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Abstract: Measuring the software complexity is an important task in the management of software projects. In the recent 

years, many researchers have paid much attention to this challenging task due to the commercial importance of software 

projects. In the literature, there are some software metrics and estimation models to measure the complexity of software. 

However, we still need to introduce novel models of software metrics to obtain more accurate results regarding software 

complexity.  In this paper, we will show that neural networks can be used as an  alternative  method for estimation of 

software complexity metrics. We use a neural network of three layers with a single hidden layer and train this network 

by using distinct training algorithms to determine the accuracy of software complexity. We compare our results of 

software complexity obtained by using neural networks with those calculated by Halstead model.  This comparison shows 

that the difference between our estimated results obtained by Bayesian Regularization Algorithm with 10 hidden neurons 

and Halstead calculated results of software complexity is less than 2%, implying the effectiveness of our proposed method 

of neural networks in estimating software complexity.  
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1. Introduction 
 

Software complexity analysis is a key issue essential 

to improve the code quality, reduce the maintenance 

cost, increase the robustness and meet the architecture 

standards. Many studies for software complexity metrics 

have been published in the literature [1-10]. Halstead 

software complexity measurement is one of the well-

known and used approaches for the subject matter [11]. 

Halstead metrics have been developed to measure a 

program module's complexity directly from the source 

code, with the emphasis on the computational 

complexity. The measures have been developed for 

determining a quantitative measure of complexity 

directly from the operators and operands in the module. 

However, this approach is limited due to the 

interrelationships among all the parameters to be 

completely understood. Halstead complexity 

measurement may work  appropriately for simple 

metrics, but when the studied models become more 

sophisticated, deriving metrics with equations becomes 

more difficult. On the other hand, neural networks 

approach has an ability to model a function without the 

need to have a knowledge of that function. The only 

need is to determine the endpoints (inputs and output. 

Unlike the traditional approach, a neural network 

automatically creates relationships among metric terms. 

In addition, neural network is a black box that needs to 

be well-defined for the subject matter. For instance, in 

[12], Halstead experiment results oscillated over the 

actual-calculated line indicate that the neural network was 

attempting to model the desired values. Thus, a precise novel 

model is needed to obtain more accurate results. 

The objective of this paper is to evaluate the capability of 

neural networks in predicting software complexity and 

compare its prediction performance against well-known 

Halstead software complexity metrics in the context of 

randomly generated dataset. The evaluation is made by 

specifying the architecture of the network model to get the 

best results. Hence, we have compared the prediction 

performances of three distinct learning algorithms for two 

different neuron numbers of hidden layer. For this purpose, 

the volume (V), effort (E) and Halstead program length (H) 

metrics are calculated for 100 sets of operator and operand 

numbers of software that are randomly generated. Then, a 

feed-forward neural network model is designed which 

consists of three layers of neurons that are  input, hidden, and 

output. The input layer consists of four nodes, and the output 

layer consists of three nodes. The number of hidden neurons 

is first chosen to be five and then to be ten for three diffeerent 

training algorithms (Levenberg-Marquardt (LM) Algorithm, 

Bayesian Regularization (BR) Algorithm, Scaled Conjugate 

Gradient (SCG) Algorithm) [13-19] with the purpose of 

obtaining the optimum result by selecting the most 

appropriate learning algorithm to get the best accuracy. The 

results of neural-network based model and Halstead model 

are compared to show the validity of the proposed model. 

This comparison shows that the difference between our 

estimated results obtained by Bayesian Regularization 

Algorithm with 10 hidden neurons and Halstead calculated 
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results of software complexity is less than 2%. The 

results reveal the effectiveness of neural networks in 

estimating software complexity. 

 

2. Materials and Method 
 

2.1 Halstead Complexity Measures 
 

The Halstead measures are based on four scalar 

numbers derived directly from a program's source code: 

 

n1  =  the number of distinct operators  

n2  =  the number of distinct operands  

N1  =  the total number of operators  

N2  =  the total number of operands  

 

Halstead  complexity measures are derived from 

these numbers. Table 1. shows these Halstead metrics 

that are used in the study: 
 

Table 1. Halstead Complexity Metrics 

 

Measure  Symbol  Formula  

Program length  N  N= N1 + N2  

Program 

vocabulary  

n  n= n1 + n2  

Volume  V  V= N *log2 (n)  

Effort  E  E= V/2*n2  

Halstead Program 

Length 

H H = n1*log2(n1) + 

n2*log2(n2) 

 

 

2.2 Neural Networks    
 

Neural Networks (NNs) is an eficient tool used in 

estimating processes. The NN structure and the training 

algorithm used for the application are important 

parameters for obtaining the optimum results. Hence, 

specifying these parameters for the subject of interest is 

a significant step in designing NN model.  

In this paper, we used three distinct training 

algorithms (Levenberg-Marquardt(LM) Algorithm, 

Bayesian Regularization(BR) Algorithm, Scaled 

Conjugate Gradient(SCG) Algorithm) to train the 

network. We compared the estimating capabilities of 

these algorithms to get the best result. The number of 

hidden neurons is chosen to be 5  and 10 for each 

algorithm to evaluate the optimum result of the network. 

Input layer consists of 4 nodes, and an output layer 

consists of 3 nodes. Input values are n1, N1, n2 and N2 

for each node. Output values are volume(V), effort(E) 

and Halstead program length(H) for each node. We 

stated the structure of the network  and the appropriate 

training algorithm for the handled subject acording to 

obtained results.   The architecture of the proposed NN 

model is shown in Fig. 1. 

The NN model used in the study consists of three 

layers of neurons as input, hidden and output as depicted 

in Figure 1. The input layer of this system consists of the 

number images which are represented by matrices. In 

the training process of this type of network, the 

connection weights are updated to minimize the error 

between the correct and estimated values of the system 

variables [20]. 
 

 
 

Figure 1. NN structure used in this study 

 

    A hidden or output unit in the NN operates as follows : 

 

          )( 
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where 

i= 1,2,3,4 and j=1,2,3. 

j
y is transformed output by the jth hidden or output node, 

)(f  is an activation function, 

jiw is a synaptic weight from the ith node to jth node, 

ix  is an input node, 

jb is a bias at jth node. 

 

2.3 Dataset    
 

Dataset used in this study is generated randomly according 

to the following assumptions: 

 

2 ≤ 𝑛1 ≤ 50 

2 ∗ 𝑛1 ≤ 𝑁1 ≤ 5 ∗ 𝑛1 

2 ≤ 𝑛2 ≤ 50 

                           2,5 ∗ 𝑛2 ≤ 𝑁2 ≤ 6 ∗ 𝑛2                       (2) 

 

Table 2 shows the input values as n1, n2, N1, N2 and the 

calculated results as Halstead metrics V, E, H for 100 

randomly generated sets.  

 

3. Results 
 

System training: In the designed NN, there are 4 inputs 

and 3 outputs for each 100 sets.  It should be noted that, the 

proposed model can be applied to set of any length. 

To obtain the best result we evaluated 3 distinct training 

algorithms (LM training alg., BR training alg., SCG training 

alg.) and compared the predicting capabilities of these 

algorithms  for two different hidden neuron numbers. The 

number of neurons in the hidden layer is taken account as 5 

and 10 for each algorithm to analyse the results. The input 
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values are used as 70% for training, 15% for validation  

and 15% for test. Table 3 shows the %-average 

differences for the results of our models and the 

Halstead model.   
 

Table 3. % Average Differences 
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V 1,66 0,50 0,39 0,09 3,51 6,41 

E 25,19 4,16 3,45 1,08 42,61 253,18 

H 5,03 1,33 1,09 0,36 10,36 254,53 

 

LM: Levenberg-Marquardt algorithm 

BR: Bayesian Regularization algorithm 

SCG: Scaled Conjugate Gradient algorithm 

 

Among these models, the best solution is obtained by 

the network with 10 hidden neurons under BR training 

algorithm for each output value and the worst solution is 

obtained by the network with 10 hidden neurons under 

SCG training algorithm for each output value.  
 

 

 

 

 
 

Figure 2. The regression coefficients of NN model with 10 hidden 

nodes under BR Algorithm 

 

Figure 2. shows the regression graphics for training, 

validation, test and all for B-R algorithm. The regression 

values are obtained very close to 1 which is a desired case 

for modeling by NNs. Figures 3, 4 and 5 show the obtained 

results as bar chart histogram for V, E and H metrics with B-

R algorithm and 10 neuron NN structure. 

 

 

 

 

 

 
Figure 3. The results for Volume Metric  
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Figure 4. The results for Effort Metric 

 

 

 

 
 
 

Figure 5. The results for Halstead Program Length Metric
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Table 2. % Average Differences 

Inputs   Calculated Outputs 

No n1 N1 n2 N2 No n1 N1 n2 N2   No V E H No V E H 

1 26 59 7 28 51 37 92 19 96   1 438,86 31,35 141,86 51 1091,78 28,73 273,46 

2 45 164 18 93 52 15 68 7 27   2 1536,16 42,67 322,19 52 423,65 30,26 78,25 

3 29 75 22 97 53 21 84 5 22   3 975,66 22,17 238,99 53 498,25 49,82 103,85 

4 36 116 11 36 54 18 69 5 29   4 844,30 38,38 224,17 54 443,31 44,33 86,67 

5 35 141 4 22 55 4 17 3 16   5 861,52 107,69 187,52 55 92,64 15,44 12,75 

6 38 141 8 37 56 28 66 5 17   6 983,19 61,45 223,42 56 418,68 41,87 146,22 

7 19 39 3 14 57 36 140 29 167   7 236,35 39,39 85,47 57 1848,87 31,88 327,00 

8 5 19 2 6 58 30 101 15 67   8 70,18 17,55 13,61 58 922,63 30,75 205,81 

9 47 174 37 155 59 27 62 24 129   9 2103,07 28,42 453,82 59 1083,43 22,57 238,42 

10 24 55 5 22 60 41 189 27 76   10 374,06 37,41 121,65 60 1613,18 29,87 348,04 

11 5 20 4 15 61 12 49 5 17   11 110,95 13,87 19,61 61 269,77 26,98 54,63 

12 26 90 26 124 62 8 23 4 17   12 1219,89 23,46 244,42 62 143,40 17,92 32,00 

13 19 75 9 41 63 28 140 20 55   13 557,65 30,98 109,24 63 1089,07 27,23 221,04 

14 18 68 16 67 64 39 102 26 94   14 686,81 21,46 139,06 64 1180,38 22,70 328,34 

15 14 30 3 17 65 28 115 4 10   15 192,11 32,02 58,06 65 625,00 78,13 142,61 

16 7 35 4 11 66 18 62 8 36   16 159,13 19,89 27,65 66 460,64 28,79 99,06 

17 30 132 7 41 67 14 51 10 38   17 901,24 64,37 166,86 67 408,06 20,40 86,52 

18 20 87 3 10 68 25 107 19 78   18 438,79 73,13 91,19 68 1009,99 26,58 196,81 

19 13 61 4 11 69 10 31 9 46   19 294,30 36,79 56,11 69 327,09 18,17 61,75 

20 47 144 36 122 70 6 30 6 27   20 1695,76 23,55 447,18 70 204,34 17,03 31,02 

21 3 9 2 9 71 37 83 20 85   21 41,79 10,45 6,75 71 979,93 24,50 279,19 

22 43 123 22 79 72 5 23 3 12   22 1216,52 27,65 331,44 72 105,00 17,50 16,36 

23 38 89 27 102 73 24 84 10 55   23 1150,27 21,30 327,80 73 707,16 35,36 143,26 

24 5 15 2 11 74 47 155 6 18   24 72,99 18,25 13,61 74 990,93 82,58 276,58 

25 32 85 18 70 75 46 121 22 101   25 874,80 24,30 235,06 75 1351,42 30,71 352,19 

26 27 87 3 18 76 25 98 6 15   26 515,22 85,87 133,14 76 559,82 46,65 131,61 

27 42 185 23 80 77 26 104 16 73   27 1595,93 34,69 330,52 77 954,44 29,83 186,21 

28 34 127 14 37 78 41 101 29 143   28 915,93 32,71 226,28 78 1495,55 25,79 360,54 

29 24 101 16 61 79 11 48 4 10   29 862,15 26,94 174,04 79 226,60 28,32 46,05 

30 14 70 9 41 80 7 14 4 10   30 502,12 27,90 81,83 80 83,03 10,38 27,65 

31 14 49 3 11 81 39 128 39 231   31 245,25 40,87 58,06 81 2256,46 28,93 412,26 

32 7 28 7 24 82 36 145 8 48   32 197,98 14,14 39,30 82 1053,67 65,85 210,12 

33 19 43 11 31 83 25 62 15 39   33 363,11 16,50 118,76 83 537,51 17,92 174,70 

34 10 39 3 14 84 7 32 5 22   34 196,12 32,69 37,97 84 193,59 19,36 31,26 

35 14 42 13 57 85 41 154 39 131   35 470,73 18,11 101,41 85 1801,75 23,10 425,79 

36 34 122 26 131 86 41 123 37 219   36 1494,44 28,74 295,19 86 2149,61 29,05 412,41 

37 30 112 15 69 87 9 31 8 29   37 994,03 33,13 205,81 87 245,25 15,33 52,53 

38 23 72 8 38 88 21 104 7 20   38 544,96 34,06 128,04 88 596,11 42,58 111,89 

39 46 104 42 124 89 15 64 3 15   39 1472,75 17,53 480,56 89 329,42 54,90 63,36 
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40 15 33 11 38 90 26 55 17 97   40 333,73 15,17 96,66 90 824,79 24,26 191,70 

41 27 70 8 39 91 7 17 4 13   41 559,09 34,94 152,38 91 103,78 12,97 27,65 

42 33 112 25 132 92 21 61 20 111   42 1429,35 28,59 282,56 92 921,50 23,04 178,68 

43 41 164 11 44 93 14 31 13 47   43 1185,69 53,90 257,71 93 370,88 14,26 101,41 

44 46 195 4 24 94 3 15 3 9   44 1236,00 154,50 262,08 94 62,04 10,34 9,51 

45 43 169 16 42 95 23 87 9 50   45 1241,24 38,79 297,33 95 685,00 38,06 132,57 

46 28 56 14 71 96 37 125 21 74   46 684,82 24,46 187,91 96 1165,74 27,76 284,99 

47 22 89 19 57 97 11 30 5 14   47 782,20 20,58 178,82 97 176,00 17,60 49,66 

48 42 139 35 181 98 20 60 6 26   48 2005,37 28,65 406,00 98 404,24 33,69 101,95 

49 39 108 28 77 99 25 83 22 91   49 1122,23 20,04 340,74 99 966,50 21,97 214,20 

50 48 130 22 67 100 38 150 26 111   50 1207,47 27,44 366,19 100 1566,00 30,12 321,63 

 

4. Conclusions 
 

In this study, we have shown that neural networks 

can be used as an alternative method for estimation of 

software complexity metrics. We have used a neural 

network of three layers with a single hidden layer and 

trained this network by using distinct training algorithms 

to determine the accuracy of software complexity. We 

have compared our results of software complexity 

obtained by using neural networks with those calculated 

by Halstead model.  This comparison has shown that the 

difference between our estimated results obtained by 

Bayesian Regularization Algorithm with 10 hidden 

neurons and Halstead calculated results of software 

complexity is less than 2%, implying the effectiveness 

of our proposed method of neural networks in estimating 

software complexity. 
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