INTERNATIONAL SCIENTIFIC AND VOCATIONAL JOURNAL (ISVOS JOURNAL)
Vol.: 7 Issue: 2 Date: 31.12.2023 Received: 30.07.2023 Accepted: 10.12.2023 Final Version: 30.12.2023

ISVOS Journal, 2023, 7(2): 87-93 — DOI: 10.47897/bilmes.1334810

Estimation of Young's Modulus of Limestones using Multi-Layer Perceptron

Ebru Efeoglu 2!

@ Department of Sofrware Engineering, Engineering Faculty, Kiitahya Dumlupinar University, Kiitahya, Turkey
ORCID ID: 0000-0001-5444-6647

Abstract

The Young’s modulus (E) is a very important parameter used in many engineering projects and in the petroleum industry. It is especially
important for tunneling, mining and rock slope stability analysis. This parameter is determined by difficult experiments. In addition, cores must
be taken for the experiment and the cores taken must be of high quality. The aim of the study is to estimate the Young’s modulus, which
represents the basic mechanical property of rocks, using relatively easy-to-apply and low-cost methods. For this purpose, the multi-layer
perception method was used. Input parameters of these meshes are Dry density, Water saturated density, Bulk density, Porosity, Water
absorption, Ultrasound Pulse Velocity (UPV), Poisson ratio (v), Tensile strength (To), The uniaxial compressive strength (UCS) and The point
load index (Is)' is Four different network models were created and the successes of these network models were compared using the 5-fold
cross-validation method. As a result of the comparison, it was understood that the model 2 network was more successful. The Correlation
coefficient values of the model were calculated as 95% in training and 84% in 5-fold cross validation.

Keywords: “Artificial intelligence, multi-layer perceptron (MLP), Young’s modulus, limestone, Spearman’s rho, Kendall’s
Tau.”

1. Introduction

Young’s modulus (E), an important parameter for many engineering studies, reflects the hardness of rock materials. When a
stress is applied to the rocks, deformation occurs in the rocks. This value is the ratio of this stress to the resulting deformation.
The greater the value of the E value, the harder it is for the rocks to deform. Due to the difficulty of determining this parameter,
limited budget and resources, researchers have searched for indirect methods to determine this parameter. In this study, some
parameters of limestone collected from different regions of Turkey were used for the estimation of the E [1]. These parameters
are Dry density, Water saturated density, Bulk density, Porosity, Is, Water absorption, UPV, Poisson ratio (v), tensile strength
(To), and UCS. UPV determination method is a cheap, easy and reliable method. For this reason, it is often used to evaluate the
mechanical properties of rocks. Another important parameter used in determining the mechanical properties of rocks is UCS.
This parameter is widely used in engineering designs. It is a destructive method. In studies with the estimation of the mechanical
properties of rocks, the UCS value has generally been estimated. For example, multivariate regression and LS-SVM methods [2],
ANN method [3], PSO based artificial neural network (ANN) approach were used for UCS estimation [4]. UCS and E of intact
sedimentary rocks using UPV were estimated using the least squares regression method [5]. Machine learning algorithms were
used to estimate the E using the physical properties of rocks [6]. Least squares support vector machine based models were used
to estimate the E of weak rocks [6]. The compressive strength of carbonate rocks was estimated [8]. M5P algorithm, which is one
of the decision tree algorithms, was used to estimate the UCS value and the E of carbonate rocks. Schmidt hammer, porosity, dry
unit weight and slake durability index were used as input variables to the algorithm [9]. Genetic algorithm was used for
estimation of E [10]. The relationship of carbonate rocks with UCS value, density, E was investigated [11]. ANFIS and ICA
methods were used to estimate the E of granite [12]. The unconfined compressive strength value and E values were estimated
from the petrophysical properties of the carbonate rocks. Limestone, dolomite and chalk presented equations to estimate the
Young's modulus (E) [13]. An XGBoost regression model was developed to estimate the E of sedimentary rocks [14]. In
addition, linear-nonlinear regression analysis methods were used to estimate the E of thermally treated sedimentary rocks [15].
Deformation properties of charcoal were estimated by ANN and adaptive neuro-fuzzy inference system (ANFIS) method.

UCS, 1, shear strength and P wave velocity [16] were used as input parameters to the mesh. The estimation of UCS and E for
travertine samples was made using the XGBoost algorithm [17]. Machine learning techniques were used to estimate the E of
limestones [18]. Sawability of carbonate rocks was predicted from shear strength parameters with ANN [19]. Estimation of rock
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properties using acoustic frequencies [20], rock fragmentation was estimated [21]. Machine learning based short term load

forecasting was made in commercial buildings [22].

In this study, the Multi-Layer Perceptron (MLP) technique was used to estimate the Young modulus of limestones. To
identify the network that made the most successful prediction, 4 different network models were created. Their prediction results
were compared. Features used in the study are Dry density, Water saturated density, Bulk density, Porosity, Water absorption,
Ultrasound Pulse Velocity (UPV), Poisson ratio (v), Tensile strength (To), The uniaxial compressive strength (UCS) and The
point load index (Is). The histograms of the features in the data set used are given in Figure 1. Here, the vertical axis represents

the frequency. Statistical parameters of the features were calculated and given in Table 1.

Dry-dens Water-saturated-den:

Fig 1. Histogram of the features

Table 1. Statistical parameters of the features

Features Min Max Mean StdDev
Dry- density 18.639 24.525 21.751 1.509
Water-saturated-density 21.582 24.329 23.078 0.667
Bulk-density 20.012 25.0.16 22.771 1.186
Porosity 1.9 2.89 2.313 0.236
Water-absorption 1.2 1.9 1.569 0.202
UPV 3478 5865 4766.25 556.212
\Y 0.28 0.4 0.339 0.033
To 3.9 7.8 6.15 1.099
UCS 19 46 33.156 6.248
Is 2.4 3.9 3.201 0.326
E 38.32 69.14 57.198 7.071
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According to the table, the E varies between 38.32 and 69.14. The mean E value in the measurement data is 57.198 and the
standard deviation is 7.071.

2. Materyal and Method
2.1.  Multi-Layer Perceptron ( MLP)

Multilayer perceptron model is used in case of non-linear relationships between inputs and outputs of ANN. MLP is a widely
used ANN technique. This technique has a wide range of applications [21]. MLP's network consists of three layers. The network
structure is given in Fig 2.

Input layer: ANN has inputs in this layer. There is no restriction on the number of entries. There is no information processing
here. The information is sent to the next layer. Each process element in the input layer is connected to the process element in the
next layer.

Hidden layer: Incoming information in this layer is processed and sent to the next layer. In an MLP network, there can be
more than one middleware and more than one process element in each layer. Each process element in the middle layer is
connected to the process element in the next layer.

Output layer: Here, it processes the information from the middleware and determines the outputs produced by the network in
response to the inputs given to the network from the input layer. There can be more than one process element in this layer. Each
process element is dependent on all the process elements in the previous layer. Each process element has only one output.
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Fig. 2. MLP network

3. Results

In the study, 4 different network models were created for the estimation of the E. The same input parameters were used in all
models. The first model consists of 1 hidden layer. There are 5 neurons in this layer. Model 2 has 2 hidden layers. There are 4
neurons in the first layer and 1 neuron in the second layer. Model-3 also has 2 hidden layers. There are 3 neurons in the first layer
and 1 neuron in the second layer. Model 4 has 2 hidden layers. There are 2 neurons in the first layer and 1 neuron in the second
layer.

The network models used, the inputs and outputs of the models, and the metrics used to compare their performance are given
together. (Fig 3, Fig 4, Fig 5, Fig 6). In order to compare the models, Kendall' Tau, Spearman's rho, Correlation coefficient (R?)
and various error metrics used in the calculation of error values were calculated with weka. Kendall Tau identifies relationships
between binary and ordinal scale data. If the Kendall's Tau coefficient is greater than 0.5, a high correlation is considered to
exist. Kendall's Tau coefficient of all used models is higher than 0.5. But When this value is used in model 4, higher values were
obtained than other models. The R? value is a value between -1 and +1. If R? is calculated as +1, there is a strong positive
relationship between the two variables. If it is calculated as -1, there is a strong negative relationship. As this value approaches 0,
the strength of the relationship weakens. This value was close to 1 in all networks. The highest values were obtained in Model 2
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and Model 4. The highest value of R? is 0.95 in training and 0.84 in cross validation.In calculating the Spearman Rank
Correlation Coefficient, the observation values are first ordered from the largest to the smallest or from the smallest to the
largest, and a sequence number is given according to this order. If the Spearman Rank Correlation Coefficient is between 0.90
and 1, it means that there is a very strong relationship. The highest value was obtained when model 4 was used.

When the figures are examined, it is seen that the Spearman's rho, Kendall's Tau and R? of the model-4 are higher than the
other models in both training and cross validation. In addition, the error metric values of this model are lower than other models.
For this reason, it is appropriate to use the mesh structure created in Model-4 in estimating the Young’s modulus.
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Fig. 3. Model-1 MLP network and its outputs
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Training S-fold cross validation
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Fig 4. Model-2 MLP network and its outputs
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Fig 5. Model-3 MLP network and its outputs
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Training 5- fold cross validation
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Fig 6. Model-4 MLP network and its outputs
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