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Abstract

This article deals with the qualitative analysis of a general class of difference equations. That is, we
examine the periodicity nature and the stability character of some non-linear second-order difference
equations. Homogeneous functions are used while examining the character of the solutions of
introduced difference equations. Moreover, a new technique available in the literature is used to
examine the periodic solutions of these equations.

1. Introduction

Although it is known that the theory of difference equations emerged with the rabbit problem introduced by the famous Italian
mathematician Fibonacci in 1202 has been a field of study that has been of interest to many scientists, especially in the last 30
years (see [1, 2, 3, 4, 5, 6, 7, 8, 9]). Difference equations are an important field of study in many applied sciences, including
mathematics, physics, chemistry, statistics, sociology, psychology, and engineering. Different mathematical models are needed
to examine situations related to different living conditions, such as the climate crisis, the arms race, plant populations, animal
populations, human populations, birth and death rates, migration rates, the spread of diseases. Here, difference equations
come into play, and ecological, biological, economic, statistical, sociological and psychological mathematical models that
can be used in different fields of science are created (see [10, 11, 12, 13, 14, 15, 16, 17]). In this context, the examination of
difference equations (because it models various systems) is of great importance in that it is applicable not only in mathematics
but also in different branches.
In recent years, many studies have been done on difference equations in mathematics, sub-branches of mathematics and other
sciences (see [18, 19, 20]). Any quantitative and qualitative research, especially in the field of difference equations, is very
important. Detailed qualitative studies in this field are invaluable when considering any result obtained by examining the
global behavior, asymptotic behavior, boundedness nature and the stability character of solutions of difference equations.
However, considering difference equation theory, it should be noted that there are not many general theorems and techniques
that study difference equation classes. The structure of higher-order non-linear difference equation classes is quite complex
and challenging. For this reason, although there are many articles and books on linear difference equations, there are not many
sources on higher-order non-linear difference equations. On account of this, it is very important to examine various difference
equations that will both contribute to the literature and expand and improve the difference equation theory.
In [21], Elsayed introduced a new method for the prime period two solutions and the prime period three solutions of the
rational difference equation

ωn+1 = µ +φ
ωn

ωn−1
+ γ

ωn−1

ωn
, n = 0,1, . . .

where the parameters µ,φ ,γ and initial values ω−1,ω0 are positive real numbers. Besides, the global convergence and the
boundedness nature were investigated.
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In [22], Moaaz et al. examined the asymptotic behavior, that is, the stability, the oscillation and the periodicity character of
solutions of a general class of difference equations

zn+1 = g(zn,zn−1), n = 0,1, . . .

where the initial conditions z−1,z0 are real numbers and g is a continuous homogeneous function with degree zero.
In [23], Moaaz investigated the asymptotic behavior of solutions of the following general class of difference equations

ωn+1 = g(ωn−l ,ωn−k)

where l, k are positive integers, the initial conditions ω−µ ,ω−µ+1, . . . ,ω0 are real numbers for µ = max{l,k} and g is a
continuous homogeneous real function of degree γ . Namely, the periodic solutions, the global attractiveness and the stability
have been examined.
In [24], Stevic has shown that the claim given in Theorem 3.3 in [23] is not true. Essentially, he has improved and expanded
global attractiveness results.
In [25], Abdelrahman et al. investigated the local stability, the periodicity and the boundedness character of solutions of a new
class of the difference equations

ωn+1 = ζ ωn−l +ϕωn−k +g(ωn−l ,ωn−k), n = 0,1, . . . (1.1)

where l,k are non-negative integers, the parameters ζ ,ϕ are non-negative real numbers and the initial values ω−s,ω−s+1, ...,ω0
are positive real numbers for s = max{l,k} and g : (0,∞)2→ (0,∞) is a continuous homogeneous function with degree zero.
In [26], Abdelrahman investigated the dynamical behavior of solutions of a general class of difference equations

xm+1 = g(xm,xm−1, . . . ,xm−k), m = 0,1, . . .

where g : (0,∞)k+1→ (0,∞) is a continuously homogeneous function of degree zero and k is a positive integer. That is, the
stability, the periodicity and the oscillatory have been examined.
In [27], Moaaz et al. examined the existence and non-existence of periodic solutions of some non-linear difference equations.
Especially, they studied the existence of periodic solutions of the difference equation

ωn+1 = γωn−1F(ωn,ωn−1)

where the parameter γ is positive real number, the initial values ω−1,ω0 are positive real numbers and F is a homothetic
function, namely there exists a strictly increasing function F1 : R→ R and F2 : R2→ R are homogenous function with degree
ρ, such that F = F1(F2) and also studied the following second-order difference equation

ωn+1 = µ +η
ω

ρ

n−1

h(ωn,ωn−1)

where ρ is a positive real number, the parameters µ,η are arbitrary real numbers, the initial values ω−1, ω0 arbitrary real
numbers and h is a continuous homogeneous function with degree ρ. Finally, they obtained the periodicity results of the
closed-form difference equations

ωn+1 = ζ (ωn,ωn−1)

and

ωn+1 = ζ (ωn,ωn−2)

where ζ ∈C
(
(0,∞)2,(0,∞)

)
and the initial values ω−2,ω−1,ω0 are positive arbitrary real numbers.

In [28], Gümüş and Eğilmez investigated the global behavior of solutions, that is, the prime period two solutions, the prime
period three solutions and the stability character of a new general class of the second-order difference equation

δm+1 = ω +ζ
f (δm,δm−1)

δ
β

m−1

, m = 0,1, ...

where the parameters ω,ζ ∈ R, the initial conditions δ−1,δ0 ∈ R and f : (0,∞)2 → (0,∞) is a continuous homogeneous
function with degree β .
This paper aims to investigate the global dynamics of solutions for a new general class of the second-order difference equations

ωm+1 = σ +ζ
g(ωm,ωm−1)

ω
γ
m

, m = 0,1, . . . (1.2)
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ωm+1 = σ +ζ
ω

γ
m

g(ωm,ωm−1)
, m = 0,1, . . . (1.3)

where the parameters σ ,ζ are arbitrary real numbers, the initial conditions ω−1,ω0 are arbitrary real numbers and g : (0,∞)2→
(0,∞) is a continuous homogeneous function with degree γ. In other words, the prime period two solutions, the prime period
three solutions and the stability character are discussed in detail. Also, periodic solutions are studied using a new technique.
In addition, stability analysis of the equilibrium point is performed and new sufficient conditions for stability character are
specified.
In the following, we will give a very useful theorem to examine the stability character of the solutions of difference equations,
which we will benefit from in this paper.

Theorem 1.1. [19] (Clark Theorem) Assume that a0,a1 ∈ R and k ∈ {0,1, . . .}. Then, the difference equation

γm+1 +a0γm +a1γm−k = 0, m = 0,1, . . . .

is the asymptotic stability if

|a0|+ |a1|< 1.

2. The behavior of solutions of the difference equation ωm+1 = σ +ζ
g(ωm,ωm−1)

ω
γ
m

This section is devoted to investigating the dynamical behavior of solutions, that is, the two periodic solutions, the three
periodic solutions and the local stability of second-order rational difference equation (1.2).
Here, we can easily find the positive equilibrium point of Eq.(1.2) as

ω̄ = σ +ζ g(1,1).

Now, let’s define the function f : (0,∞)2→ (0,∞) by

f (u,v) = σ +ζ
g(u,v)

uγ
.

Hence, we get the partial derivatives of the function f

∂ f
∂u

(u,v) = ζ
ugu(u,v)− γg(u,v)

uγ+1

and

∂ f
∂v

(u,v) = ζ
gv(u,v)

uγ
.

In the next theorem, the locally asymptotic stability of Eq.(1.2) will be examined.

Theorem 2.1. The equilibrium point of Eq.(1.2) ω̄ = σ +ζ g(1,1) is locally asymptotically stable if

|gu(1,1)− γg(1,1)|+ |gv(1,1)|<
∣∣∣∣σ +ζ g(1,1)

ζ

∣∣∣∣ . (2.1)

Proof. By using the Euler’s Homogeneous Function Theorem, we obtain that

fu(ω̄, ω̄) = ζ
ω̄gu(ω̄, ω̄)− γg(ω̄, ω̄)

ω̄γ+1

= ζ
ω̄γ gu(1,1)− γω̄γ g(1,1)

ω̄γ+1

= ζ
gu(1,1)− γg(1,1)

ω̄
,

and

fv(ω̄, ω̄) = ζ
gv(ω̄, ω̄)

ω̄γ

= ζ
ω̄γ−1gv(1,1)

ω̄γ

= ζ
gv(1,1)

ω̄
.
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Now, by applying Clark Theorem, we find∣∣∣∣ζ gu(1,1)− γg(1,1)
ω̄

∣∣∣∣+ ∣∣∣∣ζ gv(1,1)
ω̄

∣∣∣∣< 1.

Since ω̄ = σ +ζ g(1,1), we find ∣∣∣∣ζ gu(1,1)− γg(1,1)
(σ +ζ g(1,1))

∣∣∣∣+ ∣∣∣∣ζ gv(1,1)
(σ +ζ g(1,1))

∣∣∣∣< 1,

and so

|gu(1,1)− γg(1,1)|+ |gv(1,1)|<
∣∣∣∣σ +ζ g(1,1)

ζ

∣∣∣∣ .
The proof is completed.

In the next theorem, the two periodic solutions of Eq.(1.2) will be examined.

Theorem 2.2. Eq.(1.2) has the prime period two solution

. . . ,φ ,ϑ ,φ ,ϑ , . . . .

if and only if

σ = ζ
Ωg
(
1, 1

Ω

)
−Ωγ g

( 1
Ω
,1
)

(1−Ω)
(2.2)

where Ω = φ

ϑ
, Ω ∈ R−{0,±1}.

Proof. Suppose that Eq.(1.2) has a prime period two solution in the following form

. . . ,φ ,ϑ ,φ ,ϑ , . . . .

Let’s define ωn−(2s+1) = φ and ωn−2s = ϑ for s = 0,1,2, .... From Eq.(1.2), we obtain

φ = σ +ζ
g(ϑ ,φ)

ϑ γ
,

and

ϑ = σ +ζ
g(φ ,ϑ)

φ γ
.

Since g is a continuous homogeneous function of degree γ, we obtain

φ = σ +ζ

φ γ g
(

ϑ

φ
,1
)

ϑ γ
⇒ φ = σ +ζ Ω

γ g
(

1
Ω
,1
)
, (2.3)

and

ϑ = σ +ζ

φ γ g
(

1, ϑ

φ

)
φ γ

⇒ ϑ = σ +ζ g
(

1,
1
Ω

)
. (2.4)

By using the fact φ −Ωϑ = 0, we find

0 = φ −Ωϑ = σ +ζ Ω
γ g
(

1
Ω
,1
)
−Ω

(
σ +ζ g

(
1,

1
Ω

))
,

and so

σ(1−Ω) = Ωζ g
(

1,
1
Ω

)
−ζ Ω

γ g
(

1
Ω
,1
)
.

Therefore, we get

σ = ζ
Ωg
(
1, 1

Ω

)
−Ωγ g

( 1
Ω
,1
)

(1−Ω)
.
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Thus, from (2.3) and (2.4) respectively, we find

φ =
Ωζ g

(
1, 1

Ω

)
−ζ Ωγ g

( 1
Ω
,1
)

(1−Ω)
+ζ Ω

γ g
(

1
Ω
,1
)

(2.5)

= ζ
Ωg
(
1, 1

Ω

)
−Ωγ+1g

( 1
Ω
,1
)

(1−Ω)
,

and

ϑ =
Ωζ g

(
1, 1

Ω

)
−ζ Ωγ g

( 1
Ω
,1
)

(1−Ω)
+ζ g

(
1,

1
Ω

)
(2.6)

= ζ
g
(
1, 1

Ω

)
−Ωγ g

( 1
Ω
,1
)

(1−Ω)
.

Secondly, assume (2.2) holds. Let’s choose the initial conditions

ω−1 = φ and ω0 = ϑ ,

where φ ,ϑ are defined as (2.3) and (2.4), respectively. Hence, we obtain that

ω1 = σ +ζ
g(ω0,ω−1)

ω
γ

0

= σ +ζ
g(ϑ ,φ)

ϑ γ

=
Ωζ g

(
1, 1

Ω

)
−ζ Ωγ g

( 1
Ω
,1
)

(1−Ω)
+ζ

φ γ g
(

ϑ

φ
,1
)

ϑ γ

=
Ωζ g

(
1, 1

Ω

)
−ζ Ωγ g

( 1
Ω
,1
)

(1−Ω)
+ζ Ω

γ g
(

1
Ω
,1
)

= ζ
Ωg
(
1, 1

Ω

)
−Ωγ+1g

( 1
Ω
,1
)

(1−Ω)
= φ ,

and

ω2 = σ +ζ
g(ω1,ω0)

ω
γ

1

= σ +ζ
g(φ ,ϑ)

φ γ

=
Ωζ g

(
1, 1

Ω

)
−ζ Ωγ g

( 1
Ω
,1
)

(1−Ω)
+ζ

φ γ g
(

1, ϑ

φ

)
φ γ

=
Ωζ g

(
1, 1

Ω

)
−ζ Ωγ g

( 1
Ω
,1
)

(1−Ω)
+ζ g

(
1,

1
Ω

)
= ζ

g
(
1, 1

Ω

)
−Ωγ g

( 1
Ω
,1
)

(1−Ω)
= ϑ .

Then, by induction, we can obtain that for all n≥ 0

ω2n−1 = φ and ω2n = ϑ .

Hence, Eq.(1.2) has a prime period two solution. The proof is completed.

In the following theorem, the prime period three solution of Eq.(1.2) will be investigated.

Theorem 2.3. Eq.(1.2) has the prime period three solution {ωn}∞
n=−1 where

ωn =

 φ , for n = 3z−1
ϑ , for n = 3z
ν , for n = 3z+1

, z = 0,1, . . .
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if and only if

η

(
σ +

ζ

ψγ
g(ψ,η)

)
= σ +ζ g(1,ψ) (2.7)

ψ

(
σ +

ζ

ψγ
g(ψ,η)

)
= σ +

ζ

ηγ
g(1,ψ)

where η = ϑ

φ
and ψ = ν

φ
,η ,ψ ∈ R−{0,∓1}.

Proof. Suppose that Eq.(1.2) has a prime period three solution in the following form

. . . ,φ ,ϑ ,ν ,φ ,ϑ ,ν , . . . .

From Eq.(1.2), we obtain that

φ = σ +ζ
g(ν ,ϑ)

νγ
,

ϑ = σ +ζ
g(φ ,ν)

φ γ
,

and

ν = σ +ζ
g(ϑ ,φ)

ϑ γ
.

By using the homogeneous function definition, we can find the equalities

φ = σ +ζ
φ γ g(ψ,η)

νγ
⇒ φ = σ +ζ

g(ψ,η)

ψγ

ϑ = σ +ζ
φ γ g(1,ψ)

φ γ
⇒ ϑ = σ +ζ g(1,ψ)

and

ν = σ +ζ
φ γ g(η ,1)

ϑ γ
⇒ ν = σ +ζ

g(η ,1)
ηγ

.

Therefore, we can easily see that

η =
ϑ

φ
=

σ +ζ g(1,ψ)

σ +ζ
g(ψ,η)

ψγ

and

ψ =
ν

φ
=

σ +ζ
g(η ,1)

ηγ

σ +ζ
g(ψ,η)

ψγ

.

Thus, we can rewrite the equalities

η

(
σ +ζ

g(ψ,η)

ψγ

)
= σ +ζ g(1,ψ),

ψ

(
σ +ζ

g(ψ,η)

ψγ

)
= σ +ζ

g(η ,1)
ηγ

.

Secondly, assume (2.7) holds. Let’s choose the initial conditions for all η ,ψ ∈ R−{0,∓1}

ω−1 = σ +ζ
g(ψ,η)

ψγ

and

ω0 = σ +ζ g(1,ψ).
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Thus, we obtain that

ω1 = σ +ζ
g(ω0,ω−1)

ω
γ

0

= σ +ζ

g
(

σ +ζ g(1,ψ),σ +ζ
g(ψ,η)

ψγ

)
(σ +ζ g(1,ψ))γ

= σ +ζ

g
(

η

(
σ +ζ

g(ψ,η)
ψγ

)
,σ +ζ

g(ψ,η)
ψγ

)
(

η

(
σ +ζ

g(ψ,η)
ψγ

))γ

= σ +ζ

(
σ +ζ

g(ψ,η)
ψγ

)γ

g(η ,1)(
η

(
σ +ζ

g(ψ,η)
ψγ

))γ

= σ +ζ
g(η ,1)

ηγ
= ν ,

ω2 = σ +ζ
g(ω1,ω0)

ω
γ

1

= σ +ζ

g
(

σ +ζ
g(η ,1)

ηγ ,σ +ζ g(1,ψ)
)

(
σ +ζ

g(η ,1)
ηγ

)γ

= σ +ζ

g
(

ψ

(
σ +ζ

g(ψ,η)
ψγ

)
,η
(

σ +ζ
g(ψ,η)

ψγ

))
(

ψ

(
σ +ζ

g(ψ,η)
ψγ

))γ

= σ +ζ

(
σ +ζ

g(ψ,η)
ψγ

)γ

g(ψ,η)(
ψ

(
σ +ζ

g(ψ,η)
ψγ

))γ

= σ +ζ
g(ψ,η)

ψγ
= φ ,

and

ω3 = σ +ζ
g(ω2,ω1)

ω
γ

2

= σ +ζ

g
(

σ +ζ
g(ψ,η)

ψγ ,σ +ζ
g(η ,1)

ηγ

)
(

σ +ζ
g(ψ,η)

ψγ

)γ

= σ +ζ

g
(

σ +ζ
g(ψ,η)

ψγ ,ψ
(

σ +ζ
g(ψ,η)

ψγ

))
(

σ +ζ
g(ψ,η)

ψγ

)γ

= σ +ζ

(
σ +ζ

g(ψ,η)
ψγ

)γ

g(1,ψ)(
σ +ζ

g(ψ,η)
ψγ

)γ

= σ +ζ g(1,ψ) = ϑ .

Then, by induction, we can obtain that for all n≥ 0.

ω3n−1 = φ , ω3n = ϑ and ω3n+1 = ν .

Hence, Eq.(1.2) has a prime period three solution. The proof is completed.

3. The behavior of solutions of the difference equation ωm+1 = σ +ζ
ω

γ
m

g(ωm,ωm−1)

This section is devoted to examining the asymptotic behavior of the solutions of non-linear rational difference equation (1.3).
Here, we can easily obtain the positive equilibrium point of Eq.(1.3) as

ω̄ = σ +
ζ

g(1,1)
.
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Now, let’s define the function z : (0,∞)2→ (0,∞) as

z(u,v) = σ +ζ
uγ

g(u,v)
.

Therefore, we find

∂ z
∂u

(u,v) = ζ
γuγ−1g(u,v)−gu(u,v)uγ

(g(u,v))2

and

∂ z
∂v

(u,v) =−ζ
gv(u,v)uγ

(g(u,v))2 .

In the next theorem, the locally asymptotic stability for Eq.(1.3) will be examined.

Theorem 3.1. The equilibrium point of Eq.(1.3) ω̄ = σ + ζ

g(1,1) is locally asymptotically stable if

|γg(1,1)−gu(1,1)|+ |gv(1,1)|<

∣∣∣∣∣∣
(

σ + ζ

g(1,1)

)
g2(1,1)

ζ

∣∣∣∣∣∣ .
Proof. Since g is a homogeneous function with degree γ, the partial derivatives are of degree γ−1. Thus, we obtain that

zu(ω̄, ω̄) = ζ
γω̄γ−1g(ω̄, ω̄)−gu(ω̄, ω̄)ω̄γ

(g(ω̄, ω̄))2

= ζ
γω̄2γ−1g(1,1)−gu(1,1)ω̄2γ−1

(ω̄γ g(1,1))2

= ζ
γg(1,1)−gu(1,1)

ω̄g2(1,1)
,

and

zv(ω̄, ω̄) = −ζ
gv(ω̄, ω̄)ω̄γ

(g(ω̄, ω̄))2

= −ζ
gv(1,1)ω̄2γ−1

ω̄2γ g2(1,1)

= −ζ
gv(1,1)

ω̄g2(1,1)
.

Now, by using Clark Theorem, we obtain∣∣∣∣ζ γg(1,1)−gu(1,1)
ω̄g2(1,1)

∣∣∣∣+ ∣∣∣∣ζ gv(1,1)
ω̄g2(1,1)

∣∣∣∣< 1.

Since the equilibrium point ω̄ = σ +ζ
1

g(1,1) , we find∣∣∣∣∣∣ζ γg(1,1)−gu(1,1)(
σ + ζ

g(1,1)

)
g2(1,1)

∣∣∣∣∣∣+
∣∣∣∣∣∣ζ gv(1,1)(

σ + ζ

g(1,1)

)
g2(1,1)

∣∣∣∣∣∣< 1,

and so,

|γg(1,1)−gu(1,1)|+ |gv(1,1)|<

∣∣∣∣∣∣
(

σ +ζ
1

g(1,1)

)
g2(1,1)

ζ

∣∣∣∣∣∣ .
This completes the proof.

In the next theorem, the prime period two solutions of Eq.(1.3) will be investigated.
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Theorem 3.2. Eq.(1.3) has the prime period two solution

. . . ,φ ,ϑ ,φ ,ϑ , . . .

if and only if

σ =
ζ

(1−Ω)

(
Ω

g
(
1, 1

Ω

) − 1
Ωγ g

( 1
Ω
,1
)) (3.1)

where Ω = φ

ϑ
, Ω ∈ R−{0,±1}.

Proof. Suppose that Eq.(1.3) has a prime period two solution in the following form

. . . ,φ ,ϑ ,φ ,ϑ , . . . .

Let’s define ωn−(2s+1) = φ and ωn−2s = ϑ for s = 0,1,2, ... . From Eq.(1.3), we find

φ = σ +ζ
ϑ γ

g(ϑ ,φ)
,

and

ϑ = σ +ζ
φ γ

g(φ ,ϑ)
.

From the definition of the homogeneous function, we can easily obtain that

φ = σ +ζ
ϑ γ

φ γ g
(

ϑ

φ
,1
) ⇒ φ = σ +

ζ

Ωγ g
( 1

Ω
,1
) (3.2)

and

ϑ = σ +ζ
φ γ

φ γ g
(

1, ϑ

φ

) ⇒ ϑ = σ +
ζ

g
(
1, 1

Ω

) . (3.3)

Now, by using the fact φ −Ωϑ = 0, we find

0 = φ −Ωϑ = σ +
ζ

Ωγ g
( 1

Ω
,1
) −Ω

(
σ +

ζ

g
(
1, 1

Ω

))

and so,

σ(1−Ω) = ζ

(
Ω

g
(
1, 1

Ω

) − 1
Ωγ g

( 1
Ω
,1
)) .

Hence, we find

σ =
ζ

(1−Ω)

(
Ω

g
(
1, 1

Ω

) − 1
Ωγ g

( 1
Ω
,1
)) .

Then, from Eq.(3.2) and (3.3), we obtain

φ = σ +
ζ

Ωγ g
( 1

Ω
,1
) (3.4)

=
ζ

(1−Ω)

(
Ω

g
(
1, 1

Ω

) − 1
Ωγ g

( 1
Ω
,1
))+

ζ

Ωγ g
( 1

Ω
,1
)

= ζ

(
Ω

(1−Ω)g
(
1, 1

Ω

) − 1
(1−Ω)Ωγ g

( 1
Ω
,1
) + (1−Ω)

(1−Ω)Ωγ g
( 1

Ω
,1
))

= ζ

(
Ω

(1−Ω)g
(
1, 1

Ω

) − Ω

(1−Ω)Ωγ g
( 1

Ω
,1
)) ,
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and

ϑ = σ +ζ
1

g
(
1, 1

Ω

) (3.5)

=
ζ

(1−Ω)

(
Ω

g
(
1, 1

Ω

) − 1
Ωγ g

( 1
Ω
,1
))+ζ

1
g
(
1, 1

Ω

)
= ζ

(
Ω

(1−Ω)g
(
1, 1

Ω

) − 1
(1−Ω)Ωγ g

( 1
Ω
,1
) + (1−Ω)

(1−Ω)g
(
1, 1

Ω

))

= ζ

(
1

(1−Ω)g
(
1, 1

Ω

) − 1
(1−Ω)Ωγ g

( 1
Ω
,1
)) .

On the other hand, suppose (3.1) holds. Let’s choose the initial conditions

ω−1 = φ and ω0 = ϑ ,

where φ ,ϑ are defined as (3.2) and (3.3), respectively. Therefore, we find

ω1 = σ +ζ
ω

γ

0
g(ω0,ω−1)

= σ +ζ
ϑ γ

g(ϑ ,φ)

=
ζ

(1−Ω)

(
Ω

g
(
1, 1

Ω

) − 1
Ωγ g

( 1
Ω
,1
))+ζ

1

Ωγ g
(

ϑ

φ
,1
)

= ζ

(
Ω

(1−Ω)g
(
1, 1

Ω

) − 1
(1−Ω)Ωγ g

( 1
Ω
,1
) + (1−Ω)

(1−Ω)Ωγ g
( 1

Ω
,1
))

= ζ

(
Ω

(1−Ω)g
(
1, 1

Ω

) − Ω

(1−Ω)Ωγ g
( 1

Ω
,1
))= φ

and

ω2 = σ +ζ
ω

γ

1
g(ω1,ω0)

= σ +ζ
φ γ

g(φ ,ϑ)

=
ζ

(1−Ω)

(
Ω

g
(
1, 1

Ω

) − 1
Ωγ g

( 1
Ω
,1
))+ζ

1
g
(
1, 1

Ω

)
= ζ

(
Ω

(1−Ω)g
(
1, 1

Ω

) − 1
(1−Ω)Ωγ g

( 1
Ω
,1
) + (1−Ω)

(1−Ω)g
(
1, 1

Ω

))

= ζ

(
1

(1−Ω)g
(
1, 1

Ω

) − 1
(1−Ω)Ωγ g

( 1
Ω
,1
))= ϑ

Then, by induction, we can obtain that for all n≥ 0

ω2n−1 = φ and ω2n = ϑ .

Hence, Eq.(1.3) has a prime period two solution. The proof is completed.

In the following theorem, the three periodic solutions of Eq.(1.3) will be studied.

Theorem 3.3. Eq.(1.3) has a prime period three solution {ωn}∞
n=−1 where

ωn =

 φ , for n = 3z−1
ϑ , for n = 3z
ν , for n = 3z+1

, z = 0,1, . . .
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if and only if

η

(
σ +ζ

ψγ

g(ψ,η)

)
= σ +ζ

1
g(1,ψ)

(3.6)

ψ

(
σ +ζ

ψγ

g(ψ,η)

)
= σ +ζ

ηγ

g(η ,1)

where η = ϑ

φ
and ψ = ν

φ
,η ,ψ ∈ R−{0,±1}.

Proof. Suppose that Eq.(1.3) has a prime period three solution in the following form

. . . ,φ ,ϑ ,ν ,φ ,ϑ ,ν , . . .

From Eq.(1.3), we obtain that

φ = σ +ζ
νγ

g(ν ,ϑ)
,

ϑ = σ +ζ
φ γ

g(φ ,ν)

and

ν = σ +ζ
ϑ γ

g(ϑ ,φ)
.

Since g is a homogeneous function with degree γ , we obtain the equalities

φ = σ +ζ
ψγ

g(ψ,η)
,

ϑ = σ +ζ
1

g(1,ψ)

and

ν = σ +ζ
ηγ

g(η ,1)
.

Hence, we find

η =
ϑ

φ
=

σ +ζ
1

g(1,ψ)

σ +ζ
ψγ

g(ψ,η)

and

ψ =
ν

φ
=

σ +ζ
ηγ

g(η ,1)

σ +ζ
ψγ

g(ψ,η)

.

Thus, we obtain that

η

(
σ +ζ

ψγ

g(ψ,η)

)
= σ +ζ

1
g(1,ψ)

,

ψ

(
σ +ζ

ψγ

g(ψ,η)

)
= σ +ζ

ηγ

g(η ,1)
.

Now, assume (3.6) holds. Let’s choose the initial values for all η ,ψ ∈ R−{0,±1}

ω−1 = σ +ζ
ψγ

g(ψ,η)
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and

ω0 = σ +
ζ

g(1,ψ)
.

Therefore, we obtain

ω1 = σ +ζ
ω

γ

0
g(ω0,ω−1)

= σ +ζ

(
σ +ζ

1
g(1,ψ)

)γ

g
(

σ +ζ
1

g(1,ψ) ,σ +ζ
ψγ

g(ψ,η)

)
= σ +ζ

(
η

(
σ +ζ

ψγ

g(ψ,η)

))γ

g
((

η

(
σ +ζ

ψγ

g(ψ,η)

))
,σ +ζ

ψγ

g(ψ,η)

)
= σ +ζ

(
η

(
σ +ζ

ψγ

g(ψ,η)

))γ

(
σ +ζ

ψγ

g(ψ,η)

)γ

g(η ,1)

= σ +ζ
ηγ

g(η ,1)
= ν ,

ω2 = σ +ζ
ω

γ

1
g(ω1,ω0)

= σ +ζ

(
σ +ζ

ηγ

g(η ,1)

)γ

g
(

σ +ζ
ηγ

g(η ,1) ,σ +ζ
1

g(1,ψ)

)
= σ +ζ

(
ψ

(
σ +ζ

ψγ

g(ψ,η)

))γ

g
(

ψ

(
σ +ζ

ψγ

g(ψ,η)

)
,η
(

σ +ζ
ψγ

g(ψ,η)

))
= σ +ζ

(
ψ

(
σ +ζ

ψγ

g(ψ,η)

))γ

(
σ +ζ

ψγ

g(ψ,η)

)γ

g(ψ,η)

= σ +ζ
ψγ

g(ψ,η)
= φ

and

ω3 = σ +ζ
ω

γ

2
g(ω2,ω1)

= σ +ζ

(
σ +ζ

ψγ

g(ψ,η)

)γ

g
(

σ +ζ
ψγ

g(ψ,η) ,σ +ζ
ηγ

g(η ,1)

)
= σ +ζ

(
σ +ζ

ψγ

g(ψ,η)

)γ

g
(

σ +ζ
ψγ

g(ψ,η) ,ψ
(

σ +ζ
ψγ

g(ψ,η)

))
= σ +ζ

(
σ +ζ

ψγ

g(ψ,η)

)γ

(
σ +ζ

ψγ

g(ψ,η)

)γ

g(1,ψ)

= σ +ζ
1

g(1,ψ)
= ϑ .

Then, by induction, we obtain for all n≥ 0

ω3n−1 = φ , ω3n = ϑ and ω3n+1 = ν .

Hence, Eq.(1.3) has a prime period three solution. The proof is completed.
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4. Conclusions and suggestions

In this article, we have considered the detailed qualitative behavior of a general class of difference equations, which can
be seen as an extension of [22, 23, 24, 25, 26, 27]. The qualitative behavior of the solutions of the introduced non-linear
difference equations has been examined. In other words, the two periodic solutions, the three periodic solutions and the
stability character of difference equations have been discussed. Qualitative research of mathematical models created using
difference equations has an important place in mathematics, sub-branches of mathematics and other applied sciences. Here, the
two periodic solutions of Eq.(1.2) and Eq.(1.3) in Theorem 3.2 and Theorem 2.2 and the three periodic solutions in Theorem
3.3 and Theorem 2.3 have been examined in detail. In these theorems, using the new technique, the periodicity character of
Eq.(1.2) and Eq.(1.3) have been determined and necessary and sufficient conditions have been created for the existence of
periodic solutions. In addition, the equilibrium points of Eq.(1.2) and Eq.(1.3) have been investigated and sufficient conditions
have been obtained for the local asymptotic stability of these equilibrium points.
It can be suggested to those who do research in this field that research can be done in the equations established with the help of
homogeneous functions. Difference equations created with these functions are very convenient and useful for researching
general classes of difference equations.
In our future studies, we will aim to investigate some general classes of difference equations formed by homogeneous functions
of different degrees.
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