
Sibel SENAN and Selcuk SEVGEN/ IU-JEEE Vol. 17(2), (2017), 3503-3508

Received on: 18.04.2017

Accepted on: 31.07.2017

MEASURING SOFTWARE COMPLEXITY USING NEURAL NETWORKS

Sibel SENAN, Selcuk SEVGEN

Department of Computer Engineering, Istanbul University, Istanbul, Turkey

{ssenan, sevgens}@istanbul.edu.tr

Abstract: Measuring the software complexity is an important task in the management of software projects. In the recent

years, many researchers have paid much attention to this challenging task due to the commercial importance of software

projects. In the literature, there are some software metrics and estimation models to measure the complexity of software.

However, we still need to introduce novel models of software metrics to obtain more accurate results regarding software

complexity. In this paper, we will show that neural networks can be used as an alternative method for estimation of

software complexity metrics. We use a neural network of three layers with a single hidden layer and train this network

by using distinct training algorithms to determine the accuracy of software complexity. We compare our results of

software complexity obtained by using neural networks with those calculated by Halstead model. This comparison shows

that the difference between our estimated results obtained by Bayesian Regularization Algorithm with 10 hidden neurons

and Halstead calculated results of software complexity is less than 2%, implying the effectiveness of our proposed method

of neural networks in estimating software complexity.

Keywords: Software Complexity, Neural Networks, Halstead Metrics.

1. Introduction

Software complexity analysis is a key issue essential

to improve the code quality, reduce the maintenance

cost, increase the robustness and meet the architecture

standards. Many studies for software complexity metrics

have been published in the literature [1-10]. Halstead

software complexity measurement is one of the well-

known and used approaches for the subject matter [11].

Halstead metrics have been developed to measure a

program module's complexity directly from the source

code, with the emphasis on the computational

complexity. The measures have been developed for

determining a quantitative measure of complexity

directly from the operators and operands in the module.

However, this approach is limited due to the

interrelationships among all the parameters to be

completely understood. Halstead complexity

measurement may work appropriately for simple

metrics, but when the studied models become more

sophisticated, deriving metrics with equations becomes

more difficult. On the other hand, neural networks

approach has an ability to model a function without the

need to have a knowledge of that function. The only

need is to determine the endpoints (inputs and output.

Unlike the traditional approach, a neural network

automatically creates relationships among metric terms.

In addition, neural network is a black box that needs to

be well-defined for the subject matter. For instance, in

[12], Halstead experiment results oscillated over the

actual-calculated line indicate that the neural network was

attempting to model the desired values. Thus, a precise novel

model is needed to obtain more accurate results.

The objective of this paper is to evaluate the capability of

neural networks in predicting software complexity and

compare its prediction performance against well-known

Halstead software complexity metrics in the context of

randomly generated dataset. The evaluation is made by

specifying the architecture of the network model to get the

best results. Hence, we have compared the prediction

performances of three distinct learning algorithms for two

different neuron numbers of hidden layer. For this purpose,

the volume (V), effort (E) and Halstead program length (H)

metrics are calculated for 100 sets of operator and operand

numbers of software that are randomly generated. Then, a

feed-forward neural network model is designed which

consists of three layers of neurons that are input, hidden, and

output. The input layer consists of four nodes, and the output

layer consists of three nodes. The number of hidden neurons

is first chosen to be five and then to be ten for three diffeerent

training algorithms (Levenberg-Marquardt (LM) Algorithm,

Bayesian Regularization (BR) Algorithm, Scaled Conjugate

Gradient (SCG) Algorithm) [13-19] with the purpose of

obtaining the optimum result by selecting the most

appropriate learning algorithm to get the best accuracy. The

results of neural-network based model and Halstead model

are compared to show the validity of the proposed model.

This comparison shows that the difference between our

estimated results obtained by Bayesian Regularization

Algorithm with 10 hidden neurons and Halstead calculated

Sibel SENAN and Selcuk SEVGEN/ IU-JEEE Vol. 17(2), (2017), 3503-3508

3504

results of software complexity is less than 2%. The

results reveal the effectiveness of neural networks in

estimating software complexity.

2. Materials and Method

2.1 Halstead Complexity Measures

The Halstead measures are based on four scalar

numbers derived directly from a program's source code:

n1 = the number of distinct operators

n2 = the number of distinct operands

N1 = the total number of operators

N2 = the total number of operands

Halstead complexity measures are derived from

these numbers. Table 1. shows these Halstead metrics

that are used in the study:

Table 1. Halstead Complexity Metrics

Measure Symbol Formula

Program length N N= N1 + N2

Program

vocabulary

n n= n1 + n2

Volume V V= N *log2 (n)

Effort E E= V/2*n2

Halstead Program

Length

H H = n1*log2(n1) +

n2*log2(n2)

2.2 Neural Networks

Neural Networks (NNs) is an eficient tool used in

estimating processes. The NN structure and the training

algorithm used for the application are important

parameters for obtaining the optimum results. Hence,

specifying these parameters for the subject of interest is

a significant step in designing NN model.

In this paper, we used three distinct training

algorithms (Levenberg-Marquardt(LM) Algorithm,

Bayesian Regularization(BR) Algorithm, Scaled

Conjugate Gradient(SCG) Algorithm) to train the

network. We compared the estimating capabilities of

these algorithms to get the best result. The number of

hidden neurons is chosen to be 5 and 10 for each

algorithm to evaluate the optimum result of the network.

Input layer consists of 4 nodes, and an output layer

consists of 3 nodes. Input values are n1, N1, n2 and N2

for each node. Output values are volume(V), effort(E)

and Halstead program length(H) for each node. We

stated the structure of the network and the appropriate

training algorithm for the handled subject acording to

obtained results. The architecture of the proposed NN

model is shown in Fig. 1.

The NN model used in the study consists of three

layers of neurons as input, hidden and output as depicted

in Figure 1. The input layer of this system consists of the

number images which are represented by matrices. In

the training process of this type of network, the

connection weights are updated to minimize the error

between the correct and estimated values of the system

variables [20].

Figure 1. NN structure used in this study

 A hidden or output unit in the NN operates as follows :

)( 
i

j j
b

i
x

ji
wfy (1)

where

i= 1,2,3,4 and j=1,2,3.

j
y is transformed output by the jth hidden or output node,

)(f is an activation function,

jiw is a synaptic weight from the ith node to jth node,

ix is an input node,

jb is a bias at jth node.

2.3 Dataset

Dataset used in this study is generated randomly according

to the following assumptions:

2 ≤ 𝑛1 ≤ 50

2 ∗ 𝑛1 ≤ 𝑁1 ≤ 5 ∗ 𝑛1

2 ≤ 𝑛2 ≤ 50

 2,5 ∗ 𝑛2 ≤ 𝑁2 ≤ 6 ∗ 𝑛2 (2)

Table 2 shows the input values as n1, n2, N1, N2 and the

calculated results as Halstead metrics V, E, H for 100

randomly generated sets.

3. Results

System training: In the designed NN, there are 4 inputs

and 3 outputs for each 100 sets. It should be noted that, the

proposed model can be applied to set of any length.

To obtain the best result we evaluated 3 distinct training

algorithms (LM training alg., BR training alg., SCG training

alg.) and compared the predicting capabilities of these

algorithms for two different hidden neuron numbers. The

number of neurons in the hidden layer is taken account as 5

and 10 for each algorithm to analyse the results. The input

Sibel SENAN and Selcuk SEVGEN/ IU-JEEE Vol. 17(2), (2017), 3503-3508

3505

values are used as 70% for training, 15% for validation

and 15% for test. Table 3 shows the %-average

differences for the results of our models and the

Halstead model.

Table 3. % Average Differences

R
esu

lt

M
etrics

L
M

5
n

eu
ro

n
s

L
M

1
0

n
eu

ro
n

B
R

5
n

eu
ro

n
s

B
R

1
0

n
eu

ro
n

s

S
C

G

5
n

eu
ro

n
s

S
C

G

1
0

n
eu

ro
n

s

V 1,66 0,50 0,39 0,09 3,51 6,41

E 25,19 4,16 3,45 1,08 42,61 253,18

H 5,03 1,33 1,09 0,36 10,36 254,53

LM: Levenberg-Marquardt algorithm

BR: Bayesian Regularization algorithm

SCG: Scaled Conjugate Gradient algorithm

Among these models, the best solution is obtained by

the network with 10 hidden neurons under BR training

algorithm for each output value and the worst solution is

obtained by the network with 10 hidden neurons under

SCG training algorithm for each output value.

Figure 2. The regression coefficients of NN model with 10 hidden

nodes under BR Algorithm

Figure 2. shows the regression graphics for training,

validation, test and all for B-R algorithm. The regression

values are obtained very close to 1 which is a desired case

for modeling by NNs. Figures 3, 4 and 5 show the obtained

results as bar chart histogram for V, E and H metrics with B-

R algorithm and 10 neuron NN structure.

Figure 3. The results for Volume Metric

0

500

1000

1500

2000

2500

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

V
o

lu
m

e

Set Number

Halstead Results

NN Results

Sibel SENAN and Selcuk SEVGEN/ IU-JEEE Vol. 17(2), (2017), 3503-3508

3506

Figure 4. The results for Effort Metric

Figure 5. The results for Halstead Program Length Metric

0

20

40

60

80

100

120

140

160

180

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Ef
fo

rt

Set Number

Halstead Results

NN Results

0

100

200

300

400

500

600

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

H
al

st
ea

d
 P

ro
gr

am
 L

en
gt

h

Set Number

Halstead Results

NN Results

Sibel SENAN and Selcuk SEVGEN/ IU-JEEE Vol. 17(2), (2017), 3503-3508

3507

Table 2. % Average Differences

Inputs Calculated Outputs

No n1 N1 n2 N2 No n1 N1 n2 N2 No V E H No V E H

1 26 59 7 28 51 37 92 19 96 1 438,86 31,35 141,86 51 1091,78 28,73 273,46

2 45 164 18 93 52 15 68 7 27 2 1536,16 42,67 322,19 52 423,65 30,26 78,25

3 29 75 22 97 53 21 84 5 22 3 975,66 22,17 238,99 53 498,25 49,82 103,85

4 36 116 11 36 54 18 69 5 29 4 844,30 38,38 224,17 54 443,31 44,33 86,67

5 35 141 4 22 55 4 17 3 16 5 861,52 107,69 187,52 55 92,64 15,44 12,75

6 38 141 8 37 56 28 66 5 17 6 983,19 61,45 223,42 56 418,68 41,87 146,22

7 19 39 3 14 57 36 140 29 167 7 236,35 39,39 85,47 57 1848,87 31,88 327,00

8 5 19 2 6 58 30 101 15 67 8 70,18 17,55 13,61 58 922,63 30,75 205,81

9 47 174 37 155 59 27 62 24 129 9 2103,07 28,42 453,82 59 1083,43 22,57 238,42

10 24 55 5 22 60 41 189 27 76 10 374,06 37,41 121,65 60 1613,18 29,87 348,04

11 5 20 4 15 61 12 49 5 17 11 110,95 13,87 19,61 61 269,77 26,98 54,63

12 26 90 26 124 62 8 23 4 17 12 1219,89 23,46 244,42 62 143,40 17,92 32,00

13 19 75 9 41 63 28 140 20 55 13 557,65 30,98 109,24 63 1089,07 27,23 221,04

14 18 68 16 67 64 39 102 26 94 14 686,81 21,46 139,06 64 1180,38 22,70 328,34

15 14 30 3 17 65 28 115 4 10 15 192,11 32,02 58,06 65 625,00 78,13 142,61

16 7 35 4 11 66 18 62 8 36 16 159,13 19,89 27,65 66 460,64 28,79 99,06

17 30 132 7 41 67 14 51 10 38 17 901,24 64,37 166,86 67 408,06 20,40 86,52

18 20 87 3 10 68 25 107 19 78 18 438,79 73,13 91,19 68 1009,99 26,58 196,81

19 13 61 4 11 69 10 31 9 46 19 294,30 36,79 56,11 69 327,09 18,17 61,75

20 47 144 36 122 70 6 30 6 27 20 1695,76 23,55 447,18 70 204,34 17,03 31,02

21 3 9 2 9 71 37 83 20 85 21 41,79 10,45 6,75 71 979,93 24,50 279,19

22 43 123 22 79 72 5 23 3 12 22 1216,52 27,65 331,44 72 105,00 17,50 16,36

23 38 89 27 102 73 24 84 10 55 23 1150,27 21,30 327,80 73 707,16 35,36 143,26

24 5 15 2 11 74 47 155 6 18 24 72,99 18,25 13,61 74 990,93 82,58 276,58

25 32 85 18 70 75 46 121 22 101 25 874,80 24,30 235,06 75 1351,42 30,71 352,19

26 27 87 3 18 76 25 98 6 15 26 515,22 85,87 133,14 76 559,82 46,65 131,61

27 42 185 23 80 77 26 104 16 73 27 1595,93 34,69 330,52 77 954,44 29,83 186,21

28 34 127 14 37 78 41 101 29 143 28 915,93 32,71 226,28 78 1495,55 25,79 360,54

29 24 101 16 61 79 11 48 4 10 29 862,15 26,94 174,04 79 226,60 28,32 46,05

30 14 70 9 41 80 7 14 4 10 30 502,12 27,90 81,83 80 83,03 10,38 27,65

31 14 49 3 11 81 39 128 39 231 31 245,25 40,87 58,06 81 2256,46 28,93 412,26

32 7 28 7 24 82 36 145 8 48 32 197,98 14,14 39,30 82 1053,67 65,85 210,12

33 19 43 11 31 83 25 62 15 39 33 363,11 16,50 118,76 83 537,51 17,92 174,70

34 10 39 3 14 84 7 32 5 22 34 196,12 32,69 37,97 84 193,59 19,36 31,26

35 14 42 13 57 85 41 154 39 131 35 470,73 18,11 101,41 85 1801,75 23,10 425,79

36 34 122 26 131 86 41 123 37 219 36 1494,44 28,74 295,19 86 2149,61 29,05 412,41

37 30 112 15 69 87 9 31 8 29 37 994,03 33,13 205,81 87 245,25 15,33 52,53

38 23 72 8 38 88 21 104 7 20 38 544,96 34,06 128,04 88 596,11 42,58 111,89

39 46 104 42 124 89 15 64 3 15 39 1472,75 17,53 480,56 89 329,42 54,90 63,36

Sibel SENAN and Selcuk SEVGEN/ IU-JEEE Vol. 17(2), (2017), 3503-3508

3508

40 15 33 11 38 90 26 55 17 97 40 333,73 15,17 96,66 90 824,79 24,26 191,70

41 27 70 8 39 91 7 17 4 13 41 559,09 34,94 152,38 91 103,78 12,97 27,65

42 33 112 25 132 92 21 61 20 111 42 1429,35 28,59 282,56 92 921,50 23,04 178,68

43 41 164 11 44 93 14 31 13 47 43 1185,69 53,90 257,71 93 370,88 14,26 101,41

44 46 195 4 24 94 3 15 3 9 44 1236,00 154,50 262,08 94 62,04 10,34 9,51

45 43 169 16 42 95 23 87 9 50 45 1241,24 38,79 297,33 95 685,00 38,06 132,57

46 28 56 14 71 96 37 125 21 74 46 684,82 24,46 187,91 96 1165,74 27,76 284,99

47 22 89 19 57 97 11 30 5 14 47 782,20 20,58 178,82 97 176,00 17,60 49,66

48 42 139 35 181 98 20 60 6 26 48 2005,37 28,65 406,00 98 404,24 33,69 101,95

49 39 108 28 77 99 25 83 22 91 49 1122,23 20,04 340,74 99 966,50 21,97 214,20

50 48 130 22 67 100 38 150 26 111 50 1207,47 27,44 366,19 100 1566,00 30,12 321,63

4. Conclusions

In this study, we have shown that neural networks

can be used as an alternative method for estimation of

software complexity metrics. We have used a neural

network of three layers with a single hidden layer and

trained this network by using distinct training algorithms

to determine the accuracy of software complexity. We

have compared our results of software complexity

obtained by using neural networks with those calculated

by Halstead model. This comparison has shown that the

difference between our estimated results obtained by

Bayesian Regularization Algorithm with 10 hidden

neurons and Halstead calculated results of software

complexity is less than 2%, implying the effectiveness

of our proposed method of neural networks in estimating

software complexity.

5. References

[1] H. Zuse, “Software Complexity: Measures and Methods”,

Walter de Gruyter, 1991.

[2] M. M. Lehmam and L. A. Belady, “Program Evolution -

Processes of Software Change”, Academic Press Professional,

1985.

[3] H. F. Li and W. K. Cheung, “An Empirical Study of

Software Metrics,” IEEE Transactions on Software

Engineering, 13, 6, pp. 697-708, 1987.

[4] P. Oman and C. Cook, “The Book Paradigm for Improved

Software Maintenance”, IEEE Software, 7, 1, pp. 39-45, 1990.

[5] H. Zuse, “A Framework of Software Measurement”, De

Gruyter Publisher, 1998.

[6] C. Jones, "Software Metrics: Good, Bad, and Missing."

Computer, 27, 9, pp. 98-100, 1994.

[7] J. Marciniak, “Encyclopedia of Software Engineering”,

John Wiley & Sons, 1994.

[8] P. Oman, “HP-MAS: A Tool for Software Maintainability,

Software Engineering”, (#91-08-TR), Moscow, ID: Test

Laboratory, University of Idaho, 1991.

[9] P. Oman and J. Hagemeister, "Constructing and Testing of

Polynomials Predicting Software Maintainability." Journal of

Systems and Software, 24, 3, pp. 251-266, 1994.

[10] P: Szulewski, “Automating Software Design Metrics”,

(RADC-TR-84-27), Rome, NY: Rome Air Development

Center, 1984.

[11] M. H. Halstead, “Elements of Software Science,

Operating, and Programming Systems Series”, 1977.

[12] G. Boetticher, K. Srinivas and D. Eichmann, “A Neural

Net-Based Approach to Software Metrics”, Proceedings of the

Fifth International Conference on Software Engineering and

Knowledge Engineering, pp. 271-274, 1993.

[13] K. Levenberg, “A method for the solution of certain

problems in least squares”, Quarterly of Applied Mathematics,

5, pp. 164-168, 1944.

[14] D. Marquardt, “An algorithm for least-squares estimation

of nonlinear parameters”, SIAM Journal on Applied

Mathematics, 11, pp. 431-441, 1963.

[15] H. Yuand, B.M. Wilamowski, “Intelligent Systems,

Ch.12, Levenberg-Marquard Training”, CRC Press, 2011.

[16] M. T. Hagan and M. Menhaj, "Training feed-forward

networks with the Marquardt algorithm," IEEE Transactions

on Neural Networks, 5, 6, pp. 989–993, 1994.

[17] M. F. Møller, “A scaled conjugate gradient algorithm for

fast supervised learning”, Neural Networks, 6, 4, pp. 525-533,

1993.

[18] B. M. Wilamowski, "Neural network architectures and

learning algorithms," Industrial Electronics Magazine, IEEE,

3, 4, pp. 56-63, 2009.

[19] M. Avriel, “Nonlinear Programming: Analysis and

Methods”, Dover Publishing, 2003.

[20] S. Haykin, “Neural Networks and Learning Machines”

(3rd ed.). Prentice Hall.

Sibel Senan is currently an

Assistant Professor at the Dept. of

Computer Engineering in Istanbul

University. She received her M.Sc.

and Ph.D. degrees at the same

department in 2005 and in 2010,

respectively. Her main interests are

Neural Networks, Nonlinear

Systems

Selcuk Sevgen is currently an

Assistant Professor at the Dept. of

Computer Engineering in Istanbul

University. He received his M.Sc.

and Ph.D. degrees at the same

department in 2003 and in 2009,

respectively. His main interests are

Neural Networks, CNNs.

