INTERNATIONAL SCIENTIFIC AND VOCATIONAL JOURNAL (ISVOS JOURNAL)

Vol.: 7 Issue: 2 Date: 31.12.2023 Received: 30.07.2023 Accepted: 10.12.2023 Final Version: 30.12.2023

ISVOS Journal, 2023, 7(2): 87-93 – DOI: 10.47897/bilmes.1334810

Estimation of Young's Modulus of Limestones using Multi-Layer Perceptron

Ebru Efeoğlu a,1

^a Department of Sofrware Engineering, Engineering Faculty, Kütahya Dumlupınar University, Kütahya, Turkey ORCID ID: 0000-0001-5444-6647

Abstract

The Young's modulus (E) is a very important parameter used in many engineering projects and in the petroleum industry. It is especially important for tunneling, mining and rock slope stability analysis. This parameter is determined by difficult experiments. In addition, cores must be taken for the experiment and the cores taken must be of high quality. The aim of the study is to estimate the Young's modulus, which represents the basic mechanical property of rocks, using relatively easy-to-apply and low-cost methods. For this purpose, the multi-layer perception method was used. Input parameters of these meshes are Dry density, Water saturated density, Bulk density, Porosity, Water absorption, Ultrasound Pulse Velocity (UPV), Poisson ratio (v), Tensile strength (To), The uniaxial compressive strength (UCS) and The point load index (Is)' is Four different network models were created and the successes of these network models were compared using the 5-fold cross-validation method. As a result of the comparison, it was understood that the model 2 network was more successful. The Correlation coefficient values of the model were calculated as 95% in training and 84% in 5-fold cross validation.

Keywords: "Artificial intelligence, multi-layer perceptron (MLP), Young's modulus, limestone, Spearman's rho, Kendall's Tau."

1. Introduction

Young's modulus (E), an important parameter for many engineering studies, reflects the hardness of rock materials. When a stress is applied to the rocks, deformation occurs in the rocks. This value is the ratio of this stress to the resulting deformation. The greater the value of the E value, the harder it is for the rocks to deform. Due to the difficulty of determining this parameter, limited budget and resources, researchers have searched for indirect methods to determine this parameter. In this study, some parameters of limestone collected from different regions of Turkey were used for the estimation of the E [1]. These parameters are Dry density, Water saturated density, Bulk density, Porosity, Is, Water absorption, UPV, Poisson ratio (v), tensile strength (To), and UCS. UPV determination method is a cheap, easy and reliable method. For this reason, it is often used to evaluate the mechanical properties of rocks. Another important parameter used in determining the mechanical properties of rocks is UCS. This parameter is widely used in engineering designs. It is a destructive method. In studies with the estimation of the mechanical properties of rocks, the UCS value has generally been estimated. For example, multivariate regression and LS-SVM methods [2], ANN method [3], PSO based artificial neural network (ANN) approach were used for UCS estimation [4]. UCS and E of intact sedimentary rocks using UPV were estimated using the least squares regression method [5]. Machine learning algorithms were used to estimate the E using the physical properties of rocks [6]. Least squares support vector machine based models were used to estimate the E of weak rocks [6]. The compressive strength of carbonate rocks was estimated [8]. M5P algorithm, which is one of the decision tree algorithms, was used to estimate the UCS value and the E of carbonate rocks. Schmidt hammer, porosity, dry unit weight and slake durability index were used as input variables to the algorithm [9]. Genetic algorithm was used for estimation of E [10]. The relationship of carbonate rocks with UCS value, density, E was investigated [11]. ANFIS and ICA methods were used to estimate the E of granite [12]. The unconfined compressive strength value and E values were estimated from the petrophysical properties of the carbonate rocks. Limestone, dolomite and chalk presented equations to estimate the Young's modulus (E) [13]. An XGBoost regression model was developed to estimate the E of sedimentary rocks [14]. In addition, linear-nonlinear regression analysis methods were used to estimate the E of thermally treated sedimentary rocks [15]. Deformation properties of charcoal were estimated by ANN and adaptive neuro-fuzzy inference system (ANFIS) method.

UCS, τ , shear strength and P wave velocity [16] were used as input parameters to the mesh. The estimation of UCS and E for travertine samples was made using the XGBoost algorithm [17]. Machine learning techniques were used to estimate the E of limestones [18]. Sawability of carbonate rocks was predicted from shear strength parameters with ANN [19]. Estimation of rock

¹ Corresponding Author

E-mail Address: ebru.efeoglu@dpu.edu.tr

properties using acoustic frequencies [20], rock fragmentation was estimated [21]. Machine learning based short term load forecasting was made in commercial buildings [22].

In this study, the Multi-Layer Perceptron (MLP) technique was used to estimate the Young modulus of limestones. To identify the network that made the most successful prediction, 4 different network models were created. Their prediction results were compared. Features used in the study are Dry density, Water saturated density, Bulk density, Porosity, Water absorption, Ultrasound Pulse Velocity (UPV), Poisson ratio (v), Tensile strength (To), The uniaxial compressive strength (UCS) and The point load index (Is). The histograms of the features in the data set used are given in Figure 1. Here, the vertical axis represents the frequency. Statistical parameters of the features were calculated and given in Table 1.

Fig 1. Histogram of the features

Table 1. Statistical parameters of the features

Features	Min	Max	Mean	StdDev
Dry- density	18.639	24.525	21.751	1.509
Water-saturated-density	21.582	24.329	23.078	0.667
Bulk-density	20.012	25.0.16	22.771	1.186
Porosity	1.9	2.89	2.313	0.236
Water-absorption	1.2	1.9	1.569	0.202
UPV	3478	5865	4766.25	556.212
V	0.28	0.4	0.339	0.033
То	3.9	7.8	6.15	1.099
UCS	19	46	33.156	6.248
Is	2.4	3.9	3.201	0.326
Е	38.32	69.14	57.198	7.071

According to the table, the E varies between 38.32 and 69.14. The mean E value in the measurement data is 57.198 and the standard deviation is 7.071.

2. Materyal and Method

2.1. Multi-Layer Perceptron (MLP)

Multilayer perceptron model is used in case of non-linear relationships between inputs and outputs of ANN. MLP is a widely used ANN technique. This technique has a wide range of applications [21]. MLP's network consists of three layers. The network structure is given in Fig 2.

Input layer: ANN has inputs in this layer. There is no restriction on the number of entries. There is no information processing here. The information is sent to the next layer. Each process element in the input layer is connected to the process element in the next layer.

Hidden layer: Incoming information in this layer is processed and sent to the next layer. In an MLP network, there can be more than one middleware and more than one process element in each layer. Each process element in the middle layer is connected to the process element in the next layer.

Output layer: Here, it processes the information from the middleware and determines the outputs produced by the network in response to the inputs given to the network from the input layer. There can be more than one process element in this layer. Each process element is dependent on all the process elements in the previous layer. Each process element has only one output.

Fig. 2. MLP network

3. Results

In the study, 4 different network models were created for the estimation of the E. The same input parameters were used in all models. The first model consists of 1 hidden layer. There are 5 neurons in this layer. Model 2 has 2 hidden layers. There are 4 neurons in the first layer and 1 neuron in the second layer. Model-3 also has 2 hidden layers. There are 3 neurons in the first layer and 1 neuron in the second layer. Model 4 has 2 hidden layers. There are 2 neurons in the first layer and 1 neuron in the second layer.

The network models used, the inputs and outputs of the models, and the metrics used to compare their performance are given together. (Fig 3, Fig 4, Fig 5, Fig 6). In order to compare the models, Kendall' Tau, Spearman's rho, Correlation coefficient (R^2) and various error metrics used in the calculation of error values were calculated with weka. Kendall Tau identifies relationships between binary and ordinal scale data. If the Kendall's Tau coefficient is greater than 0.5, a high correlation is considered to exist. Kendall's Tau coefficient of all used models is higher than 0.5. But When this value is used in model 4, higher values were obtained than other models. The R^2 value is a value between -1 and +1. If R^2 is calculated as +1, there is a strong positive relationship between the two variables. If it is calculated as -1, there is a strong negative relationship. As this value approaches 0, the strength of the relationship weakens. This value was close to 1 in all networks. The highest values were obtained in Model 2

and Model 4. The highest value of R^2 is 0.95 in training and 0.84 in cross validation. In calculating the Spearman Rank Correlation Coefficient, the observation values are first ordered from the largest to the smallest or from the smallest to the largest, and a sequence number is given according to this order. If the Spearman Rank Correlation Coefficient is between 0.90 and 1, it means that there is a very strong relationship. The highest value was obtained when model 4 was used.

When the figures are examined, it is seen that the Spearman's rho, Kendall's Tau and R^2 of the model-4 are higher than the other models in both training and cross validation. In addition, the error metric values of this model are lower than other models. For this reason, it is appropriate to use the mesh structure created in Model-4 in estimating the Young's modulus.

	Training		5-fold cross validation			Dry-dentsity	
actual	predicted	error	actual	predicted	error	Water-saturated-densay	
64.36	52.991	-11.369	44.28	48.645	4.365	Bulk-density	
60.22	52.988	-7.232	51.34	51.391	0.051	Porosity	
59.44	52.986	-6.454	58,69	59.227	0.537		
62.44	53.008	-9.432	65.32	63.102	-2.218	water-absorption	
52.2	52.961	0.761	52.43	58.651	6.221	UPY	
62.46	53.003	-9.457	52.2	52.441	0.241		
53	53.014	-9.986	54	56.318	2.318		
58.44	52.985	-5.455	59.44	63.004	3.564		
51.74	52.998	-8.742	62.7	62.824	0.124		
5.32	52.993	-12.327	55	61.475	6.475	1	
55	53.004	-11.996	38.32	45.921	7.601	Training	
52.7	52.995	-9.705	61.74	64.114	2.374	Training	
3.25	53.003	-10.247	60.22	59.775	-0.445	Correlation coefficient	0.8986
50.34	52.987	-7.353	55.7	55.744	0.044	Kendall's tau	0.7084
88.32	52.943	14.623	63.25	62.378	-0.872	Spearman's rho	0.8791
13.64	52.941	9.301	43.64	39.291	-4.349	Mean absolute error	6,9177
4.28	52.942	8.662	54.3	62.725	8.425	Poot mean squared error	8 1234
58.11	52.979	-5.131	49	52.548	3.548	Poloting sheelute error	100.0250
54.3	52.98	-1.32	62.46	62.017	-0.443	Relative absolute error	122.3753
58.2	52.976	-5.224	69.14	61.326	-7.814	Root relative squared error	116.7201
59.36	52.97	-6.39	58.2	53.724	-4.476	Total Number of Instances	32
69.14	53.006	-16.134	58.11	58.268	0.158	5-fold cross validation	
55	52.98	-2.02	53.68	52.373	-1.307		
19.24	52.97	3.73	65	61.695	-3.305	Correlation coefficient	0.8183
58.69	52.989	-5.701	65	58.258	-6.742	Kendall's tau	0.5671
55.7	52.971	-2.729	59.36	65.006	5.646	Spearman's rho	0.7442
53.68	52.97	-0.71	60.34	65.958	5.618	Mean absolute error	3.3046
5	52.984	-12.016	63	69.486	6.486	Root mean squared error	4.2867
52.43	52.97	0.54	62.44	69.465	7.025	Pelative absolute error	56 7499
54	52.98	-1.02	58.44	59.167	0.727	Post velative errored ever	50.7155
19	52.965	3.965	64.36	62.588	-1.772	Root relative squared error	39.9357
51.34	52.973	1.633	49.24	48.783	-0.457	Total Number of Instances	32

Fig. 3. Model-1 MLP network and its outputs

	Training		5-f	old cross valid	lation		
actual	predicted	error	actual	predicted	error		
64.36	62.093	-2.267	44.28	49.164	4.884		
60.22	61.166	0.946	51.34	50.97	-0.37	Dry-density	
59.44	59.753	0.313	58.69	58.3	-0.39	Water-saturated-density	
62.44	64.452	2.012	65.32	63.142	-2.178	Bulk density	
52.2	50.68	-1.52	52.43	56.819	4.389	Parasite	
62.46	63.234	0.774	52.2	50.709	-1.491		
63	62.876	-0.124	54	53.559	-0.441		
58.44	56.611	-1.829	59.44	61.087	1.647		
61.74	60.735	-1.005	62.7	62.391	-0.309		
65.32	62.447	-2.873	55	57.057	2.057	TO	
65	63.193	-1.807	38.32	44.435	6.115		
62.7	61.324	-1.376	61.74	63.285	1.545	Is	
63.25	62.828	-0.422	60.22	61.708	1.488	_	
60.34	59.12	-1.22	55.7	56.335	0.635	Training	
38.32	39.533	1.213	63.25	63.225	-0.025	General-thion, see ffi signt	0.9520
43.64	41.505	-2.135	43.64	42.023	-1.617	Correlation Coerficient	0.9536
44.28	43.476	-0.804	54.3	63.226	8.926	Kendall's tau	0.7891
58.11	57.836	-0.274	49	52.017	3.017	Spearman's rno	0.9202
54.3	56.887	2.587	62.46	64.553	2.093	Mean absolute error	1.7743
58.2	54.62	-3.58	69.14	64.297	-4.843	Root mean squared error	2.3/41
59.36	55.755	-3.605	58.2	52.008	-6.192	Relative absolute error	31.3872 8
69.14	63.56	-5.58	58.11	56.373	-1.737	Root relative squared error	34.111/ 8
55	55.905	0.905	53.68	50.402	-3.278	Total Number of Instances	32
49.24	49.479	0.239	65	63.063	-1.937	5-fold cross validation	
58.69	58.285	-0.405	65	57.185	-7.815	Correlation coefficient	0.8455
55.7	54.429	-1.271	59.36	61.741	2.381	Kendall's tau	0.6398
53.68	51.995	-1.685	60.34	66.378	6.038	Spearman's rho	0.8157
65	57.345	-7.655	63	69.982	6.982	Mean absolute error	2.9897
52.43	52.857	0.427	62.44	70.008	7.568	Root mean squared error	3.9188
54	55.153	1.153	58.44	58.896	0.456	Relative absolute error	51.342 %
49	46.148	-2.852	64.36	61.74	-2.62	Root relative squared error	54.7917 %
51.34	49.422	-1.918	49.24	49.034	-0.206	Total Number of Instances	32

Fig 4. Model-2 MLP network and its outputs

	Training		5-fe	old cross valid	ation		
actual	predicted	error	actual	predicted	error		
64.36	62.134	-2.226	44.28	48.931	4.651		
60.22	61.442	1.222	51.34	50.478	-0.862	Dry-density	
59.44	59.862	0.422	58.69	59.018	0.328	Water-saturated-density	
62.44	64.666	2.226	65.32	63.701	-1.619	Eulk-density	
52.2	50.879	-1.321	52.43	57.658	5.228	Porosity	
62.46	63.29	0.83	52.2	50.898	-1.302	Margan absorption	
63	63.018	0.018	54	53.917	-0.083		<mark>-</mark> <mark>-</mark>
58.44	56.19	-2.25	59.44	61.657	2.217		
61.74	60.79	-0.95	62.7	62.508	-0.192		
65.32	62.757	-2.563	55	57.277	2.277		
65	63.278	-1.722	38.32	44.549	6.229		
62.7	61.348	-1.352	61.74	64.206	2.466	He Contraction of the Contractio	
63.25	63.08	-0.17	60.22	62.305	2.085	•	
60.34	59.08	-1.26	55.7	57.346	1.646	Training	
38.32	39.523	1.203	63.25	62.866	-0.384	Correlation coefficient	0.9518
43.64	41.527	-2.113	43.64	40.416	-3.224	Kendall's tau	0.7891
44.28	43.627	-0.653	54.3	62.722	8.422	Spearman's rho	0.9187
58.11	58.086	-0.024	49	52.301	3.301	Mean absolute error	1.7781
54.3	57.001	2.701	62.46	63.773	1.313	Root mean squared error	2.3719
58.2	54.599	-3.601	69.14	63.629	-5.511	Relative absolute error	31.4543 %
59.36	55.57	-3.79	58.2	51.617	-6.583	Root relative squared error	34.0805 %
69.14	63.536	-5.604	58.11	56.414	-1.696	Total Number of Instances	32
55	56.159	1.159	53.68	50.353	-3.327		
49.24	49.407	0.167	65	61.766	-3.234	5-fold cross validation	
58.69	58.389	-0.301	65	58.374	-6.626	Correlation coefficient	0.8387
55.7	54.59	-1.11	59.36	64.719	5.359	Kendall's tau	0.6075
53.68	51.989	-1.691	60.34	66.585	6.245	Spearman's rho	0.7957
65	57.603	-7.397	63	69.908	6.908	Mean absolute error	3.2673
52.43	53.068	0.638	62.44	69.988	7.548	Root mean squared error	4.0782
54	55.298	1.298	58.44	58.969	0.529	Relative absolute error	56.1097 %
49	46.187	-2.813	64.36	61.728	-2.632	Root relative squared error	57.0204 %
51.34	49.236	-2.104	49.24	48.712	-0.528	Total Number of Instances	32

Fig 5. Model-3 MLP network and its outputs

91

	Training		5- fo	ld cross valid	ation		
actual	predicted	error	actual	predicted	error	Davidanchi	
64.36	62.248	-2.112	44.28	48.528	4.248		
60.22	61.686	1.466	51.34	50.32	-1.02	water-saturated-density	
59.44	59.993	0.553	58.69	59.135	0.445	Bulk-density	
62.44	65.19	2.75	65.32	63.591	-1.729	Porosity	
52.2	50.957	-1.243	52.43	57.713	5.283	Water-absorption	
62.46	63.491	1.031	52.2	49.731	-2.469	UPV	-
63	63.462	0.462	54	51.983	-2.017		
58.44	56.113	-2.327	59.44	61.172	1.732	TO	
61.74	60.976	-0.764	62.7	61.728	-0.972		
65.32	63.16	-2.16	55	57.365	2.365	21	
65	63.665	-1.335	38.32	43.12	4.8	-	
62.7	61.634	-1.066	61.74	62.777	1.037		
63.25	63.639	0.389	60.22	61.525	1.305	Training	
60.34	59.313	-1.027	55.7	55.954	0.254		
38.32	39.03	0.71	63.25	63.91	0.66	Correlation coefficient	0.951
43.64	42.081	-1.559	43.64	44.094	0.454	Kendall's tau	0.7931
44.28	43.562	-0.718	54.3	63.374	9.074	Spearman's rho	0.9227
58.11	57.859	-0.251	49	53.057	4.057	Mean absolute error	1.7414
54.3	57.386	3.086	62.46	64.686	2.226	Root mean squared error	2.3099
58.2	54.662	-3.538	69.14	64.992	-4.148	Relative absolute error	30.8059
59.36	55.514	-3.846	58.2	51.295	-6.905	Root relative squared error	33.1902
69.14	63.909	-5.231	58.11	56.572	-1.538	Total Number of Instances	32
55	56.309	1.309	53.68	50.056	-3.624	5- fold cross validation	
49.24	49.258	0.018	65	64.144	-0.856	5- Iolu cross valuation	
58.69	58.726	0.036	65	56.518	-8.482	Correlation coefficient	0.8421
55.7	54.934	-0.766	59.36	60.311	0.951	Kendall's tau	0.672
53.68	52.623	-1.057	60.34	66.83	6.49	Spearman's rho	0.8265
65	57.887	-7.113	63	69.965	6.965	Mean absolute error	3.0336
52.43	53.522	1.092	62.44	70	7.56	Root mean squared error	3.9856
54	55.762	1.762	58.44	58.807	0.367	Relative absolute error	52.0966
49	46.073	-2.927	64.36	61.936	-2.424	Root relative squared error	55.7255
51.34	49.319	-2.021	49.24	49.856	0.616	Total Number of Instances	32

Fig 6. Model-4 MLP network and its outputs

References

- [1] Kurtulus, C., Cakir, S., & Yoğurtcuoğlu, A.C. "Ultrasound Study of Limestone Rock Physical and Mechanical Properties". Soil Mechanics & Foundation Engineering, 52(6), 2016.
- [2] Çelik SB. "Prediction of uniaxial compressive strength of carbonate rocks from nondestructive tests using multivariate regression and LS-SVM methods". Arab J Geosci 2019;12:193. https://doi.org/10.1007/s12517-019-4307-2.
- [3] Ferentinou M, Fakir M. "An ANN Approach for the Prediction of Uniaxial Compressive Strength, of Some Sedimentary and Igneous Rocks in Eastern KwaZulu-Natal". Symposium of the International Society for Rock Mechanics 2017, 191:1117–25. https://doi.org/10.1016/j.proeng.2017.05.286.
- [4] Mohamad ET, Jahed Armaghani D, Momeni E, Alavi Nezhad Khalil Abad SV. "Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach". Bull Eng Geol Environ 2015;74:745–57.
- [5] Z.A. Moradian, M. Behnia, "Predicting the uniaxial compressive strength and static Young's modulus of intact sedimentary rocks using the ultrasonic test". Int. J. Geomech. 9 (1(14)) 1532–3641, 2009.
- [6] Khan, N. M., Cao, K., Yuan, Q., Bin Mohd Hashim, M. H., Rehman, H., Hussain, S., ... & Khan, S. "Application of machine learning and multivariate statistics to predict uniaxial compressive strength and static Young's modulus using physical properties under different thermal conditions". Sustainability, 14(16), 9901,2022.
- [7] Acar, M. C., & Kaya, B. "Models to estimate the elastic modulus of weak rocks based on least square support vector machine". Arabian Journal of Geosciences, 13(14), 590, 2020.
- [8] Madhubabu, N., Singh, P. K., Kainthola, A., Mahanta, B., Tripathy, A., & Singh, T. N. "Prediction of compressive strength and elastic modulus of carbonate rocks". Measurement, 88, 202-213, 2016.

- 93
- [9] Ghasemi, E., Kalhori, H., Bagherpour, R., & Yagiz, S. "Model tree approach for predicting uniaxial compressive strength and Young's modulus of carbonate rocks". Bulletin of Engineering Geology and the Environment, 77, 331-343., 2018.
- [10] E. Yasar, Y. Erdogan, "Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks". Int. J. Rock Mech. Min. Sci. 41 871, 2004.
- [11] Armaghani, D.J., Tonnizam Mohamad, E., Momeni, E., Monjezi, M., Narayanasamy, M.S., 2016. "Prediction of the strength and elasticity modulus of granite through an expert artificial neural network". Arabian Journal of Geosciences 9 (48), 1e16
- [12] Hadi, F., & Nygaard, R. Estimating unconfined compressive strength and Young's modulus of carbonate rocks from petrophysical properties. Petroleum Science and Technology, 41(13), 1367-1389,2023.
- [13] Shahani, N. M., Zheng, X., Liu, C., Hassan, F. U., & Li, P. "Developing an XGBoost regression model for predicting young's modulus of intact sedimentary rocks for the stability of surface and subsurface structures". Frontiers in Earth Science, 9, 761990, 2021.
- [14] Waqas, U., & Ahmed, M. F. "Prediction modeling for the estimation of dynamic elastic Young's modulus of thermally treated sedimentary rocks using linear-nonlinear regression analysis, regularization, and ANFIS". Rock Mechanics and Rock Engineering, 53, 5411-5428, 2020.
- [15] Roy, D. G., & Singh, T. N. "Predicting deformational properties of Indian coal: Soft computing and regression analysis approach". Measurement, 149, 106975, 2020.
- [16] Nasiri, H., Homafar, A., & Chelgani, S. C. "Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using an explainable artificial intelligence". Results in Geophysical Sciences, 8, 100034, 2021.
- [17] Mahmoud, A. A., Elkatatny, S., & Al Shehri, D. "Application of machine learning in evaluation of the static young's modulus for sandstone formations". Sustainability, 12(5), 1880, 2020.
- [18] Kahraman, S. A. İ. R., Altun, H., Tezekici, B. S., & Fener, M. "Sawability prediction of carbonate rocks from shear strength parameters using artificial neural networks". International journal of rock mechanics and mining sciences, 43(1), 157-164, 2006.
- [19] Kumar, C. V., Vardhan, H., & Murthy, C. S. "Artificial neural network for prediction of rock properties using acoustic frequencies recorded during rock drilling operations". Modeling Earth Systems and Environment, 8(1), 141-161, 2022.
- [20] Ebrahimi, E., Monjezi, M., Khalesi, M. R., & Armaghani, D. J. "Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm". Bulletin of Engineering Geology and the Environment, 75, 27-36, 2016.
- [21] Lu, S., Koopialipoor, M., Asteris, P. G., Bahri, M., & Armaghani, D. J. "A novel feature selection approach based on tree models for evaluating the punching shear capacity of steel fiber-reinforced concrete flat slabs". Materials, 13(17), 3902., 2020.
- [22] Erten, M.Y., İnanç, N.. "Machine Learning Based Short Term Load Estimation in Commercial Buildings". ISVOS. 5:171–181, 2021.