
Selcuk University Press
Genel Tıp Dergisi | e-ISSN: 2602-3741

https://dergipark.org.tr/tr/pub/geneltip
https://yayinevi.selcuk.edu.tr/

136

Peer-Review: Double anonymized - Two External
Plagiarism Checks: Yes - iThenticate
Complaints: geneltip@selcuk.edu.tr
Copyright & License: Authors publishing with the journal retain 
the copyright to their work licensed under the CC BY-NC 4.0

The Genetics of Parkinson’s Disease

Parkinson Hastalığı Genetiği
1Zeliha Yücel , 2Levent Şimşek , 3Emine Berrin Yüksel 

¹Zeliha Yücel, Karamanoglu 
Mehmetbey University Karaman 
Education and Training Hospital, 
Department of Neurology
2Levent Şimşek, Konya City Hospital, 
Department of Medical Genetics
3Emine Berrin Yüksel, Karamanoglu 
Mehmetbey University, School of 
Medicine, Department of Medical 
Genetics

Correspondence

Zeliha Yücel, Karamanoglu Mehmetbey 
University Karaman Education and 
Training Hospital, Karaman/TURKEY

E-Mail: zelihayucel25@gmail.com

How to cite ?

Yücel Z, Şimşek L, Yüksel EB. The Genetics 
of Parkinson’s Disease. Genel Tıp Derg. 
2024;34(1):136-143.	

Received: 03 Aug 2023 | Accepted: 18 Dec 2023
DOI: 10.54005/geneltip.1337447

REVİEW

ABSTRACT

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases worldwide. 
Approximately 15% of PD patients have a family history of the disease in one or more first-degree 
relatives, and 5-10% of PD cases exhibit a classical Mendelian inheritance pattern. In 1997, the 
heritable transmission of PD was first documented. Recent studies have found 90 independent 
genome-wide signals at 78 loci that may be associated with PD. The identification of genes linked 
to PD and their functions has uncovered novel biological pathways and treatment options that 
play a role in the development of PD. In this article, it is aimed to review up-to-date information on 
the genetics of PD.
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ÖZ

Parkinson hastalığı (PH), dünya çapında en yaygın nörodejeneratif hastalıklardan biridir. PH 
hastalarının yaklaşık %15’inde bir veya daha fazla birinci derece akrabada hastalık öyküsü vardır 
ve PH vakalarının %5-10’u klasik Mendel kalıtım modeli sergiler. 1997’de, PH’nın kalıtsal geçişi ilk kez 
belgelenmiştir. Son yapılan araştırmalarda, PD ile ilişkili olabilecek 78 lokusta 90 bağımsız genom 
çapında sinyal bulunmuştur. PH ile bağlantılı genlerin ve bunların işlevlerinin tanımlanması, PH 
gelişiminde rol oynayan yeni biyolojik yolları ve tedavi seçeneklerini ortaya çıkmasını sağlamıştır. 
Bu yazıda Parkinson hastalığının genetiği ile ilgili güncel bilgilerin gözden geçirilmesi amaçlanmıştır.

Anahtar Kelimeler: Parkinson Hastalığı, Kalıtım, Otozomal Dominant, Otozomal Resesif

Introduction

Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder after Alzheimer’s 
disease (1). Its prevalence is estimated at over six 
million worldwide and is expected to double by 2040 
(2). The pathogenesis of PD is based on the loss of 
dopaminergic neurons in the substantia nigra pars 
compacta (SNpc) and intraneuronal aggregation 
of misfolded alpha-synuclein called Lewy bodies (3). 
The underlying mechanisms leading to the loss of 
dopaminergic neurons in the SNpc can be listed as 
pathological alpha-synuclein aggregation, disruption 
of intracellular protein degradation systems such as 
the endo-lysosomal autophagy and the ubiquitin-
proteasome pathways, mitochondrial dysfunction, 
oxidative and metabolic stress, excitotoxicity, and 
inflammation (4). Clinical findings of PD can be divided 
into two categories: motor symptoms; the cardinal 
signs of PD, and non-motor symptoms which can even 
be present in the pre-clinical phase. Motor symptoms 
can be characterized as tremors, rigidity, bradykinesia/
akinesia, and postural instability. Non-motor symptoms 
may occur years before the diagnosis of the disease 
and include constipation, hyposmia, sleep-wake 
cycle disorders, apathy and depression (5). 

The etiology of the disease is obscure, and most PD 
cases are sporadic. Approximately 15% of patients 
have a family history of PD in one or more first-degree 
relatives and 5–10% of PD show a classical Mendelian 

inheritance pattern (6). The first evidence of heritable 
transmission of PD was reported in 1997. Rare mutations 
in the alpha-synuclein (SNCA) gene responsible for a 
monogenic form of PD was defined (7). Shortly after this 
discovery, many studies identified numerous genes with 
autosomal recessive (AR) and autosomal dominant (AD) 
inheritances. Recently, Nalls et al. have conducted the 
largest study to date for the genetics of PD, analyzing 7.8 
million single nucleotide polymorphisms (SNPs) in 37.688 
PD cases, 18.618 United Kingdom Biobank (UKB) “proxy 
cases (individuals who do not have Parkinson’s disease 
but have a first degree relative that has)” and 1.4 
million controls. They found 90 independent genome-
wide significant signals at 78 loci that are thought to be 
associated with PD (8). 

The acquisition of new genetic technologies is rapidly 
illuminating both the pathogenesis and clinical and 
genetic diversity of PD. Therefore, it is very important to 
understand the genetic factors behind PD. In this review, 
we summarized the genetic etiologies associated with 
PD.

Monogenic Forms of PD

Historically, the monogenic forms of PD predominantly 
were detected through linkage analysis of affected 
families. On the other hand, few variants were also 
revealed by genome-wide association studies (GWAS). 
The loci associated with PD phenotypes were named 
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the ‘PARK’ loci and are indicated by the number 
representing the chronological order of discovery. For 
example, the PRKN gene is also referred to as PARK2.  
However, multiple PARK loci may refer to the same 
gene, and some PARK loci do not appear to cause 
disease. Therefore, the current recommendation is to 
use gene names instead of PARK loci (9). Monogenic 
forms of PD are summarized in Table 1.

Autosomal dominant forms of PD

These are the genes that are clearly identified as 
risk factors for PD: SCNA (Synuclein, Alpha), LRRK2 
(Leucine-Rich Repeat Kinase 2), and VPS35 (Vacuolar 
Protein Sequence 35 Retromer Complex Component). 
More recently, the association with LRP10 (Low Density 
Lipoprotein Receptor-Related Protein 10) and EIF4G1 
(Eukaryotic Translation Initiation Factor 4G) are being 
studied. Moreover, some pathogenic variations of 
GBA (Beta-glucosidase) gene, which cause Gaucher’s 
disease in biallelic state, can lead to PD with variable 
penetrance in monoallelic state (10).

SNCA

The SNCA (PARK1, PARK4; OMIM: 163890) gene is 
responsible for producing the alpha-synuclein protein. 
The exact function of alpha-synuclein (α-synuclein) is 
yet to be determined. However, its role is thought to 
regulate neurotransmitter release, synaptic vesicles 
and neuronal differentiation (11). 

The SNCA gene was the first gene determined to be 
linked to PD. In 1997, Polymeropoulos et al. identified 
a missense variant that substituted the amino-acids 
alanine with threonine at position 53 (p.A53T) of the 
SNCA gene in an Italian family (7). The same variant was 
also found to be associated with the PD in three Greek 
kindreds. Afterwards, several missense SNCA variants 
were identified, including p.A30P, p.E46K, p.H50Q 
and p.G51D (12–15). Missense mutations of SNCA 
are reported to have a direct impact on a-synuclein 
conformation and function. Patients with pathogenic 
missense variations in this gene often tend to develop 
PD before 50 years of age, and the symptoms worsen 
rapidly; but respond well to levodopa (L-DOPA). The 
phenotype also differs between different missense 
variants of SNCA. For instance, patients with p.G51D 
show extremely rapid disease progression causing 
some patients to die within ten years of onset. Atypical 
findings such as pyramidal signs, cognitive decline, 
psychiatric disturbances, myoclonus, and seizures can 
be observed too (15).

Apart from nucleotide substitutions that disrupt the 
protein function, altered dosage of the protein can 
also cause protein misexpression. Several studies 
showed that duplication or triplication of SNCA can 
lead to an increase in α-synuclein expression, which 
increases the risk of developing PD (16,17). These 
studies also reported that patients with duplications 
or triplications of SNCA tend to experience a faster 
progression (16,17). 

LRRK2 

The LRRK2 (PARK8; OMIM: 609007) gene encodes the 
LRRK2 protein (18). LRKK2, also known as dardarin, is 
a large protein that is involved in a wide variety of 
cellular functions including autophagy, cytoskeletal 
dynamics, intracellular membrane trafficking, synaptic 
vesicle turnover and inflammation (19,20). Dardarin 
dysfunction leads to the disruption of α-synuclein 
degradation in cellular clearance pathways and thus 
causes the accumulation of misfolded α-synucleins 
(21).

In 2004, it was discovered that the LRRK2 gene is linked 
to the development of PD. A Japanese family with 
AD parkinsonism was found to have the c.6055G>A 
variant (p.G2019S). This variant is the most prevalent 
pathogenic mutation worldwide that causes PD (18). 
Its incidence is particularly high in the Ashkenazi Jewish 
(26%) and North African Berber (41%) populations (22–
24).  Other diverse variants of the LRKK2 gene were 
explored, yet only eight proved to be pathogenic 
(N1437H, R1441 G/H/C, Y1699C, G2019S, S1761R, 
G2385R, R1628P and I2020T) (25). These variants result 
in advanced age-onset PD clinically resembling a 
sporadic PD (26). 

VPS35

The VPS35 (PARK17; OMIM: 601501) gene enables 
the production of a component of the multimeric 
retromeric complex. The complex is one of the main 
conductors in endosomal sorting and trafficking 
(27,28). 

A missense mutation (p.D620N) in the VPS35 gene 
was detected in Swiss and Australian families in 2011 
(29). However, in a study conducted by Nuytemans et 
al. (30), 213 patients with PD were analyzed through 
whole-exome sequencing and the results showed 
no evidence indicating that genetic variations of 
VPS35 significantly impacted the development of 
PD. Nevertheless, considering rarity (<%1 of familial 
PD cases) and lack of functional evidence of VPS35 
variants except p.D620N, further studies with larger 
samples are needed for a clearer deduction (31).

GBA

The GBA (OMIM: 606463) gene encodes for 
a lysosomal enzyme, beta-glucosidase. Beta-
glucosidase catalyzes the breakdown of the glycolipid 
glucosylceramide into ceramide and glucose 
(32). Biallelic pathogenic GBA variants can lead 
to Gaucher disease, a lysosomal storage disorder 
caused by reduced glucocerebrosidase activity (33). 
Whereas heterozygous carriers are in an increased risk 
of developing PD (10).

Various case-control studies showed that signs of PD 
such as tremor and bradykinesia can be exhibited 
in Gaucher patients; whereupon PD symptoms were 
included in the spectrum of the disease (34,35). 

The two most prevalent variants are p.N370S and 
p.L444P globally; p.N370S heterozygosity raises the 
risk of PD by four times whereas p.L444P increases it 
by twelve times (36). The clinical findings of GBA-
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associated PD are similar to idiopathic PD. However, 
studies showed earlier age of onset, higher dementia 
rates, and faster worsening of the symptoms in PD 
patients with heterozygous pathogenic GBA variants 
(37–39).  

LRP10

The LRP10 (OMIM: 609921) gene enables formation of 
the LRP10 protein, which contains a class of surface 
receptors that play an important role in the trafficking 
and processing of amyloid precursor protein (40). First, 
a LRP10 missense mutation, c.1807G>A (p.G603R) was 
detected in an Italian family with hereditary PD (41). 
Subsequently, Kia et al. investigated the LRP10 gene 
in a study involving 2835 PD patients and 5343 controls 
(42). However, they found no significant difference in 
LRP10 gene variants between controls and PD patients. 
Currently, the pathogenic role of LRP10 mutations in 
PD is still unclear. 

EIF4G1  

The EIF4G1 (PARK18; OMIM: 600495) gene responsible 
for a member of eukaryotic translation initiation 
factors that play important roles for the ribosome/
mRNA-bridge (43). Initially, the R1205H variant in the 
EIF4G1 gene were identified in a French family (44). 
In a cohort study of 4,708 PD patients screened for 
R1205H, nine patients from seven families from the 
USA, Canada, Ireland, Italy, and Tunisia were found 
to carry this variant (45). Subsequently, Huttenlocher 
et al. (46) studied a cohort of 2,146 European PD 
patients to evaluate the relationship between EIF4G1 
mutations and PD. They identified the R1205H mutation 
in only one patient. Moreover, a recent study found no 
association between EIF4G1 and PD (47).

Autosomal recessive forms of PD

There are specific genes that are strongly linked to the 
autosomal recessive (AR) types of PD, including PRKN 
(RBR E3 ubiquitin protein ligase), PINK1 (PTEN-derived 
putative kinase 1) and DJ-1 (Oncogene DJ1). These 
three genes interplay in a mitochondria proteolysis 
pathway. Patients with these variants have similar 
clinical manifestations to sporadic PD, although the 
age of onset is earlier. ATP13A2 (ATPase 13A2), PLA2G6 
(Phospholipase A2, Group VI), FBXO7 (F-Box Only 
Protein 7), DNAJC6 (DNAJ/HSP40 Homolog, Subfamily 
C, Member 6), SYNJ1 (Synaptojanin 1) appear as 
infrequent and complex forms of autosomal recessive 
PD. Parkinsonism is the primary clinical feature of these 
patients, but they may also present with atypical 
manifestations such as supranuclear gaze palsy, 
mental retardation, or seizures.

PRKN 

The PRKN (Parkin; PARK2; OMIM: 602544) gene, is one 
of the largest genes in humans and is responsible for 
producing a protein called parkin (48). The parkin 
protein is involved in the process of ubiquitination, 
a form of post-translational modification, and is 
responsible for the breakdown of damaged or excess 
proteins (49). 

Parkin-associated PD includes marked degeneration 
of dopaminergic neurons in the main pathology of 
the substantia nigra pars compacta. Lewy bodies, 
the pathognomonic finding for idiopathic PD, may be 
absent in these cases (50). The characteristics of PRKN 
related PD share a remarkable similarity with idiopathic 
PD signs such as tremors, rigidity and bradykinesia (51). 
However, the disease usually has an earlier onset; 
even childhood-onset cases have been reported (51). 
Additionally, biallelic PRKN mutations are the most 
common genetic variants in juvenile PD (52). Another 
study revealed that PRKN mutations occur in 77% of 
familial cases with an age of onset <30 and in 10-20% 
of patients with early-onset PD (53).

Although biallelic PRKN variants are an established 
risk of developing PD, there is much debate on the 
potential influence of heterozygous PRKN variants 
on PD. Several small studies have claimed that 
heterozygous PRKN variants increase the risk of PD 
(54,55). However, this could not be confirmed in other 
studies and meta-analyses (56–58). More recently, 
a study involving 2809 PD patients and 3629 healthy 
controls has been conducted to investigate the 
potential link between PD and heterozygous PRKN 
variants, including single nucleotide variants and 
copy number variations (CNVs) (59). The findings 
have indicated that there is no connection between 
heterozygous PRKN variants and PD (59).

PINK1 

The PINK1 (PARK6; OMIM: 608309) gene encodes 
a mitochondrial serine/threonine kinase (60). Two-
thirds of the mutations reported in PINK1 are loss-of-
function mutations that affect serine/threonine kinase 
activity. These findings highlight the importance of 
mitochondrial proteolysis pathway in the pathogenesis 
of PD (61–63). PINK1-related PD findings clinically 
overlap with sporadic PD and present at early-onset. 
Moreover, in these patients, non-motor findings are 
observed more commonly (10).

DJ-1

The DJ-1 (PARK7; OMIM: 602533) gene encodes a 189 
amino acid-long protein, named DJ-1, that functions 
in regulation of transcription, oxidative stress, and 
mitochondrial metabolism (64). The discovery of 
DJ-1 as a causative gene for PD was brought about 
by its occurrence in two consanguineous families of 
Dutch and Italian origin (65). Single nucleotide and 
structural variations such as Glu163Lys, Leu166Pro, and 
g.168-185dup have been reported (66,67). DJ-1 gene 
mutations occur in approximately 1-2% of early-onset 
PD (68). PD patients with DJ-1 mutations show early-
onset Parkinson’s symptoms followed by psychiatric 
disturbances such as psychotic disorder, anxiety, 
and cognitive decline, and generally respond well to 
L-DOPA treatment (69–71).

DNAJC6 

The DNAJC6 (PARK19; OMIM: 608375) gene encodes 
auxilin, a neuronal protein that regulates molecular 
chaperone activity by stimulating ATPase activity 
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(72). First, a homozygous splice mutation (c.801-2A>G) 
of the DNAJC6 gene is identified in two Palestinian 
brothers. The symptoms were rapidly progressive and 
unresponsive to treatment (73). The DNAJC6 gene 
variants that cause truncation of the protein lead to 
juvenile atypical parkinsonism, while non-truncating 
variants cause early-onset parkinsonism (74).

ATP13A2 

The ATP13A2 (PARK9; OMIM: 610513) gene encodes 
ATP13A2 protein, acts as a critical regulator of 
lysosomal functions (75). A study identified upregulated 
ATP1A32 expression in surviving dopaminergic 
neurons of patients with idiopathic PD, suggesting a 
neuroprotective role of this protein (76). The ATP13A2 
protein deficiency leads to Kufor-Rakeb syndrome (KRS; 
OMIM: 606693), characterized by juvenile, levodopa-
responsive Parkinsonism, pyramidal manifestations, 
and dementia. The presence of iron accumulation in 
the basal ganglia in some patients with KRS suggests 
that it can be considered among neurodegenerative 
syndromes with brain iron accumulation (NBIAs) (77). 

FBXO7

Mutations in the FBXO7 (PARK15; OMIM: 605648) gene, 
responsible for producing F-box protein 7, can cause 
a rare autosomal recessive Parkinsonian-pyramidal 
syndrome (78). The syndrome shows symptoms of 
early-onset parkinsonism, along with pyramidal system 
involvement like psychomotor retardation, eyelid 
apraxia, and chorea (79). 

PLA2G6

The PLA2G6 (PARK14; OMIM: 603604) gene encodes 
a phospholipase A2 enzyme subgroup, and has a key 
role in inflammation, cell proliferation, apoptosis, and 
remodeling of membrane phospholipids (80). PLA2G6 
mutations are highly heterogeneous and result in a 
complex group of neurodegenerative diseases. The 
clinical picture of PLA2G6-related neurodegeneration 
is classified in three overlapping phenotypes, one of 
which is ‘PLA2G6-related dystonia-parkinsonism’ (81). 
PLA2G6-related dystonia-parkinsonism begins in late 
adolescence and presents with early-onset PD, gait 
disturbance, and neuropsychiatric symptoms (81).

SYNJ1

The SYNJ1 (PARK20; OMIM: 604297) gene produces a 
protein called Synaptojanin 1, which plays a crucial 
role in regulating vesicle endocytosis and recycling 
(82,83). In several studies, biallelic mutations of SYNJ1 
were associated with two distinct phenotypes: early-
onset PD and a severe neurodegenerative disorder 
with epilepsy and tauopathies (84–86). A recent study 
has revealed that homozygous missense mutations 
such as p.R839C and p.Y832C result in typical PD or 
early-onset atypical parkinsonism (87). On the other 
hand, it is suggested that p.Y888C homozygous 
missense mutations could lead to severe progressive 
neurodegeneration. All of these findings suggest wide 
clinical and genetic heterogeneity for SYNJ1 variations.

Table 1. Summary of monogenic variants associated with Parkinson’s disease.

Gene PARK locus Chromosomal Location İnheritance Predominantly involved pathway Predominant phe-
notype Penetrance

SNCA PARK1, PARK4, 4q21-22 AD α-Synuclein aggregation Typical PD High

LRRK2 PARK8 12q12 AD Endosomal/lysoso- mal and mito-
chondrial dysfunction Typical PD Variable

VPS35 PARK17 16q11.2 AD Endosomal/lysoso- mal dysfunction Typical PD High

GBA 1q21 AD Endosomal/lysoso- mal dysfunction More aggressive dis- 
ease course as PD Variable

LRP10 - 14q11.2 AD mRNA translation dysfunction Typical PD Unclear Patho-
geneity

EIF4G1 - 3q27.1 AD mRNA translation dysfunction Typical PD Unclear Patho-
geneity

PRKN PARK2, PARKIN 6q25.2-q27 AR Mitochondrial  dysfunction Early-onset PD High

PINK1 PARK6 1p35-p36 AR Mitochondrial  dysfunction Early-onset PD High

DJ1 PARK7 1p36 AR Mitochondrial  dysfunction Early-onset PD High

DNAJC6 PARK19 7q36.3 AR Endosomal/lysoso- mal dysfunction Atypical PD High

ATP13A2 PARK9 1p36 AR Endosomal/lysoso- mal dysfunction Atypical PD High

FBXO7 PARK145 22q12-q13 AR Mitochondrial impairment and endo-
somal/lysoso- mal dysfunction Early-onset PD High

PLA2G6 PARK14 22q13.1 AR Phospholipid remodeling, α-synuclein 
aggregation Early-onset PD High

SYNJ1 PARK20 21q22.11 AR Endosomal/lysoso- mal dysfunction Atypical PD High

TAF1 - Xq13.1 XLR Transcription factor II D dysfunction Atypical PD High

The Genetics of PD - Yücel et al.
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X-linked forms of PD

TAF1

TAF1 (TATA-binding protein-associated factor-1) 
(OMIM: 313650) is responsible for the only known 
X-linked PD: X-linked torsion dystonia-parkinsonism 
syndrome. TAF1 encodes an essential component 
of Transcription factor II D which is critical for RNA 
polymerase II–mediated gene transcription (88). 
SVA (short interspersed nuclear element, variable 
number of tandem repeats, and Alu composite) 
retrotransposon insertion in intron 32 of the TAF1 is a 
founder variant in Philippines and the only known 
pathogenic variation to date that causes X-linked 
torsion dystonia-parkinsonism syndrome (89,90).   

Multifactorial Inheritance in PD

Genetic and environmental factors play a role in 
the development of multifactorial diseases. Most of 
the adult-onset chronic diseases show multifactorial 
inheritance pattern, which is usually characterized by 
familial aggregation of disease (91). Likewise, apart 
from the PD cases with highly penetrant genetic variants 
as discussed above, majority of late-onset sporadic 
PD cases show no sign of Mendelian inheritance. 
Moreover, the variants of some genes (e.g., SNCA 
and GBA) show low penetrance indicating additional 
contribution of other genetic and environmental 
factors (10).

To reveal genetic factors taking part in complex 
diseases with multifactorial features like PD, GWAS 
are powerful assets. There are several GWAS pointing 
multiple loci with potential significance for the 
association with PD (92). For instance, GWAS analysis 
done by Nalls et al. associated seven loci containing 
LRRK2, GBA, CATSPER3, LAMB2, LOC442028, NFKB2, 
and SCARB2 genes with PD (8). Additionally, NSF gene 
which encodes N-ethylmaleimide sensitive fusion 
protein that have a role in synaptic neurotransmission, 
also associated with PD in another study (93). However, 
all variants are not associated positively with PD. An 
example is MAPT gene H2 haplotype, which was 
associated with later age at onset (93). Moreover, 
CRHR1 gene which encodes corticotropin releasing 
hormone receptor 1, has also been shown to be 
associated with a reduced risk of PD (94). Despite all 
these findings, even GWAS cannot reveal a genetic 
component in majority of PD patients; the broadest 
study to date has explained only 16%−36% of PD 
heritability (8). 

Where some GWAS are underpowered to find an 
associated locus, polygenic risk scores (PRS) which 
utilize multiple loci in the genome including common 
polymorphisms, can be helpful to reveal the complex 
relationship between genotype and phenotype of PD 
cases. In PRS studies, a polygenic score, and a threshold 
of liability for disease are calculated by analyzing a 
combination of multiple common genetic variants 
between genomic datasets of disease and control 
groups. PRS studies showed to have a potential to 
predict the liability to some diseases with multifactorial 

inheritance such as schizophrenia and bipolar disorder 
(95). Escott-Price et al. designed a polygenic risk score 
for PD and found significant correlation between 
higher risk score and PD liability, especially in cases 
with early age at onset (96). Moreover, Searles Nielsen 
et al. found an association between age at onset and 
SNPs in CYP2J2, GSTM5 and SLC11A2 genes (97). These 
findings are promising for a future PRS that will include 
a broad spectrum of ethnicities and PD subtypes.

Although both GWAS and PRS studies have shown 
important results for comprehension of multifactorial 
nature of PD, it is still preliminary to make a general 
deduction in this field. Therefore, more population-
based studies are necessary to fully illuminate this 
aspect of PD.

Genetic Testing for PD

Genetic screening is recommended for Parkinson’s 
patients with one or more; early onset of the disease 
(age at onset <50 years old), positive family history 
suggesting autosomal dominant or autosomal 
recessive inheritance, and high-risk ethnicities such 
as Ashkenazi Jewish or North African Berber (98). The 
choice of genetic tests should be determined by 
the patient’s unique circumstances. For example, 
the SNCA, GBA, PRKN, PINK1 and DJ1 genes may 
be considered in patients with age at onset <50. 
Disease specific genetic panels containing multiple 
genes rather than single gene screening are more 
convenient due to locus heterogeneity, lower cost, 
and increased efficiency. It is important to note that 
PD panels can vary greatly between laboratories in 
terms of the genes they contain.

More comprehensive genetic testing, such as Whole 
Exome Sequencing (WES) and Whole Genome 
Sequencing (WGS), can also be utilized. However, 
complexity of bioinformatic pipelines, issues related 
to variants of unknown significance and reporting 
of secondary findings may further complicate 
diagnosis and management of patients. Therefore, 
multidisciplinary approach is essential for the proper 
diagnosis, genetic counselling and management of 
these patients. 

Conclusion

PD is a disabling neurodegenerative disorder with 
increasing prevalence worldwide. In the last three 
decades, significant strides have been made in 
understanding the genetics of PD. The identification of 
genes related to PD and their functions has uncovered 
novel biological pathways that play a role in the 
development of PD. These new pathways not only 
helped us better understand the disease but also shed 
light on potential treatment options. On the other 
hand, advancements in genetic information have 
enabled the optimization of existing treatment options 
specific to each patient.
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