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Abstract 

The pesticide abamectin, which is often used in agriculture, poses a threat to aquatic animals. 

Though its toxicity to fish has not yet been fully understood. In this study, we used the comet assay 

to examine the effects of being subjected to various dosages of abamectin on the genotoxic impact 

of abamectin in Cyprinus carpio. During 10 days, common carp were exposed to three different 

doses of abamectin (0.3, 0.6, and 0.9 mg L-1) based on previously discovered levels in aquatic 

environments. Toward the completion of the investigation, the Comet assay was used to assess the 

damage frequency (%), Arbitrary unit (%), and Genetic damage index (%) in carp gill and liver 

cells.  The greatest damage frequencies of % 74.333±0.577 and % 70.333±2.082 were significantly 

found in the 0.9 mg L-1 group in the gill and liver cells, respectively (P<0.001). Our results showed 

a considerable increase in DNA strand breaks in C. carpio after exposure to abamectin, suggesting 

the pesticide's capacity to be genotoxic to fish. 
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Introduction 

The usage of pesticides in agriculture has increased the amount of food produced worldwide 

(Alexandratos & Bruinsma, 2012; Santos et al., 2023). Yet, as more and more pesticides are 

employed to boost agricultural production, the situation is growing more dangerous. Thus, there 

are concerns over the possibility of environmental pollution and its consequences on creatures other 

than the targets (Blahova et al., 2020). By faulty container handling, transportation problems, and 

direct application, pesticides can pollute land and water. The mechanisms of retention, 

transformation, and transportation all have a role in how pesticides behave in the environment 

(Carvalho, 2017). Pesticides can have a variety of biological impacts and can affect several 
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biochemical processes that are universal to all species. (Turan & Ergenler, 2022; Tresnakova et al., 

2022).  

Additional environmental factors and pesticides can produce oxidative stress, which is 

caused by a balance between oxidative and anti-oxidative stress mechanisms at the cellular level. 

Antioxidant enzymes and non-enzymatic antioxidants function to absorb reactive oxygen species 

(ROS) and protect cells from oxidative stress damage (Liang et al., 2017; Ergenler & Turan, 2022). 

In addition, oxidative stress will increase the inflammatory response and affect how the cells 

respond to infections and toxic chemicals as sources of harmful aggravation. 

A group of substances known as "abamectin" is employed for human consumption as a 

veterinarian insecticide and repellent. (Pitterna et al., 2009; Liu et al., 2020). In 1978, Streptomyces 

avermitilis and fermentative actinomyces were used to isolate the first chemicals in this class. 

(McCavera et al., 2007; Prichard et al., 2012). Abamectin is a mixture of avermectins (around 80% 

avermectin B1a and 20% avermectin B1b) (Yu et al., 2017)  (Figure 1). 

 

Figure 1. The chemical structure of abamectin (Yu et al., 2017). 

Abamectin can accumulate in animal tissues since it is known to be diffuse, slightly soluble 

in water, and soluble in organic solvents. (Prasse et al.,  2009; Lumaret et al.,  2012; Santos et al., 

2023).The usage of pesticides in aquatic environments and the harmful effects of pesticides on 

animals have been investigated in several research trials ( Novelli et al., 2012; Alm et al., 2017; 

Hong et al., 2020; Turan & Ergenler, 2022; Ergenler & Turan, 2022). Less is understood about 

their harm to aquatic habitats, particularly fish (Turan & Ergenler, 2022; Piriscila et al., 2023; Feng 

et al., 2023). Using the micronucleus test and comet assay, recent studies by Turan & Ergenler 

(2022), Ergenler & Turan (2022) revealed the genotoxic properties of acetamipridine and 

thiamethoxam in a common carp, Cyprinus carpio. Pesticides end up in the water when weeds in 

ecosystems and reservoirs of water are controlled. Since there is an increasing concern over the 
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presence of genotoxins in the aquatic environment, it is essential to develop methods for 

recognizing genotoxic chemicals. Additionally, it is unknown if interactions between aquatic 

organisms and abamectin lead to DNA damage (Feng et al., 2023). 

Abamectin, like many other pesticides, can pollute regions outside of its targeted usage and 

harm creatures that are not their targets. Because of its brief half-life, abamectin is not commonly 

found in high concentrations in freshwater, but it is nonetheless very poisonous and also can affect 

aquatic creatures, including many fish species (Bai & Ogburn, 2006). 

Fish is one of many aquatic organisms that serve as important biological monitors of aquatic 

ecosystems. Fish are the largest consumers and contribute significantly to the aquatic food chain 

by controlling the degree of pollution in aquatic ecosystems. Fish are directly exposed to many 

xenobiotics, making them ideal indicator organisms for measuring and monitoring water pollution. 

When foreign substances or carcinogens come into contact with fish, they trigger various 

interactions between the body's biological and chemical systems, ultimately resulting in 

biochemical abnormalities. Therefore, it is important to identify the mechanisms of pollution 

effects and all related countermeasures. To measure the quality of aquatic systems, fish can be used 

as biomarkers of water pollution (Bonomo et al., 2021). As a result of their capacity to metabolize 

and absorb contaminants in their systems, fish are among the most appropriate species for potential 

risk evaluation (Turan & Ergenler, 2019; 2022). 

To minimize negative impacts on non-target creatures and public health, it is essential and 

critical to monitor for harmful effects and screen for various pesticides. Consequently, the purpose 

of this work was to use the comet test to investigate the genotoxic effects of abamectin in Cyprinus 

carpio, a model fish species. 

Materials and Methods 

Experimental Design 

A total of 200 common carp (Cyprinus carpio Linnaeus, 1758), weighing an average of 2.50 g, 

were used in the experiment. The carp were acclimated for 15 days in a well-ventilated thirty-litre 

glass tank filled with dechlorinated water that had constant light periods (12:12 light/dark cycle). 

24 hours passed between the last feeding and the time the animals were exposed to the pesticide. 

The specimens were fed commercial carp feed at a rate of 3% of their body weight. After 

acclimation, the fish were divided into two groups with n = 15 each: an experiment group and a 

group that served as a control. Three separate abamectin concentrations (0.3, 0.6, and 0.9 g L-1) 

were chosen to symbolize an acute test lasting a week based on previously observed aquatic 

environmental values for ten days. There were 45 identical fish in each treatment group. At the end 

of the experiment, fish were given a dose of five milligrams per liter of quinaldine sulfates (Sigma 

Chemical Company, Germany) to put them to sleep (Yanar & Genç, 2004). When the specimens 
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stopped reacting to physical stimuli, they were only handled to extract tissue (liver and gills) for 

the Comet test (after around 1 to 2 minutes). 

Comet Assay 

An upgraded version of the Cavalcante et al., (2008) method employing gill cell suspension, cell 

pellet retention, and single-cell gel electrophoresis was used to conduct the comet experiment. Each 

slide was examined under a fluorescence microscope Image2M Zeiss at X40 magnification after 

being stained with ethidium bromide and neutralized with ice-cold 0.4 M Tris solution. Images of 

100 cells from each sample were utilized to visually evaluate the nucleoids, which were divided 

into five groups. For comparison, the damage proportion (% DF), arbitrary values (AU), and DNA 

damage rating (GDI) were calculated. 

Statistical Analysis 

Before doing any statistical calculations, the data were checked for normality and homogeneity. A 

one-way analysis of variance was then performed to see whether there were any significant 

differences between the treatment groups. The means were analyzed using a one-way ANOVA, 

and differences were considered statistically meaningful at (P<0.05). (Norusis, 1993). 

Results 

Table 1 presents averages and standard deviations for gill and liver cells of C. Carpio damage 

frequencies (% DF), arbitrary unit value (AU), as well as genetic damage index (% GDI). 

Table 1. The averages and standard deviations for DNA damage in control and different 

concentrations of abamectin-treated carp gills and liver. (n=15). 

The information is presented as the numeric mean and standard deviation. Significant deviations are indicated by values with various superscripts in each section. 

Determine the level of significance between the three concentrations of abamectin and DNA damage in the gill tissues of carps taken from the control (*, P<0.001). 

Groups 

(g L-1) 

Damage Frequency 

(%) 

Arbitrary Unit 

AU 

Genetic Damage Index 

(%) 

Liver    

Control 26.000±3.472a 49.333±8.014a 0.493±0.814a 

0.3 61.000±1.000b 158.333±1.528b 1.583±0.152b 

0.6 65.000±1.000b 173.667±7.572c 1.736±0.752c 

0.9 74.333±0.577c 181.000±3.606c 1.810±0.360c 

P *** *** *** 

Gill    

Control 24.000±0.577a 67.333±1.452a 0.673±0.145a 

0.3 56.333±1.528b 114.667±8.145b 1.146±0.814b 

0.6 62.333±2.309c 159.000±8.660c 1.590±0.866c 

0.9 70.333±2.082d 157.667±6.506c 1.577±0.650c 

P *** *** *** 
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The damage frequency (%), arbitrary unit values (AU), and genetic damage index (%) in 

the gill and liver cells of C. carpio subjected to the control and three different concentrations of 

abamectin are reported together with means and standard deviations in Table 1. The DNA damage 

frequency, AU and GDI parameters are also impacted by abamectin therapy (P<0.001). The study's 

findings showed that the 0.9 mg L-1 group substantially had higher damage frequencies (%) at gill 

and liver cells, correspondingly, of 74.333±0.577 and 70.333±2.082 (P<0.001) (Table 1). 

The lowest damage frequencies (%) were 24.000±0.577 and 26.000±3.472 discovered in 

this report's control group's liver and gill cells, accordingly. In addition, it was shown that 

additional damage markers (AU and GDI) were considerably greater (P<0.001) in the gill and liver 

tissues of the 0.3 and 0.6 mg L-1 group compared to the control group (Table 1). In this study, the 

control group notably had the least AU and GDI. The highest AU and GDI for gill were found to 

be 181.000±3.606 % and 1.810±0.360 % as a result of the study, while the highest AU and GDI 

for liver were found to be 157.667±6.506  and 1.577±0.650  % accordingly, in the 0.9 mg L-1 group 

for gill and liver cells (P<0.001). In this study, the DNA damage increased due to the increase in 

the concentrations of abamectin. 

Discussion 

Pesticides have widespread applications and are frequently employed to protect agricultural 

productivity. Yet, the consequences of the pesticides sprayed on agriculture might not only operate 

on target pest populations but additionally have effects on non-target species. Aquatic pesticide 

exposure is thought to come through runoff, leaching, spray drift, preferred migration, and via soil 

high porosity, or a mixture of such activities through agricultural regions. Pesticides are mostly 

transferred to aquatic environments via discharge, although the rate of movement is influenced 

either by different soil types, the physicochemical characteristics of the pesticides, the time and 

application rate, and the precipitation following pesticide application. Degradation of pesticides or 

adsorption to surfaces can be caused by abiotic mechanisms such as photodecomposition by 

sunshine or breakdown by water (Sumudumali et al., 2021). Yet, due to their indiscriminate and 

unregulated use, their use might have an impact on species that are not the target. Depending on 

the type of pesticide, its concentration, the length of exposure, and each one's vulnerability to other 

variables, the impacts of pesticides might show in different ways and to varying degrees. DNA 

damage and pesticide exposure have been linked to a wide range of issues. Pesticide exposure has 

been associated with DNA damage in many living things. Pesticide exposure causes changes in the 

genetic population, especially DNA damage (Valencia-Quintana et al., 2023). 

 The comet test may be utilized to assess pesticide exposure. The single-cell gel 

electrophoresis test has been employed in the evaluation of food items in ecotoxicity, radioactive 

genetics, ecologic genotoxicity, and genetic toxicology. It has also been used to conduct studies 

and genetic toxicology brought on by exposure to potentially disruptive chemicals, at the level of 
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diagnosis, as a result of lifestyle decisions, or as a result of the interaction between diet and anti-

oxidant substances use on carcinogenesis.(Liao et al., 2009; Hayat et al., 2018). 

There aren't many studies on the toxicity abamectin causes in carp, even though its 

toxicological effects have been extensively researched. In this investigation, abamectin damage led 

to DNA damage in the liver and gill material of carp. Many studies have found that creatures 

exposed to pesticides develop cells with Strand breaks. Below are some studies on creatures that 

have been introduced to pesticides. 

Abamectin damages several tissues and organs in aquatic organisms (Mohammed et al., 

2018). In zebrafish investigations, exposure to abamectin damaged the structure and function of 

the gill tissues, eventually leading to oxygen starvation and mortality (Novelli et al., 2016). 

According to Feng et al. (2023) the carp gill filament structure was harmed with increasing doses 

of abamectin exposed, alongside distended and tissue necrosis gill epithelial cells and cells that 

were inflammatory, suggesting that abamectin hindered the integrity of the carp gill and impacted 

the carp's respiratory function. 

Hepatocytes are being employed for the first time to assess the genotoxicity of Abamectin 

to S. prenanti. Just one day of treatment was necessary for DNA damage to manifest, and OTM 

levels increased in a dose- and time-dependent way. Even at a density (0.5 g/L) that was 

significantly lower than that of the environmental level, Abamectin produced substantial 

Genotoxicity in S. prenanti liver hepatocytes (Novelli et al., 2016), in addition to remaining 

densities 24 hours after implementation in aquatic species (Feng et al., 2023). 

The aquatic organisms, such as Daphnia, were quite dangerous to Abamectin; for example, 

48-h Abamectin EC50 measurements for Daphnia similis and Daphnia magna have been identified 

as 5.1 ng/L and 0.25 g/L, consequently (Novelli et al., 2012). The outcomes for fish were much 

better; for Danio rerio, the 48-h LC50 was 59 g/LV. Fish rates were fairly high. The numbers for 

fish were significantly higher; for example, the 48-hour LC50 for Danio rerio was 59 g/L (Alm et 

al., 2017). The toxicology of this substance varied depending on the variety; for example, the 

Abamectin LC50 values for the rainbow trout (Oncorhynchus mykiss), bluegill fishing sunfish 

(Lepomis macrochirus), channel catfish (Ictalurus punctatus), and carp (Cyprinidae sp.) were 3.2, 

9.6, 24 and 42 g/L, accordingly (Novelli et al., 2012). Based on another study, the LC50 values for 

Abamectin on common carp and Tilapia mosambica were 0.475 and 6.828 respectively (Jasmine 

et al., 2008). Aquatic life was quite harmful to Abamectin. Abamectin was shown to be dangerous 

and to induce genotoxicity in living things within this inquiry once the gill and liver tissues were 

investigated. According to our research, abamectin exposure significantly increased the number of 

DNA breakages in C. carpio, indicating that the pesticide may be benign to fish. Our outcomes 

concur with those of previous studies. 

In conclusions, we might recommend utilizing common carp as a model organism for eco-

toxicological investigations after analyzing the sensitivity of this agricultural toxin to typical 
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reference contaminants. Hence, more research using different agricultural pesticides here on 

species is needed for the purpose of assessing their eligibility for toxicity detection, which is 

required for water environment monitoring tools. 
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