongs to both −B1 and −B2.
• If trunc(b2) = b1, then trunc(−b2) = −b1.
• If b2 = b1 + 0.3, then −b1 = −b2 + 0.3.

Therefore, we observe that −b1 ∈ Φ(−B1) ∩ Φ(−B2) for all cases, namely that, (−B1) δΦ (−B2). This shows that µ2 is
(dpcont). Hence, (R, δΦ,+) is a descriptive proximal group. Moreover, the fact (Q,+) is a subgroup of (R,+) shows
that (Q, δΦQ ,+) is a descriptive proximal subgroup.

Similar to Proposition 3.9, the cartesian product of two descriptive proximal groups is a descriptive proximal group.
Consider the descriptive proximal group (R, δΦ,+) given in Example 4.5. Then, we have that (R2, δΦ′ ,+) is also a
descriptive proximal group, where δΦ′ is the cartesian product descriptive proximity δΦ × δΦ.

Definition 4.6. Let (G1, δΦ1 , ◦) and (G2, δΦ2 , ∗) be any descriptive proximal groups. Then, η : G1 → G2 is called a
homomorphism of descriptive proximal groups provided that it is (dpcont) group homomorphism. Furthermore, η is
called an isomorphism of descriptive proximal groups if it is a group isomorphism and also a descriptive proximal
isomorphism.

Example 4.7. Let (Y1, δΦ1 ,+) and (Y2, δΦ2 ,+) be any proximal groups. Then, define a (dpcont) map

ν : (Y1, δΦ1 ,+) × (Y2, δΦ2 ,+)→ (Y1, δΦ1 ,+)

by ν(y1, y2) = y1. ν is a homomorphism of descriptive proximal groups. Indeed, for B1 × B2, C1 ×C2 ∈ 2Y1×Y2 ,

ν[(B1 × B2) + (C1 ×C2)] = ν[(B1 +C1), (B2 +C2)]
= B1 +C1

= ν(B1 × B2) + η(C1 ×C2).

However, ν is not an isomorphism of descriptive proximal groups: For any B1, C1 ∈ 2Y1 , if B1 δΦ1 C1 and B2 δΦ2 C2,
then B1 × B2 cannot be descriptively near C1 ×C2.

5. Conclusion

The study of topological groups in proximity and descriptive proximity spaces marks an important step in the
process of nearness theory, providing a fresh perspective on the interplay between algebraic and topological structures.
As we continue to explore the potential of nearness-based settings, this research opens up new avenues for future
investigations, promising further advancements and exciting discoveries in the fascinating realm of topological groups.

It is necessary to mention an open problem on isomorphism theorems for groups. Intuitively, it can be thought that
the first and second isomorphism theorem are not satisfied, but the third isomorphism theorem is satisfied, just as in
proximity spaces. Making this clear with examples or proofs is to take the matter one step further. For another open
problem, Lie groups setting in the theory of proximity (or descriptive proximity) can be considered. However, for this
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problem, first of all, the concept of a manifold and its related invariants should be studied extensively in the theory of
nearness. As a result, it is very possible to obtain interesting results using the (descriptive) proximal group results on
descriptive proximity theory.
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