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Abstract—In this research, we delve deep into the realm of Targeted Social Engineering Email Detection, presenting a novel

approach that harnesses the power of Lambda Architecture (LA). Our innovative methodology strategically segments the BERT

model into two distinct components: the embedding generator and the classification segment. This segmentation not only optimizes

resource consumption but also improves system efficiency, making it a pioneering step in the field. Our empirical findings, derived

from a rigorous comparison between the fastText and BERT models, underscore the superior performance of the latter. Specifically,

The BERT model has high precision rates for identifying malicious and benign emails, with impressive recall values and F1 scores.

Its overall accuracy rate was 0.9988, with a Matthews Correlation Coefficient value of 0.9978. In comparison, the fastText model

showed lower precision rates. Leveraging principles reminiscent of the Lambda architecture, our study delves into the performance

dynamics of data processing models. The Separated-BERT (Sep-BERT) model emerges as a robust contender, adept at managing

both real-time (stream) and large-scale (batch) data processing. Compared to the traditional BERT, Sep-BERT showcased superior

efficiency, with reduced memory and CPU consumption across diverse email sizes and ingestion rates. This efficiency, combined

with rapid inference times, positions Sep-BERT as a scalable and cost-effective solution, aligning well with the demands of Lambda-

inspired architectures. This study marks a significant step forward in the fields of big data and cybersecurity. By introducing a

novel methodology and demonstrating its efficacy in detecting targeted social engineering emails, we not only advance the state

of knowledge in these domains but also lay a robust foundation for future research endeavors, emphasizing the transformative

potential of integrating advanced big data frameworks with machine learning models.
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1. Introduction

Modern cyberspace is characterized by a com-
plex networked digital environment, offering new
prospects and avenues for companies to engage in

extroverted activities and behaviors [1]. However,
the emerging cyber ecosystem encounters various
fears, encompassing cybercrime, advanced persis-
tent threats (APTs), and zero-day attacks. These
advanced threats evade conventional defense strate-
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gies and necessitate a comprehensive approach to
managing all endeavors to exploit vulnerabilities
within the system [2]. Small and medium-sized en-
terprises (SMEs), as well as organizations, possess
an understanding of their responsibility to adhere to
the General Data Protection Regulation (GDPR) and
safeguard the personal data under their control. The
organization allocates resources toward implement-
ing sophisticated and intelligent measures in order
to enhance its cybersecurity stance [3]. Network
traffic analysis plays a crucial role in enabling
organizations to promptly detect and respond to
security incidents, thereby mitigating the adverse
effects of cyberattacks [1]. Through the provision of
real-time monitoring and threat detection capabili-
ties, this approach facilitates the swift identification
of potential threats, enabling organizations to take
appropriate measures in a timely manner. However,
an easy, brother-scale cyber attack, called Phishing,
represents the prevailing method employed in social
engineering attacks [4]. A hacker employs these
sorts of attacks in an attempt to acquire sensitive
information from the user, with the intention of
subsequently engaging in illegal activities against
the user. In contemporary times, phishing attacks
have emerged as a prevailing form of social engi-
neering attacks encountered by individuals utilizing
the public internet, as well as governmental bodies
and commercial enterprises [5]. Hence, there is
a pressing need for enhanced phishing detection
technology to address the escalating proliferation
of phishing emails. This requirement will explore
the employment of machine learning methods and
technical remedies proposed to mitigate the issue
of phishing [6]. Additionally, it will highlight the
crucial awareness that users should possess to effec-
tively identify and prevent falling victim to phishing
scams [4].

1.1. Phishing Email Classification with Classi-
cal Machine Learning

Phishing attacks have undergone evolutionary
changes as time goes on, using various strategies to
deceive people into revealing sensitive information,
including usernames and passwords, and financial
information [4]. Phishing attempts have been found
to create significant harm, leading to serious finan-
cial losses, instances of identity theft, and reputa-
tional damage for the organizations that are targeted.
In recent times, there has been a notable rise in both
the quantity and complexity of phishing attempts, as
cybercriminals persistently devise novel methods to
elude identification and focus on individuals who
are unaware of their intentions [7]. Recently, Arti-
ficial intelligence-based phishing detection methods
gained much attention. In [6], the authors presented
a detection model that utilizes machine learning
techniques. Their aim was to identify the intrinsic
characteristics of email text and other relevant fea-
tures in order to classify them as either phishing or
non-phishing. Three distinct datasets were employed
for this purpose. Upon conducting a comparative
analysis, it was determined that the utilization of
a higher number of features resulted in the attain-
ment of more accurate and efficient outcomes. The
boosted decision tree algorithm achieved accuracy
rates of 0.88, 1.00, and 0.97 in consecutive order
when applied to the data sets. Another study [8]
introduced a novel automated framework for de-
tecting malicious emails, employing deep-enhanced
learning to analyze various components of emails,
including the body, header, and attachments, and
presented a demonstration of an ensemble frame-
work consisting of deep-learning classifiers. The
comprehensive evaluation of the proposed frame-
work demonstrates its effectiveness, as evidenced
by an AUC of 0.993. A recent study [9] incorpo-
rated the use of machine learning algorithms and
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deep convolutional neural networks (CNNs). The
outcomes of the implementation have demonstrated
accuracy rates of 92%, 94%, 96%, and 98% for the
K-Nearest Neighbors (KNN), Naive Bayes (NB),
Bidirectional Long Short-Term Memory (BiLSTM),
and Bert-Based Cards models, respectively. The
convolutional neural network algorithm exhibited
superior performance compared to other algorithms
in the tables, achieving a higher accuracy rate of
99%. In [10], the researchers used three datasets to
train and evaluate machine learning classifiers. Fur-
thermore, a total of six machine learning classifiers
have been assessed, specifically NaiveBayes, ANN,
DecisionStump, KNN, J48, and RandomForest. The
classifiers were trained and tested on three datasets
in a two-stage process. According to the results,
the artificial neural network (ANN) classifier has
demonstrated superior performance, achieving an
accuracy rate of 88.92% when applied to Dataset-3.

1.2. Phishing Email Classification with Clas-
sical Machine Learning and Natural Language
Processing

The prevalence of phishing emails has experi-
enced a significant surge in recent years, indicating
a pressing demand for enhanced and more efficient
strategies to combat this issue. A variety of tech-
niques have been developed to mitigate the impact
of phishing emails; however, a comprehensive reso-
lution to this issue remains elusive. Several studies
[11] represent a pioneering effort in the domain of
using natural language processing (NLP) and ma-
chine learning (ML) methodologies to identify and
recognize phishing emails. In the realm of phish-
ing email detection, it is common to employ ma-
chine learning (ML) techniques, specifically cluster-
ing and classification methods [12]. Consequently,
these techniques rely on the utilization of machine
learning-based methodologies, along with machine

learning-based assessment criteria. However, the
dynamic nature of phishers may ultimately render
evaluation outcomes obsolete over time [13]. The
aforementioned factor has significantly increased
the intricacy of the cybersecurity field. Nevertheless,
this issue can be effectively addressed by diligently
focusing on the formulation of evaluation outcomes
during the development process. The current utiliza-
tion of NLP technology for the detection of phishing
emails, instead of employing DL techniques, fails
to consider the distinctions between anti-phishing
email objectives and overlooks contextual informa-
tion to some extent. Consequently, this approach
hampers the advancement of phishing email detec-
tion [11].

1.3. Phishing Email Classification with Trans-
formers

The most recent breakthrough in NLP is the
architecture of transformers with the attention mech-
anism with [14]. Applications of transformers and
derived architectures gained a lot of popularity in
cybersecurity applications for their representation
capability and accuracy for text data. A recent
study [15] presented a novel approach to devel-
oping an effective classification model for detect-
ing spam in online SMS messages. The proposed
method leverages advanced topological sentence
transformer techniques. Researchers proposed a fea-
sible and efficient integration of pre-trained natural
language processing (NLP) repository models with
the functionality provided by the sklearn library and
utilized large-text data models from HuggingFace,
specifically the roberta-base model, and then em-
ployed linguistic natural language processing (NLP)
transformer techniques on NLP datasets consist-
ing of short sentences. Their method proved that
the model utilizes semantically similar paraphrase
and sentence transformer methodologies to achieve
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optimal F1 scores on an SMS dataset. Another
study [16] introduced a novel method for detecting
spam emails, which involves the utilization of a
pretrained bidirectional encoder representation from
the transformer (BERT) and machine learning al-
gorithms. The objective is to accurately classify
emails as either ham or spam. The email texts were
inputted into the BERT model, and the resulting
BERT outputs were utilized to represent the texts.
Four different classifier algorithms were utilized
in the field of machine learning to categorize the
characteristics of the text into either ham or spam
categories, and the efficacy of the proposed model
was evaluated through experimentation, utilizing
two publicly available datasets. The evaluation re-
sults indicate that the logistic regression algorithm
exhibited superior classification performance in both
datasets. Additionally, the proponents provided a
rationale for the effective capability of the proposed
model in identifying spam emails. In another recent
study [17], the authors presented a highly adaptable
automated email classification system that utilizes a
unique publicly available dataset consisting of 1447
Romanian business-oriented emails that were manu-
ally annotated. A robust foundation was established
by employing pre-trained Transformer models for
token classification and multi-task classification, re-
sulting in F1 scores of 0.752 and 0.764, respectively.

1.4. Cybersecurity and Big Data Processing

The concept of ”Big Data” refers to the vast
and complex sets of data that are too large and
intricate to be effectively managed. Cybersecurity
analytics systems, specifically those pertaining to
Big Data Cybersecurity Analytics (BDCA), leverage
prominent big data technologies such as Apache
Spark to effectively gather, retain, and scrutinize
substantial quantities of security event data with
the objective of identifying and thwarting cyber-

attacks [18]. The exponential growth of digital
data, including security event data, is leading to a
significant increase in volume. The rate at which
security event data is generated and inputted into a
Big Data Cybersecurity Analytics (BDCA) system
is indeterminate. Hence, it is imperative for a Big
Data Cybersecurity Analytics (BDCA) system to
possess a high degree of scalability in order to effec-
tively handle the volatile fluctuations in the velocity
of security event data. Nevertheless, conventional
software systems such as relational databases and
data warehouses face limitations in their ability to
effectively gather, store, and analyze vast amounts
of data. Hence, there is a growing utilization of
big data storage and processing technologies across
diverse domains. This trend is driven by the need to
effectively manage the substantial magnitude, speed,
and diversity of data [19].

1.5. Cybersecurity Applications with Lambda
Architecture

There are several LA bases cyber security appli-
cations that exist and getting more and more pop-
ular. In [20], the authors present a novel cognitive
computing Security Operations Center (SOC) that
utilizes intelligence-driven approaches and relies
solely on progressive, fully automated methodolo-
gies. The efficiency of the proposed λ-Architecture
Network Flow Forensics Framework (λ − NF3)
makes it a robust cybersecurity defense framework
that effectively mitigates adversarial attacks. The
implemented architecture utilizes the Lambda ma-
chine learning framework to effectively analyze a
combination of batch and streaming data. The pro-
posed methodology employs an Extreme Learning
Machine neural network with a Gaussian Radial
Basis Function kernel (ELM/GRBFk) for conduct-
ing batch data analysis. As a result, this tool was
designed for the field of forensics in big data,
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with the aim of improving the automated defense
strategies employed by Security Operations Centers
(SOCs) in order to effectively address the various
threats encountered within their environments. An-
other research, [21], was focused on examining the
security aspects of big data and ensuring that its per-
formance is maintained during transmission across
networks. The security of big data in an environment
of networks was proposed to be enhanced by the in-
tegration of compression and splitting mechanisms
with big data encryption in the proposed model.
Furthermore, the utilization of user-defined ports
and the implementation of multiple paths during
the transmission of large datasets in a segmented
manner enhance the dependability and safeguard-
ing of big data within a networked environment.
Several sectors have been working on cyber secu-
rity with different perspectives. In [22], researchers
focused on a significant obstacle in the financial
industry, namely the need for real-time cybersecu-
rity analytics on financial transaction data. Their
solution presents a novel approach to combining
supervised and unsupervised artificial intelligence
models, leveraging appropriate technological tools
capable of efficiently processing vast quantities of
transaction data. A Lambda architecture was de-
vised to manage both real-time and batch analytics
workflows in a cohesive manner. This architectural
design was specifically engineered to effectively
manage large volumes of data by leveraging the ca-
pabilities of both batch and stream processing tech-
niques. The proposed methodology aims to achieve
a harmonious equilibrium between latency, through-
put, and fault tolerance. This is accomplished by
employing batch processing techniques to generate
comprehensive and precise representations of batch
data. Simultaneously, real-time stream processing is
utilized to generate representations of online data in
a timely manner [22]. Another research [3] presents
a novel Network Traffic Analyzer, which serves as

a vital element within the cyber threat intelligence
information sharing architecture (CTI2SA) of the
Cyber-pi project. The proposed system, which is
based on the Lambda (λ) architecture, improves ex-
isting active cybersecurity methodologies for traffic
analysis by integrating batch and stream processing
techniques to effectively manage large volumes of
data. The core module of the Network Traffic An-
alyzer incorporates an automated model selection
mechanism, which effectively identifies and selects
the machine learning model that exhibits the most
superior performance when compared to its com-
peting counterparts. The objective is to ensure the
continued operational effectiveness of the architec-
ture’s overall threat identification capabilities.

In the study [23], the authors introduced a novel
intrusion detection system (IDS) model that utilizes
deep neural networks within the context of edge
cloud-based Lambda architecture. The efficacy of
this approach was assessed using real-time traffic
data within IoT networks, resulting in a 99% de-
tection rate for attacks. However, the efficacy of
this approach was compromised in identifying novel
attack strategies as a result of its reliance on a
narrow set of features from benchmark instances.
In another IDS-related research [24], the researchers
introduced a novel intrusion detection system (IDS)
that utilizes a deep ensemble-based approach within
the Lambda architecture framework. The proposed
system adopts a multi-pronged classification strat-
egy. The binary classification approach employs
Long Short Term Memory (LSTM) to distinguish
between malicious and benign network traffic. On
the other hand, the multi-class classifier utilizes an
ensemble of LSTM, Convolutional Neural Network
(CNN), and Artificial Neural Network (ANN) clas-
sifiers to identify the specific type of attacks. The
training of the model is conducted in the batch layer,
whereas the evaluation in real-time is accomplished
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by making inferences using the model in the speed
layer of the Lambda architecture. The proposed
methodology demonstrates a remarkable level of
precision exceeding 99.93% and offers significant
time-saving benefits through the implementation of
a multi-faceted classification strategy and the uti-
lization of the Lambda architecture.

The concurrent processing of data streams, both
in real-time and offline, has been a crucial require-
ment for Big Data applications over an extended
period. Various technologies and corresponding Big
Data architectures are determined by the specific
requirements of processing batch data and real-
time processing tasks. The Lambda Architecture
(LA) is a widely adopted concept that has been
developed and is currently in common use [25].
The architecture consists of three distinct layers
that facilitate the simultaneous processing of both
data in motion (DiM) and data at rest (DaR), along
with a serving layer responsible for presenting the
derived insights. According to the source cited,
every LA layer is assigned a specific role in the
processing of data with different attributes. These
layers are responsible for merging the processed
results and providing the combined datasets for
purposes such as visualization, querying, and data
mining [26]. The primary function of the speed layer
is to handle the continuous flow of data in real time,
commonly referred to as streaming data or real-
time data. This layer is particularly susceptible to
disruptions caused by delays in data transmission
and the occurrence of recurring data patterns. The
batch layer assumes responsibility for the processing
of offline data (DaR), the computation of prede-
termined analytics actions, and the rectification of
potential errors that may occur during the delivery
of data to the speed layer. The serving layer is
responsible for the ingestion of data from both the
batch and speed layers, as well as the subsequent

indexing and merging of the resulting data sets to
facilitate the execution of analytical queries. The
capacity of the serving layer should be sufficient
to efficiently process and manage a high volume
of real-time streaming data (DiM) as well as bulk
data (DaR). It is important to emphasize that LAs
are finally consistent solutions for applications that
involve enormous amounts of data and may be used
to resolve the CAP theorem [27]. Upon completion
of data processing, the batch layer undertakes the
task of rectifying any discrepancies in data digestion
that may have been generated by the real-time
layer. Accurate data are eventually disseminated and
rendered accessible at the serving layer, thereby
enabling subsequent processes to obtain pertinent
information.

The major benefit of an LA-based Big Data sys-
tem is that it can handle the necessity of designing
a fault-tolerant architecture to prevent data loss
due to hardware failures and unanticipated errors
during DaR and DiM processing. It performs ef-
fectively in applications that demand low-latency
read and update operations. This type of system
must be able to handle ad-hoc queries, as well
as be linearly scalable and extendable. According
to previous studies, traditional LA should have an
extra layer [28]. To enhance LA, the researchers
used software engineering concepts, developed a
reference model for Big Data systems, and used
it as the foundation for developing a software ref-
erence architecture (SRA) for semantic-aware Big
Data operations. They demonstrated that SRA could
manage the most common Big Data features by
adding an extra layer to the LA, the Semantic Layer.
These sophisticated data processing operations, as
well as providing the corrected data as precisely as
possible, clearly necessitate highly coordinated and
continuous operation between the speed and batch
layers. The fact that LA is made up of at least three
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layers allows for the flexible use of different Big
Data technologies for each layer, which is a huge
advantage. However, there are certain disadvantages
to this. Although LA is a promising approach, its
success is dependent on an effective mix of appro-
priate and mature technology [29]. The main issue
is creating a Big Data application for each layer
independently and then integrating them so that they
can operate together and be interoperable. Because
various technologies are used at different LA levels,
each layer requires its own development and mainte-
nance effort. If the data model or data format in the
application changes or if additional new analytics
capabilities are required, this big data application
must be updated, tested, and deployed at all layers.
A LA was proposed in a recent report for smart
agricultural applications. The work [30] provides a
general framework for explaining the problems of
obtaining, processing, storing, and displaying mas-
sive amounts of data, including batch and real-time
data. A main archetype has been demonstrated and
tested on several farms with impressive results. For
context-sensitive trajectory prediction, an LA-based
big data platform was proposed [31]. According to
its design, this platform performs batch and stream
operations before combining them to perform jobs
that cannot be performed by analyzing any of these
layers alone. The most important aspect of the
proposed platform is that it is context-neutral. Their
findings demonstrated that each component of the
LA is effective in achieving specific goals and that
the combination of these components is important
to improve the overall accuracy and performance of
the platform.

As a result, classical machine learning algorithms,
deep learning architectures, and novel transformer-
based NLP methods are very common in the lit-
erature. According to several results shared in the
studies, transformer-based models have several ad-

vantages, such as improved classification accuracy.
However, they require very high computation power,
and retraining this architecture from scratch is not
feasible, especially with a very limited corpus. Even
after the successful training and testing stage, if
a transformer-based model is decided to be used,
it requires a considerable amount of system re-
sources to serve the model, and when the number
of inferences per second from the model-hosted
environment increases, latency issues and problems
might occur. So, it has to be scaled properly, and
even model compression and quantization methods
can be useful. In addition, specialized hardware for
deep learning models accelerator, such as Ama-
zon inferentia [32], could sometimes be a viable
solution. In reality, when the number of emails
to be classified increases, processing these emails,
including the attachments and classification of these
emails, is not feasible with the transformers due
to resource constraints. However, data processing
approaches based on big data might be useful for
solving this type of problem. As a state-of-the-art
approach currently, the lambda architecture can pro-
vide the best opportunities to mitigate this require-
ment. But transformer architectures’ high resource
requirements again constitute an obstacle to deploy-
ing these transformers in lambda architectures.

This study aims to present an LA, a reasonably
new generation of big data architecture, as an end-
to-end extensive data system for a scalable, fault-
tolerant, and high-accuracy targeted social engineer-
ing email (spam and phishing emails) classification
with a very novel data transfer method, an inno-
vative deep learning model, and a low resource
data processing methodology. To the best of our
knowledge, this is the first study to propose the
deployment of a big data system based on LA im-
plementation for targeted social engineering email
classification problems in conjunction with pre-
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trained language models, such as BERT transformer
architectures [33], RoberTa [34], and Conv-BERT
[35]. As an additional contribution and novelty, to
the best of our knowledge, again, our transformer
architecture separating approach is the first time it
has been proposed not only for big data systems
but also for other application domains. This study
focuses primarily on the examination and perfor-
mance evaluation of the novel method of separating
a transformer model into two parts and using these
two partial model pieces in a lambda architecture to
overcome high resource and hardware requirements.
This study not only makes a valuable contribution to
the current body of knowledge on LA but also fills
a notable gap in the existing literature. By providing
a novel transformer model splitting methodology to
overcome the resource constraints of the transformer
model deployment and to demonstrate its effective-
ness through empirical experiments, this study paves
the way for further research in this area.

It is worth noting that in addition to the trans-
former splitting method as a novel approach, this
work is based only on the content-based phish-
ing/spam email detection approach, and we have
not taken advantage of using the other machine
learning-related features such as IP addresses,
URL-based information, attachments in the emails,
image-embedded email body content.

This paper is meticulously structured to provide a
comprehensive insight into the domain of detecting
targeted social engineering emails. In Section 1,
we introduce the pressing challenges and under-
score the importance of advanced detection mecha-
nisms. Section 2 provides a comprehensive review
of the literature, highlighting prevailing research and
methodologies; we dive into our chosen method-
ologies, exploring the nuances of transformer mod-
els such as the BERT and the fastText model.
Our unique approach to classifying and detecting

phishing emails is presented, where we detail our
architecture and its real-world deployment using the
Lambda Architecture system. Section 3 also outlines
our experimental setup, including data sets, training,
and evaluation metrics. We present and critically
analyze our findings, comparing our results with
existing methodologies and discussing their impli-
cations. The paper culminates in Section 4, where
we summarize our contributions, revisit our research
objectives, and propose potential directions for fu-
ture exploration in this domain.

2. Material and Methods

In the rapidly evolving digital era, many organi-
zations are increasingly prioritizing the exploration
and utilization of relevant Big Data technologies to
enhance the accuracy, speed, and efficiency of their
analytical processes [36]. The challenge of perform-
ing real-time analytics on Big Data is significant,
primarily due to the vast volume of intricate data
that must be efficiently distributed for processing.
Big data is characterized by its substantial volume,
intricate structure, and real-time performance capa-
bilities. The primary challenge associated with big
data processing is to improve both the speed and
accuracy of processing.

Lambda architecture (LA) offers a solution to
some of these constraints inherent in data process-
ing frameworks. The proposed approach is based
on the utilization of two distinct data processing
streams within a single system. This methodology
involves real-time computing, focusing on the rapid
processing of data streams, and batch computing,
designed to handle large workloads for delayed
processing [37]. Although these two modes are not
novel in themselves, LAs enable their synchronized
execution to prevent interference. The allocation of
resources across cloud infrastructure has a signif-
icant impact on both performance and cost. Pre-
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dicting performance in advance would allow archi-
tects to make more informed decisions regarding
resource allocation, thus enhancing the efficiency of
system utilization. Our approach serves as a rapid
evaluation tool to assist in making design choices
with respect to parameters, ultimately contributing
to improved architecture designs.

On the other hand, phishing and email spamming,
the predominant form of social engineering attacks,
involves the perpetrator formulating an email with
content enticing enough to lure potential victims
[38]. Understanding the mindset of attackers is cru-
cial when formulating email defense strategies. The
application of principles of persuasion is the main
approach in constructing highly effective emails.
There are numerous machine learning-based classi-
fication models available that can potentially address
this problem. This study aims to explore the feasi-
bility of constructing a robust classifier leveraging
machine learning-based transformers, such as BERT
[39] and proposes an architectural modification for
its usage in an LA for distributed data processing
and only considers a content-based phishing/spam
email detection approach.

The current study focuses on the analysis and
performance assessment of a unique method of
dividing a transformer model into two parts and
employing these two partial models in the lambda
architecture. This approach aims to overcome the
high resource and specialized hardware require-
ments associated with transformer models. The pro-
posed methodology can be easily adapted to other
phishing/malicious emails written in different lan-
guages, such as Turkish.

In the following sections, we present an LA as
an end-to-end big data system for phishing email
classification with a novel transformer-based archi-
tecture usage. It is worth noting that because we use
common phishing email-based datasets, our current

work is only limited to providing a solution for the
English language. However, our proposed method-
ology can easily be applied/adapted to other phish-
ing/malicious emails written in other languages,
such as Turkish.

2.1. Problem Definition

The literature often uses traditional machine learn-
ing algorithms, deep learning architectures, and
innovative transformer-based NLP techniques. Re-
search findings suggest that transformer-based mod-
els offer a number of benefits, including increased
classification accuracy. Though retraining this archi-
tecture from the start is not possible, particularly
with a very small corpus, they need very high lev-
els of computer power. A transformer-based model
requires a significant amount of system resources to
serve it, even after the successful training and testing
stages, and when the rate of inferences per second
from the model-hosted environment rises, latency
issues and problems may arise. As a result, the
scaling must be done correctly, and approaches like
model compression and quantization may be help-
ful. Additionally, hardware designed specifically to
accelerate deep learning models, such as Amazon
inferentia [32], can sometimes be an effective rem-
edy. In fact, due to resource limitations, process-
ing emails, including attachments, and classifying
emails becomes impractical with transformers as the
volume of emails to be categorized rises. To solve
this kind of problem, big data-based data processing
techniques could be helpful. Lambda architecture,
which is now the state-of-the-art method, may pro-
vide the greatest chance to reduce this demand.
However, again, deploying these transformers in
lambda systems is difficult because of the high
resource needs of transformer topologies.

With a highly innovative data transmission ap-
proach, a transformer-based deep learning model,
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and a state-of-the-art big data processing architec-
ture, this research intends to present an LA as an
end-to-end big data system for a scalable, fault-
tolerant, and high-accuracy phishing email classi-
fication problem. The proposed LA-based big data
system for phishing email classification problems
in combination with pre-trained language models,
such as the transformer architectures BERT [33],
RoberTa [34], and Conv-BERT [35]. In order to pro-
vide a solution to the high resource and specialized
hardware requirements, this work focuses, in partic-
ular, on the analysis and performance assessment of
the unique way of dividing a transformer model into
two parts and employing these two partial models
in the lambda architecture. This study sets the way
for more research in this field by offering a unique
transformer model splitting approach to get beyond
the resource limitations of deploying transformer
models and proving its efficacy through empirical
testing.

It should be noted that since we leverage widely
used phishing and spam email-based datasets,
our present effort is restricted to simply offer-
ing an English-language solution. For other phish-
ing/malicious emails sent in other languages, such
as Turkish, our suggested technique can be readily
manipulated or altered.

2.2. Lambda Architecture based Big Data Sys-
tem

An LA compromises speed, batch, and serving
layers in order to analyze incoming data and re-
spond to inquiries on stored historical and newly
acquired data [40]. When the serving layer receives
a query request, the response is created by simul-
taneously interrogating both real-time and batch
views simultaneously and integrating the data from
these levels. Both real-time and batch databases are
searched at the serving layer, and the results are

combined into a single resultant data set to provide
a near-real-time data set in response to the query. A
scalable distributed data transmission system (data
bus) allows continuous data transfer to batch and
speed layers simultaneously. On the speed layer,
data processing and analytics are performed in real
time, while on the batch layer, they are performed
offline. The LA is conceptually represented and
shown in Figure 1. Incoming data from the data
ingestion bus are transmitted to both the speed and
batch layers, which then generate multiple views
employing new and old data and store the results
on the LA’s serving layer. Several extant big data
technologies may be utilized at each of the three
phases of a LA’s construction. According to LA’s
polyglot persistence paradigm, each available big
data technology framework may be used for its
specific data processing capacity to handle this type
of data and support analytical activities.

The batch layer is responsible for the manage-
ment, operation, and storage of units of immutable
primary data sets. The incoming, very recent data
is simply added to the historical data already stored
in the batch layer. In the batch layer, update and
remove actions are not allowed. As required, contin-
uous data processing and analytics are executed to
generate batch views from these data. A new batch
view calculation operation is reexecuted sequen-
tially and combined to generate new batch views
when coordinated with the speed layer or on a pre-
determined number of new data arrivals. This pro-
cess is continuous and unending. The batch views
are made up of the immutable data sets of the batch
layer. Depending on the volume of both incoming
and stored historical data, batch data processing and
analytical computations require an excessive amount
of time. Consequently, it is uncommon to execute
batch layer actions and computations to generate
recent batch views. The processing and importation
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Figure 1. Abstract representation of lambda architecture.

of batch layer data must be monitored to ensure that
batch view creation is complete before the speed
layer becomes overloaded. The serving layer utilizes
real-time and batch views generated by the speed
and batch layers in order to respond to incoming
queries. As a result, the serving layer must have
the ability to store significant amounts of data, such
as NoSQL databases with multiple features. Due to
the variety of data ingestion patterns, this layer must
support both real-time and aggregate data ingestion.
In situations where data transmission is delayed or
absent, the serving layer is vulnerable. Under these
circumstances, inconsistencies may arise in data
analyses and query responses, which are ultimately
resolved by the batch layer alone [40].

To meet the requirements for low-latency analyt-
ics and quick queries, LA’s speed layer compensates
for the staleness of batch views by serving the most
recently collected data that the batch layer has not
yet processed. Depending on its limited capacity,
the speed layer processes streaming data in real
time and stores its output as real-time views in the
serving layer.

The speed layer requires extensive read and write
operations from the serving layer due to the na-
ture of real-time operation requirements. Real-time

views store only recent data until the batch layer
completes its operation cycle one or two times (s).
After the batch layer completes its data processing
and analytics calculation operations, the data stored
as real-time views during batch processing is deleted
and removed from the serving layer. Depending
on the data processing at the batch layer, some
real-time views must be purged or cleared from
the real-time layer upon completion of batch view
generation. This procedure is essential for reducing
the strain on the real-time database of the serving
layer. Monitoring and acting on the resources of the
speed layer depend on the utilization of resources
and capacity needs, the precise coordination of the
layer, and specific performance indicators at all
levels. The batch view is obsolete for at least the
processing time between the start and end times of
the batch processes, if not longer, and if there are
inappropriate conditions or faulty coordination with
the speed layer. This requires meticulous coordina-
tion between the speed and batch layers. As soon as
the coordinated data processing activity between the
speed and batch levels has ended, the serving layer
must initiate the import of large amounts of data.
Data ingestion from the serving layer is complete
when the final batch views are available [40].
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2.3. Transformer Models

The fundamental technological innovation of
BERT [33] for language modeling is the bidirec-
tional training of a Transformer architecture. The
Transformer model, in its default setup, comprises
two distinct processes. The initial process is the
encoder component, which operates on the input
tokens derived from the text. The second component
is a decoder that generates a prediction for the task
by utilizing the information obtained from the en-
coder. The primary objective of the BERT model is
to generate word embeddings for a given language.
Consequently, only the encoder component of the
transformer architecture is necessary, as it can be
employed for various task-specific operations. The
BERT model undergoes training in a simultaneous
manner, utilizing both the Masked Language Mod-
eling (MLM) and Next Sentence Prediction (NSP)
techniques. The utilization of this pretrained model
is highly efficient for various downstream NLP ap-
plications, including but not limited to classification,
intent detection, named entity recognition (NER),
natural language inference (NLI), and others. In Ta-
ble 1, several common pre-trained transformer mod-
els with their architectural information are listed.

Table 1.
Several transformer models with their

parameter and layer sizes.

Transformer Model # Layers # Parameters
BERT-Base 12 110 M
BERT-Large 24 336 M
RoBERTa-Base 12 125 M
RoBERTa-Large 24 355 M
Mobile-BERT 24 24.5 M
ELECTRA-Large 24 330 M
GPT2-Base 12 117 M
GPT2-Large 26 774 M
GPT2-XL 48 1558 M

The BERT [33], represents Bidirectional Encoder

Representations from Transformers, is a deep learn-
ing model that utilizes Transformers, a framework
where each output element is interconnected with
every input element. The connections between these
elements are dynamically determined, and their re-
spective weightings are calculated accordingly. In
the past, language models were limited to process-
ing text input in a sequential manner, either from
left-to-right or right-to-left. However, they were
unable to simultaneously process both directions
of text input at a given moment. The majority of
language models possess the ability to process input
data in either a left-to-right or right-to-left manner.
However, BERT distinguishes itself by concurrently
processing input data in both directions. The phe-
nomenon of bi-directionality is facilitated by the
utilization of transformers.

The inception of Transformers can be traced back
to their initial introduction by Google in the year
2017. The predominant methodologies employed in
addressing NLP-related challenges encompass con-
ventional techniques, including Convolutional Neu-
ral Networks (CNN), Recursive Neural Networks
(RNN), and Long-Short Term Memory (LSTM).
Due to the unidirectional nature of these models,
wherein input sequences were processed solely from
left to right or vice versa, a critical limitation arose:
beyond a certain threshold, the input information
became irretrievable, resulting in the loss of the
paragraph’s intended semantic interpretation. The
issue at hand is effectively tackled by Transformers
as a whole, with BERT specifically being a notable
example.

BERT has undergone training using unannotated
data, specifically a plain text corpus consisting of
the English Wikipedia and a Brown corpus [38].
The utilization of a pre-trained model serves as a
foundational model that can be adapted and cus-
tomized to perform a range of specific tasks as re-
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quired. One notable benefit of BERT is its ability to
undergo fine-tuning without the need for retraining
the entire model. The aforementioned methodology
is commonly referred to as transfer learning. By
incorporating additional layers into the foundational
model, it is possible to customize and optimize
the model for a particular task. Consequently, the
utilization of the BERT model does not inherently
require advanced hardware or an extensive dataset.
In addition, the duration required for fine-tuning is
significantly reduced. In the classification experi-
ment detailed in this study, a supplementary ”clas-
sification layer” was incorporated into the BERT
model to facilitate model refinement and accomplish
the objective of precise classification.

Before using BERT for various downstream tasks,
it is imperative to perform tokenization on the input
text utilizing the WordPiece tokenizer [41]. The
main rationale behind this is that each tokenizer is
designed with distinct strategies to handle unknown
tokens. Additionally, the vocabulary and index map-
ping utilized during training must be compatible.
The initial step in the tokenization procedure in-
volves the division of the text into individual words.
However, when using this methodology, words that
do not belong to the established vocabulary are con-
sidered ”unfamiliar.” In order to address this issue,
modern NLP models employ a technique known
as sub-word tokenization, which involves dividing
the text into smaller units that often preserve their
inherent linguistic significance, such as morphemes.
Hence, despite the potential unfamiliarity of a word
to the model, its meaning can still be deduced to
some extent by leveraging the information stored in
the model’s memory of the constituent sub-word to-
kens. The WordPiece technique is a commonly em-
ployed approach for sub-word tokenization, which
exhibits the possibility of being expanded to various
other natural language processing (NLP) models.

The WordPiece algorithm initially divides the text
into words by using punctuation and whitespaces
as delimiters. Subsequently, it tokenizes each word
into smaller units known as word pieces. The afore-
mentioned procedure is executed using the input
text provided. Following the tokenization procedure,
it is possible to utilize a specific structure for our
input, which involves the incorporation of distinct
tokens. As a general practice, it is customary to add
distinct tokens at the beginning and end of each
input phrase. The tokens in question are commonly
referred to as CLS and SEP tokens, respectively.
In the context of classification tasks, such as Nat-
ural Language Inference (NLI), the [CLS] token,
denoting ”classification,” is placed at the beginning
of the provided sentence or sequence of sentences.
The [SEP] token, which is commonly referred to
as the separator token, is utilized to indicate the
conclusion of a sentence. Furthermore, utilization of
the [PAD] token, commonly referred to as padding,
can be employed to effectively handle the maximum
allowable input length. One of the primary obstacles
in training language models involves the identifica-
tion of a suitable prediction target task. Numerous
models offer predictions regarding the subsequent
word in a sequence, employing a directive approach
that inherently limits the extent of context learning.
BERT utilizes two distinct training mechanisms si-
multaneously in order to address this challenge: the
training of the BERT model through next sentence
prediction (NSP) and masked language modeling
(MLM) [33]. The objective of the MLM training is
to infer the underlying vocabulary of the obscured
word solely based on the contextual cues provided
within a given text. The selection of masked tokens
is performed randomly from the tokenized text
provided as input. Prior to being inputted into the
BERT model, word sequences undergo a substitu-
tion process where approximately 15 percent of the
words are replaced with [MASK] tokens. Prior to
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inputting the word sequences into the BERT model,
this preprocessing step is performed. The model
utilizes the contextual information provided by the
non-masked phrases in the sentence to predict the
true value of the masked words.

Transformer models, such as BERT, have typi-
cally undergone pre-training for a wide range of
languages and subject domains, although their cov-
erage may not be exhaustive. In instances of limited
availability of resources and uncommon languages
or specific domains, the creation of a customized
transformer model would yield the greatest ad-
vantages. Pre-existing models are trained to uti-
lize corpora that are specific to a particular do-
main or application. Research has demonstrated that
training models on corpora specific to a partic-
ular domain yield better results when fine-tuning
them for downstream natural language processing
(NLP) tasks, such as text classification within those
domains. This performance surpasses that of fine-
tuning BERT, which was originally trained on the
BooksCorpus and Wikipedia datasets. In the con-
cluding phase, we proceeded to undergo training
on a language modeling (LM) and next sentence
prediction (NSP) task prior to further refining the
text classification process. Theoretically, the perfor-
mance of this approach is expected to be favorable
as the model can leverage its comprehension of lan-
guage semantics acquired through initial generative
training. The inclusion of an additional fine-tuning
step for classification tasks subsequent to language
modeling enables the effective capture of long-
term interdependencies within the language and
facilitates the efficient integration of hierarchical
relationships. The inclusion of language modeling
(LM) in training can enhance the model’s compre-
hension of language-specific semantics, which may
be advantageous. Additionally, LM benefits from a
vast corpus of data, unlike text classification tasks

that typically have limited access to such resources.

2.4. Proposed Methodology

Figure 2. Transformer model for classification

In order to classify and detect phishing attacks
from incoming emails, our proposed methodology
is shown in Figure 3. In this methodology, sev-
eral agents are connected to all email servers with
different protocols in order to receive and inves-
tigate incoming emails from the outside world.
By using these agents, incoming mail contexts are
preprocessed and then sent to the AI embedding
producer service. This service includes pretrained,
fine-tuned, highly optimized, scalable, and accel-
erated versions of a BERT model. This deployed
BERT model has a special architecture, and only
half of the original model is used in this service
as an embedding generator. In Figure 2, we show
this novel approach in detail. Original transformer
architecture can be split into 2 sub-parts, such as the
Embedding part and the classifier part, after training
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Figure 3. Lambda architecture for phishing email classification.

and fine-tuning operation. Serving the whole model
is computationally very high, costly, and requires
more resources. As a result, In order to mitigate
these problems, we deployed the embedding part
into the AI Embedding Data Producer service and
the classifier part into the speed and batch layers.
The classifier part consists of only a few feed-
forward networks. This feature drastically reduces
the required resources and computation power. In
addition to this, the embedding part accepts the
text-based content and then produces the fixed-size
of vector as an output token. This special token
([CLS]) represents the whole text-based content in
the n dimensional vector space and is completely
human-unreadable. This might be interpreted as a
cryptographic encryption operation. Based on this
analogy, the output of the embedding part can not be
understood and is not interpretable; this feature adds
an additional security layer to the overall architec-
ture. Thus, no sensitive or private data is transmitted
from AI Embedding Data Producer Service to the
data bus or anywhere else. This feature also helps
to deploy this system to geographically distributed
locations. This shows another additional advantage
of the proposed methodology.

After the embedding generation step, the AI
embedding data producer service sends a 768-
dimensional vector representation of the email con-
tent to the data bus. The data bus (Apache Kafka)
transfers this vector representation to the batch and
speed layer for further processing. The 2nd part of
the transformer model, namely the classifier part,
is hosted in batch and speed layers. In the speed
layer, the classifier part, consisting of a simple
feed-forward neural network model, receives the
incoming data from the data bus and directly applies
a feed-forward inference step to calculate target
label probabilities. As a result of this operation, the
classification results from this model are sent to the
serving layer to be used in notification and analytic
services.

In parallel to sending the vector representation of
the email text content to the speed layer, the same
data is also transmitted to the batch layer at the
same time. This data is not processed instantly in the
batch layer. After a predefined time or predefined
resource constraints, the batch layer starts working
on these collected data. However, this time, by using
the same classification part of the BERT architecture
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(exactly the same feed-forward neural network but
deployed in the batch layer), all accumulated data
is classified as normal or malicious email. Due to
batch processing, this operation takes a longer time,
and all of the results are sent to the serving layer.
When this bulk data is received in the serving layer,
if the data already exists in the serving layer, then
its existing records are updated. If the data are not
already in the serving layer, then it is inserted as new
data in the serving layer for querying operations.

As a novel approach, we introduce another task to
the batch layer. Different than the classical lambda
architecture, model re-training for fine-tuning the
deployed transformer model is employed. The main
reason for this additional task is the dataset shift
and concept shift of the machine learning models
[42]. Dataset shift is a prevalent issue in predictive
modeling, wherein there is a disparity in the joint
distribution of inputs and outputs between the model
training and test phases. In addition, covariate shift
refers to a specific instance of dataset shift, wherein
there is a change solely in the distribution of input
variables. Dataset shift is a prevalent phenomenon
observed in a majority of practical applications. This
occurrence can be attributed to various factors, such
as the introduction of bias through experimental
design or the inability to reproduce testing condi-
tions during training [43]. One common instance
pertains to the application of spam/phishing email
filtering, wherein there exists a potential for the
filter to exhibit inadequacy in identifying malicious
messages that deviate in structure from the spam
patterns upon which the automated filter has been
trained. As a result, dataset and covariate shift
detection and model re-training job is also added
to the batch layer. After a predefined time (once
a day), if any dataset or covariate shift is detected
by using statistical tests and performance metrics,
the batch layer immediately starts fine-tuning by

using retraining of the current model. Then, the
new model is split into two parts as before, and
each part is redeployed in the batch layer, speed
layer (classification part), and AI embedding data
producer service (embedding part). By enforcing
this policy, the robustness of the classification model
can be improved against new phishing/malicious
emails.

2.5. Experiments

In this research, the primary focus is on the
development and evaluation of a novel approach
to targeted social engineering email detection us-
ing Lambda Architecture (LA) and transformer-
based models. The experiments were meticulously
designed to address the challenges posed by the
high computational demands of transformer models,
especially when dealing with large-scale email data.

The study introduced a unique method of dividing
a transformer model into two distinct parts, allowing
for its integration into the Lambda Architecture.
This division aimed to overcome the resource-
intensive nature of transformer models, making it
feasible to deploy them in a big data processing
environment. The experiments were grounded in
real-world scenarios, utilizing a dataset comprising
both malicious and benign emails. This dataset
underwent rigorous preprocessing, including the re-
moval of duplicates and the addition of subject fields
to the email content.

Two primary classification models were employed
in the experiments: fastText and BERT. The fastText
model served as the baseline, leveraging its bag
of tricks strategy for email categorization. This
model was particularly chosen for its efficiency in
handling morphologically complex languages and
its ability to generate embeddings for a wide range
of languages. On the other hand, the BERT model,
a transformer-based architecture, was chosen for
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its state-of-the-art performance in natural language
processing tasks. The experiments were designed to
compare the performance of these two models in
the context of the LA, especially focusing on their
efficiency, accuracy, and resource consumption.

The empirical findings from these experiments
were pivotal in demonstrating the effectiveness of
the proposed approach. Not only did they validate
the feasibility of integrating transformer models into
the LA, but they also highlighted the advantages of
the novel model-splitting methodology in address-
ing resource constraints.

The proposed LA-based system is deployed on
a local cluster. For cluster hardware, 5 Dell Power
Edge R730 and 2 Dell Power Edge R320 servers are
used. With this cluster, over 2 TB of RAM, more
than 100 cores, and more than 240 TB of disk space
are available for data processing and storage.

In the following sections, we explain all the de-
tails of these experiments, including the theoretical
foundations.

2.5.1 Dataset

Both spam and phishing emails are considered
undesirable by the receiver and are sent using very
identical methods to the victims. Hence, the primary
distinction between spam and phishing emails is
in their respective contents. Hence, in the context
of classifying spam and phishing emails, the only
consideration is the content of the email message
body. Supervised learning methodologies need the
use of labeled datasets, including spam-phishing
and ham (normal) emails [44]. The construction
of the dataset included the integration of several
distinct datasets, such as the Nazario dataset, which
contains a compilation of phishing emails [45], the
SpamAssassin dataset, which comprises a collec-
tion of spam emails [46], and Enron dataset [16],

Spam filter dataset from Kaggle [47], CSDMC2010
dataset [48], and Spam Base [49]. The datasets

Table 2.
Datasets for the experiments

Class Labels
Dataset ID Malicious Benign
[45] Nazario 4598 1000
[46] SpamAssasin 1897 4150
[16] ENRON (4,5,6) 17171 16545
[47] Spam Filter 1368 4360
[48] CSDMC2010 1378 2949
[49] Spam Base 1813 2788

were accessed by extracting just the email message
body and subject content, with a specific extrac-
tion code developed for each dataset. Furthermore,
these emails underwent preprocessing. The email
message body contents were applied to a cleanup
operation, during which all HTML, CSS (cascading
style sheets), JavaScript code, and special symbols
were removed, resulting in unformatted text. Due to
the presence of personal information, several emails
were also excluded. This measure was implemented
in order to prevent email messages from being
linked to a particular dataset. For instance, the
Nazario dataset often references the email address
jose@monkey.org, whereas the Enron dataset men-
tions the company Enron. Consequently, in order to
ensure privacy and confidentiality, any identifiable
personal information such as the recipient’s name,
email address, and organization’s name were substi-
tuted with generic terms (NAME, EMAIL, ORGA-
NIZATION). Additionally, certain dates, including
the year, were omitted from the text. The process
of removing personal information from the dataset
was carried out using a semi-automated approach.
Initially, regular expression expressions were used
to exclude some identifiable details. Subsequently,
all email addresses were meticulously reviewed and
amended manually. Upon conducting formatting and
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removing personal information, it was discovered
that there were instances of duplicated emails.
Several occurrences of identical email templates
were observed, resulting in the selection of distinct
messages for the dataset, with all duplicated copies
being eliminated. After this clean-up process, the
subject field of all emails was also added at the
end of each email. Finally, the new dataset includes
28225 malicious and 31792 benign emails, and the
number of emails for each dataset (both malicious
and normal) is listed in Table 2 for the final dataset.

It is worth noting that our aim is to classify spam
and phishing emails against normal (benign, ham)
ones. In this work, we do not try to develop a model
that classifies spam vs. phishing emails. Our concept
is that both spam and phishing emails are considered
undesirable by the recipient and are transmitted
using very identical methods to the victims, so both
spam and phishing emails will be in one group
called malicious in this study. As a result, in this
study, our aim is to solve a binary classification
problem by distinguishing malicious emails from
benign emails.

2.5.2 Classification Models

In this work, we used two different classification
methods, such as fastText [50], [51] (as a base
model) and a transformer model, BERT [33].

The fastText technique was chosen as the baseline
model, and the bag-of-tricks strategy [51] was used
to categorize emails. The fundamental idea behind
fastText-based classification is that the morpho-
logical composition of a word inherently encodes
crucial information pertaining to its semantic inter-
pretation. Classic word representation and embed-
dings, such as Word2Vec, do not have a framework
that allows multiple words. Instead, they focused
on creating a single-word representation for each

individual word. The significance of this matter is
particularly apparent in morphologically complex
languages such as Turkish, whereby a single word
might have several morphemes, each of which may
have limited occurrences, hence presenting chal-
lenges in effectively acquiring word representations.
The fastText approach addresses this concern by
seeing each word as an aggregation of its subwords,
which are smaller units of characters. To ensure
language independence, the subwords considered
are the character-level n-grams of the whole word.
A word representation refers to the consolidation
of all the vectors associated with its constituent
character-level n-grams. This feature offers the po-
tential to address both the issue of out-of-vocabulary
words (by calculating an embedding vector for
each unknown word) and the need for individual
vector representations for each word. Furthermore,
fastText provides word embeddings for a total of
157 languages, which have been constructed using
data from Wikipedia and Common Crawl. The
aforementioned characteristics of the fastText-based
classifier demonstrate its suitability for addressing
our specific challenge, therefore justifying its selec-
tion as the baseline model. It is worth noting that
this method is only deployed in SL and BL in LA
because its architecture is not separable, and it also
does not require so many system resources.

In this study, the fastText model was only trained
with the dataset mentioned in Section 2.5.1. We
divided all data into two 70% training and 30%
test datasets by using stratified sampling to ease the
adverse effects of the class imbalance problem. In
order to find the best hyperparameters for the most
accurate fastText model, we performed an extensive
hyperparameter search by training all models with
each answer sentence in the training dataset and
tested the performance of the models with the test
set. Hyperparameter search space for fastText model
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training is given in Table 3.

Table 3.
Hyperparameter search space (fastText)

Parameters Range Step Size
Learning Rate (lr) 0.01− 1.2 0.01
Embedding Dim. (dim) 50− 500 5
Size of the context (ws) 5− 8 1
Epoch 50− 1000 5
Loss ns, hs, ova, softmax -
wordNgrams 1− 3 1

The grid search approach was used for doing the
hyper-parameter search. The F1 score measure was
used in model selection because of the presence of
class imbalance within some classes in the datasets.
The learning rate parameter was adjusted within
the range of 0.01 to 1, with increments of 0.01.
The embedding dimension was varied between 50
and 500, with increments of 5. The size of the
context window was explored within the range of 5
to 8, with increments of 1. Different loss functions,
namely ns, hs, ova, and softmax, were employed
to train the models. Lastly, the maximum length of
the word n-grams was selected within the range of 1
to 3, with increments of 1. The learning rate update
parameter for the training was set to its default value
of 100. The result of the hyperparameter search
process is given in Table 4. It is worth noting that
this model was deployed for BL and SL in the LA
system, and all of the receiving emails are sent to
the data bus.

Transformer models, like BERT [33], have typ-
ically undergone pre-training for several languages
and topic areas, but their coverage is not exhaustive.
In instances of limited availability of resources
and uncommon languages or specialized fields, the
creation of a customized transformer model would
provide the greatest advantages. Pre-existing models
are trained by using corpora that are specialized to a
certain area or application. Research has shown that

Table 4.
Best Hyperparameters for the fastText model

Parameters Range Step Size
Learning Rate (lr) 0.42 0.01
Embedding Dim. (dim) 300 5
Size of the context (ws) 8 1
Epoch 862 5
Loss hs -
wordNgrams 2 1
Train Loss 0.00182 1

training models on corpora that are specialized to a
certain domain leads to better performance when
fine-tuning them for downstream natural language
processing (NLP) tasks, such as text classification
within those domains. This performance is seen to
be higher compared to fine-tuning BERT, which
is pre-trained on a combination of BooksCorpus
and Wikipedia. In the concluding phase, we pro-
ceeded to undergo training on a language modeling
(LM) and next sentence prediction (NSP) challenge
prior to improving the text categorization process.
Theoretically, the performance of this approach is
expected to be favorable due to the model’s ability
to use its comprehension of language semantics
acquired from initial generative training. The in-
clusion of an additional fine-tuning stage for clas-
sification tasks subsequent to language modeling
enables the effective capture of long-term interde-
pendencies within the language and facilitates the
efficient integration of hierarchical connections. The
inclusion of language modeling (LM) in the training
process might enhance the model’s comprehension
of the specific semantic nuances present in the
taught language. This is due to the fact that LM has
access to a large corpus of data, which is often not
available in text classification tasks. In this work, we
implemented the text classification natural language
processing (NLP) pipeline described before using
BERT.
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Subsequently, the pre-trained model [52] was
utilized to carry out a final fine-tuning process.
This involved adapting the pre-trained BERT model
to a binary-class text classification task using our
datasets, which had a limited corpus for malicious
emails. To achieve this, an additional layer of neu-
rons was added to the final layer, which had not been
previously trained. The modified architecture was
then retrained specifically for our target classifica-
tion task. As stated above, BERT utilizes the Word-
Piece tokenizer [41]. Additionally, we conducted
training on a tokenizer using a comprehensive data
corpus. However, it is important to note that this
corpus is not precisely aligned with the linguistic
domain of our specific challenge. The data used
in this study originate from many email domains
and have been sourced from various spam and
phishing email datasets. The WordPiece tokeniza-
tion method autonomously manages the handling of
out-of-vocabulary terms. The use of this approach
confers a substantial benefit over traditional natural
language processing (NLP) pipelines, which often
encounter unfamiliar tokens, resulting in a notable
loss of information. This methodology enables us to
obtain exceptional outcomes despite the constraints
imposed by our restricted corpus and datasets, sur-
passing the performance of the fastText technique.

Using the pre-trained BERT-Base model [52], we
performed a final fine-tuning task to classify the
incoming email classification. During this stage, the
BERT-Base model that had been previously trained
was used, with the addition of an additional layer
to its architecture, specifically for the purpose of
performing the classification job (shown in Figure
2). The embedding vector produced by the [CLS]
token is a crucial component in the BERT-Base
model. This implies that the classifier is provided
with a 768-dimensional embedding vector derived
from the [CLS] token as an input. Consequently,

the classifier generates an output vector with a
dimensionality equivalent to the number of classes
in the classification task at hand. Utilizing this
embedding as an input to our classifier in the context
of a text classification task is satisfactory, rendering
additional outputs of the BERT model unnecessary.
The search was limited to identifying the optimal
learning rate to train the classification model within
the range of 1e-6 to 5e-5, using a step size of 1e-6
as a hyperparameter. The batch size was selected
as 32, the weight decay was set at 0.01, and all
other parameters were left at their default levels. We
again split all data into two 70% training and 30%
test datasets by using stratified sampling to ease the
adverse effects of the class imbalance problem. The
model was trained for a limited number of epochs,
namely 10, using text data and its labels within the
training dataset. The majority of models exhibited
signs of overfitting after four epochs, prompting
us to implement an early-stopping approach. We
trained the network using a binary cross-entropy
loss function given in Equation 1. The loss L is
defined by the output of our model f(x; θ) for input
x and the label y ∈ {0, 1} and the model parameter
θ.

L(x, y; θ) = −y log(f(x; θ))

+ (1− y) log(1− f(x; θ))
(1)

For fine-tuning the pre-trained BERT model, we
solve for θ̂ the optimal set of parameters that min-
imize the loss over the dataset given in Equation
2:

θ̂ = argmin
θ

n∑
i=1

L (xi, yi; θ) (2)

Where n is the number of samples in our dataset,
and xi and yi are the feature vector of the ith train-
ing sample and the label respectively. This first part
of this model was used in the embedding generation
step, where the AI embedding data producer service
sends a 768-dimensional vector representation of the
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email content to the data bus. The data bus (Apache
Kafka) transfers this vector representation to the
batch and speed layers for further processing. The
second part of the transformer model, namely the
classifier part, is hosted in batch and speed layers.
In the speed layer, the classifier part, consisting of a
simple feedforward neural network model, receives
the incoming data from the data bus and directly
applies a feedforward inference step to calculate
the probabilities of the target label. As a result of
this operation, the classification results from this
model are sent to the serving layer to be used
in the notification and analytic services. From this
section onwards, we will name the proposed model
as Separated BERT (Sep-BERT) in all remaining
sections and subsections.

2.5.3 The Lambda Architecture System

In this study, we build an LA system with dif-
ferent big data technologies. Selected technologies
are listed in Table 5. For email transmission, we
deployed an email server [53] to send and receive
email messages. An email-sending agent was writ-
ten to send bulk emails to the email server using
the previously explained datasets. We deployed 10
of these email-sending agents in parallel to produce
serious email traffic. In addition, another email
agent receives incoming emails and sends them to
the AI embedding data producer service. During the
experiments, we used 10 of these receiving agents
in parallel to process incoming emails and produce
very heavy email traffic. All agents are developed
in Python programming language and deployed in
docker containers.

Apache Kafka is used as the primary data bus
in this LA and is connected to AI embedding data
producer service through TCP connections. Spark
Streaming + Kafka Integration receiverless tech-

Table 5.
Selected Big Data technologies for the lambda

architecture

LA Component Name Selected Framework
Batch Layer Hadoop / Apache Spark
Speed Layer Spark Streaming
Serving Layer Druid
Data Bus Apache Kafka
Email Server mailcow:dockerized

nique is used to connect the data bus to the speed
layer. Over Apache Kafka, raw data from the AI
embedding data producer service are combined in
DStreams, followed by ETL and filtering activities
at the speed layer. HDFS is also used to save the
raw data from Kafka.

In the batch layer, Spark is used to perform ETL
and filtering operations, and the results are written
again in the HDFS. Following this, Druid’s [54]
batch data ingestion process is begun using Druid’s
indexing services. Both the Hadoop indexer task
and Druid’s indexing service are used to import
offline data at the batch layer. The Druid indexing
service is utilized if the data are smaller than a few
Gigabytes; otherwise, a coordination agent starts
the Hadoop indexer task for efficient data ingestion
to Druid as a serving layer. After ETL processes,
the coordination agent is primarily in charge of
monitoring and activating batch ingestion activities
based on the size of the data offline. This agent
starts an indexing process concerning offline data
size when a specific amount of offline data reaches
a preset value, and the ETL operation is performed.
New segments are created on a regular basis, and
query-focused views are created at the serving layer.

Batch ingestion may result in the replacement of
some real-time views with batch views that include
more up-to-date data. Instances of data delays and
recurrent data reception circumstances are often
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seen. The use of a data retention policy by Druid
enables the deletion of delayed data after a certain
time period has elapsed. In addition, any missing
data may be repaired by using batch layer ingestion.
The integration of a Redis key/value store with the
Spark Streaming framework occurs at the speed
layer. The procedure to update the classification
results involves the use of a publish-subscribe mech-
anism. In the context of classification visualization,
this database is used to store and provide more
up-to-date data to freshly connected clients, with
a buffer period of 2 minutes. Finally, a Node.js
service establishes a connection with Redis and uses
WebSocket technology to facilitate the transmission
of data to clients. An alternative online service
might be used for the purpose of retrieving and
examining previous data. Hadoop HDFS is used
within a cluster environment to provide fault toler-
ance and enhance high availability. In the context of
Druid, it further functions as a repository for long-
term storage. In a clustered computing environment,
YARN is used for resource management, whereas
ZooKeeper is utilized for coordinating purposes.

Figure 4. Data processing speed under normal
conditions

The data processing rate under full data load

conditions is shown in Figure 4. By deploying this
design, the batch and speed layers are seen to
work as expected in a complementary manner. It is
worth noting that the batch layer data processing
rate includes both model inference and training.
However, the speed layer’s data processing rate only
includes model inference.

2.5.4 Performance Metrics

In this work, to measure the performance of
the binary classification model, we used precision,
recall, F1 score, and accuracy metrics. Precision,
which is also known as positive predictive value,
refers to the proportion of relevant instances that
are included in the retrieved instances. Recall, alter-
natively referred to as sensitivity, denotes the pro-
portion of pertinent instances that were successfully
retrieved. When used independently, precision and
recall metrics do not offer significant utility. For ex-
ample, it is feasible to achieve flawless memory re-
trieval by retrieving each individual item. Similarly,
it is feasible to achieve a high level of precision
by opting for a limited quantity of highly probable
items. The accuracy metric assesses the average
proportion of emails that have been properly cate-
gorized throughout the email collection. Matthew’s
correlation coefficient (MCC) [55] measures the
quality of both multi-way and binary classification.
It takes into consideration true and false positives
and negatives and is generally regarded as a bal-
anced measure that can be used regardless of the
classes’ varying sizes. The MCC value ranges from
-1 to 1. A coefficient of +1 indicates a faultless
prediction, 0 is a random prediction of average
quality, and -1 is an inverse prediction. In the case
of imbalanced data, MCC is preferred over accuracy
and F1 score, particularly in binary classification
[55]. The mathematical definitions of these metrics
are given in Equations 3, 4, 5, 6, and 7.
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Accuracy =
TP + TN

TP + FP + TN + FN

(3)

Precission =
TP

TP + FP

(4)

Recall =
TP

TP + FN

(5)

F1 Measure =
2 · TP

2TP + FP + FN

(6)

MCC =
TP · TN − FP · FN√

(TP + FN )(TP + FP )(TN + FN )(TN + FP )
(7)

In these equations, TP , TF , FP , FN are true posi-
tive, true negative, false positive, and false negative
values in the specified time window, respectively.

3. Results

In this section, we present the results of our
experiments with different classification models for
malicious email detection problems by using the
LA system. In the first part of the experiment, we
investigated the fastText model in the LA system
after we trained it with the training part of the data.
In the second experiment, we tested and evaluated
the accuracy and performance of the LA system by
deploying our novel methodology with a pre-trained
and fine-tuned BERT model in different sections
of the LA. In the final part of our experiments,
we share the results of the performance analysis
for our LA-based system in order to show the re-
source efficiency of the proposed approach. We have
tested our system under several workload and data
ingestion conditions and present numeric values for
several metrics, such as CPU usage, RAM usage,
and inference time of both BERT and our proposed
approach, Separated-BERT (Sep-BERT) models.

3.1. Model Classification Results

After we trained the fastText model with data
sampled from 70% of the newly generated dataset,
in order to measure the performance of the trained
model, we sent these training data as emails to a
user’s email address created in the mail server. After
these emails were processed by LA, the results and
performance metrics were calculated in the serving
layer. In Table 6, we show the performance metrics
for the fastText model.

Table 6.
The fastText classifier results for training data

Labels Precision Recall F1-Score
Malign 0.8615 0.8684 0.8649
Benign 0.8823 0.8760 0.8791
Accuracy 0.8724
MCC 0.7441

The confusion matrix was also calculated by the
LA system with the training data for the fastText
model and shown in Table 7. As seen from Table
6, the fastText model’s precision value was around
0.86, the recall value was near 0.87, and the F1 score
was 0.864 for malign emails. For benign emails,
the fastText model managed to reach the precision
value of 0.88, the recall value was near 0.88, and
the F1 score was 0.88 for malign emails. Because
the dataset has a class imbalance, this model had
problems classifying the malign emails against the
benign ones. Finally, Matthew’s correlation coeffi-
cient value was 0.744. As previously stated, in the
context of binary classifications, it is preferable to
prioritize the ranking derived from the Matthews
Correlation Coefficient (MCC). This metric yields a
high score when the classifier successfully predicts
the majority of positive and negative data instances.
As seen from Table 6, even though F1 score and the
other metrics are high, MCC shows us the trained
model is not perfect for classifying the malign
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emails in the training dataset. After model training,

Table 7.
The fastText classifier confusion matrix for

training data

PREDICTION

A
C

T
U

A
L Malicious Benign

Malicious 17157 2601
Benign 2759 19495

we sampled a test set from 30% of the newly
generated dataset, and we sent these test data as
emails to a user’s email address created in the mail
server. After these emails were processed by LA,
results and performance metrics were calculated
in the serving layer. In Table 8, we show the
performance metrics for the fastText model. The

Table 8.
The fastText classifier results for test data

Labels Precision Recall F1-Score
Malign 0.8551 0.8573 0.8562
Benign 0.8731 0.8711 0.8720
Accuracy 0.8646
MCC 0.7283

confusion matrix was also calculated by the LA
system with the training data for the fastText model
and shown in Table 9. As seen from Table 8, the
trained fastText model’s precision value was around
0.85, the recall value was near 0.86, and the F1 score
was 0.85 for malign emails. For benign emails,
the fastText model managed to reach the precision
value of 0.87, the recall value was near 0.87, and
the F1 score was 0.87 for malign emails. Because
the dataset has a class imbalance, this model had
problems classifying the malign emails against the
benign ones. Finally, Matthew’s correlation coeffi-
cient value was 0.73. As previously stated, in the
context of binary classifications, it is preferable to
prioritize the ranking derived from the Matthews

Correlation Coefficient (MCC). This metric yields a
high score when the classifier successfully predicts
the majority of positive and negative data instances.
As seen from Table 8, even though F1 score and the
other metrics are high, MCC shows us the trained
model is not perfect for classifying the malign
emails in the test dataset. In the subsequent phase

Table 9.
The fastText classifier confusion matrix for test

data

PREDICTION

A
C

T
U

A
L Malicious Benign

Malicious 7259 1208
Benign 1230 8307

of our experiment, we delved into the application of
the BERT model, which was uniquely split into two
parts: the embedding generator and the classification
part. This division was strategically implemented to
seamlessly integrate with the Lambda Architecture,
ensuring reduced resource consumption. The BERT
model, renowned for its deep bidirectional trans-
formers, was pretrained and then fine-tuned to suit
the specific requirements of our study.

Following the fine-tuning process of the BERT
model, we proceeded to train it using a subset of
the newly produced dataset, namely 70% of the data.
These training data were then sent through email to
a user’s email account, which was established inside
the mail server. Once the emails were processed
by the LA system, calculations were performed
at the serving layer to determine the results and
performance metrics. The performance indicators
for the BERT model are shown in Table 10. The
Lambda Architecture (LA) system computed the
confusion matrix by using the training data for the
BERT model and then displayed it in the serving
layer. The results are shown in Table 11. According
to the data shown in Table 10, the precision metric
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Table 10.
The BERT classifier results for training data

Labels Precision Recall F1-Score
Malign 0.9973 0.9993 0.9984
Benign 0.9994 0.9976 0.9985
Accuracy 0.9984
MCC 0.9969

for the BERT model was approximately 0.99, the
recall metric was close to 0.99, and the F1 score
was calculated as 0.99 for malignant emails. The
BERT model achieved a precision value of 0.99,
a recall value close to 0.99, and a F1 score of
0.99 for benign emails. Due to the presence of
a class imbalance within the dataset, the model
had no difficulty in accurately identifying malignant
emails from benign ones. The obtained result for
the Matthew correlation coefficient was 0.996. As
mentioned above, when considering binary classifi-
cations, it is more advantageous to give priority to
the ranking obtained from the Matthews Correlation
Coefficient (MCC). This statistic shows a significant
score when the classifier effectively predicts the ma-
jority of positive and negative data occurrences. As
seen in Table 10, despite the high values of the F1

score and other metrics, the MCC measure reveals
that the trained model is flawless in its classification
of malignant emails within the training dataset and
supported the results of classical metrics. Following

Table 11.
The BERT classifier confusion matrix for

training data

PREDICTION

A
C

T
U

A
L Malicious Benign

Malicious 19745 12
Benign 53 22201

the completion of model training, we proceeded to
extract a test set comprising 30% of the recently

formed dataset. Subsequently, we sent these test
data to the user’s designated email address estab-
lished inside the mail server. Once the emails were
processed by the LA system, the serving layer was
used to compute the results and performance data.
Table 12 presents the performance characteristics
of the BERT model in the test data set. The LA

Table 12.
The BERT classifier results for test data

Labels Precision Recall F1-Score
Malign 0.9985 0.9990 0.9988
Benign 0.9991 0.9987 0.9989
Accuracy 0.9988
MCC 0.9978

system computed the confusion matrix for the BERT
model using the test data, and the results are shown
in Table 13. According to the data shown in Table
12, the precision metric of the BERT model in the
test dataset was around 0.998, the recall metric was
close to 0.999, and the F1 score was measured at
0.998 specifically for malignant emails. The BERT
model achieved a precision value of 0.999, a recall
value close to 0.998, and a F1 score of 0.998 for
benign emails. Although there was a class imbal-
ance within the dataset, the model had no difficulty
accurately categorizing malignant emails as opposed
to benign ones. The obtained result for the Matthew
correlation coefficient was 0.998. As mentioned
before, when considering binary classifications, it
is more advantageous to give precedence to the
ranking obtained from the Matthews Correlation
Coefficient (MCC). The aforementioned measure
shows a significant value when the classifier effec-
tively predicts the majority of positive and negative
data occurrences. As seen in Table 12, in addition to
the high values of the F1 score and other metrics,
the MCC metric reveals that the trained model is
flawless in its classification of malignant emails in
the test data set.
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Table 13.
The BERT classifier confusion matrix for test

data

PREDICTION

A
C

T
U

A
L Malicious Benign

Malicious 8459 8
Benign 12 9525

In the realm of targeted social engineering email
detection, comparative analysis between the fast-
Text and BERT models reveals distinct performance
differences. The fastText model for malign emails
demonstrated a precision of approximately 0.85, a
recall of 0.86, and a F1 score of 0.85. For benign
emails, the precision, recall, and F1 score were
around 0.87. The Matthews Correlation Coefficient
(MCC) for the fastText model stood at 0.73, indi-
cating a good quality binary classification but with
room for improvement.

However, the BERT model, with its intricate ar-
chitecture, showcased superior metrics. For malign
emails, the precision was 0.9985, the recall was
0.9990, and the F1 score was 0.9988. For benign
emails, the precision was 0.9991, the recall was
0.9987, and the F1 score was 0.9989. The MCC for
the BERT model was impressive, 0.9978, suggesting
an almost perfect binary classification.

When the overall results were evaluated, we
discovered that several factors contributed to the
superiority of the BERT model over the fastText
model: noitemsep,topsep=0pt

• Contextual Understanding: BERT’s bidirec-
tional transformers capture the context of words
in a sentence more effectively than the fastText
model. This deep understanding of context is
crucial for detecting the nuances in emails,
which can be the difference between identifying
a benign and a malicious one.

• Fine-tuning Capabilities: BERT’s architecture

allows for fine-tuning specific tasks, making it
adaptable to the unique challenges of email de-
tection. This adaptability ensures that the model
can be optimized for the best performance.

• Resource Efficiency: By splitting the BERT
model into parts for the generation and clas-
sification of the embedding, it aligns well with
the Lambda Architecture. This ensures efficient
real-time processing without compromising per-
formance.

• Robustness and Generalization: BERT’s ex-
tensive training on diverse datasets ensures that
it can handle a variety of email structures and
contents, making it more reliable in real-world
scenarios.

While the fastText model offers commendable per-
formance, the BERT model, with its advanced archi-
tecture and fine-tuning capabilities, stands out as the
more robust choice for targeted social engineering
email detection. Its superior metrics, especially the
MCC value, highlight its prowess in accurately
classifying emails, making it an invaluable tool in
the realm of email security.

3.2. Performance Analysis of The System

In order to investigate the resource consumption
of the proposed approach, we have tested our sys-
tem under several workload conditions and present
numeric values for several metrics, such as CPU
usage, RAM usage, and inference time of both
BERT and our proposed approach, Separated-BERT
(Sep-BERT) models according to the email size and
ingestion speed. For this experiment, we sampled
various emails according to their lengths, between
100 and 1400 words. In addition, we also adjusted
the data ingestion speed to range from 0 to 50,000
email/s (0, 1000, 10,000, and 50,000). When the
experiment ran all cases for different email sizes and
ingestion speeds, we recorded the numeric values
for several metrics, such as CPU usage, RAM usage,
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and inference time of both BERT and our proposed
approach, Separated-BERT (Sep-BERT) models. It
is worth noting that this experiment does not aim
to measure the models’ classification performance
or accuracy for the dataset; instead, it aims to
measure the hardware and resource performance of
the proposed approach. In Figure 5, the memory
consumption comparison analysis results for both
approaches are shown.

Figure 5 depicts the relationship between email
size and memory consumption for both BERT and
Sep-BERT models, grouped by ingestion speed:
BERT’s memory consumption seems to increase
with the size of the email. Different ingestion speeds
don’t show significant variation in memory con-
sumption for the given email sizes. However, Sep-
BERT’s memory consumption is relatively stable
and significantly lower than BERT’s across all email
sizes. Again, the ingestion speeds don’t cause sig-
nificant variation in memory consumption across the
email sizes. In summary, while BERT’s memory
usage increases with email size, Sep-BERT remains
consistent and uses less memory overall. The in-
gestion speed doesn’t appear to have a pronounced
effect on memory consumption for either model.

In Figure 6, CPU utilizations and model infer-
ence times comparison analysis results for both
approaches are shown. In other words, these plots
show the relationship between email size and CPU
usage, and model inference times for both BERT
and Sep-BERT models, grouped by ingestion speed.
As the email size increases, the CPU usage for
BERT also seems to increase, suggesting a positive
correlation. Different ingestion speeds don’t show
significant variation in CPU usage for the given
email sizes. The CPU usage for Sep-BERT also
tends to increase as the email size grows. However,
the increment seems less pronounced than that of
BERT. Just like with BERT, the ingestion speeds
don’t demonstrate a significant variation in CPU

usage across email sizes. As the email size in-
creases, the inference time for BERT also seems
to rise. Different ingestion speeds don’t display
a pronounced variation in inference times for the
given email sizes. Sep-BERT’s inference times are
considerably lower than BERT’s across all email
sizes. The ingestion speeds also don’t manifest a
significant variation in inference times across the
email sizes. In summary, while BERT’s inference
time increases with the email size, Sep-BERT pro-
cesses emails faster and in a more consistent time
frame. The ingestion speed doesn’t seem to signifi-
cantly influence inference time for either model.

When all results are evaluated, we see that Sep-
BERT maintains a more efficient CPU profile, es-
pecially as email sizes grow. Sep-BERT emerges
as a more memory-efficient model, making it po-
tentially more scalable and cost-effective for large-
scale applications. Despite the growth in email size,
Sep-BERT consistently boasts faster inference times
than BERT. Sep-BERT, with its swifter processing
capabilities, offers advantages in scenarios where
real-time or rapid responses are paramount. For both
models, varying ingestion speeds didn’t introduce
significant fluctuations in CPU usage, memory con-
sumption, or inference time. This indicates that both
models maintain stable performances irrespective of
the rate at which emails are ingested. Finally, our
experiment results show that while both BERT and
Sep-BERT are robust models capable of process-
ing emails, Sep-BERT demonstrates superior effi-
ciency, especially in terms of CPU usage, memory
consumption, and inference time. For applications
that prioritize efficiency, scalability, and rapid re-
sponse, Sep-BERT offers a compelling advantage
over BERT.

4. Conclusion

In this research, we delved deep into the realm
of cybersecurity, specifically targeting the detection
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Figure 5. Memory consumption [Giga Bytes] comparisons for BERT and Sep-BERT models.

Figure 6. CPU usage (%), and inference time [ms] comparisons for BERT and Sep-BERT.

of social engineering emails using a combination of
lambda architecture and transformer-based models.
The novelty of this study lies in its unique approach
to the problem at hand. Firstly, the introduction of
Lambda Architecture (LA) as a comprehensive so-
lution for scalable, fault-tolerant, and high-accuracy
classification of targeted social engineering emails
is groundbreaking. Secondly, the novel architectural
separation of the BERT model into two distinct
components, namely the embedding generator part

and the classification part, is a pioneering move.
This architectural segmentation not only ensures
efficient integration within the lambda architecture
but also significantly reduces resource consumption,
leading to improved system efficiency.

From the empirical findings, the fastText model
for malignant emails showed a precision of approx-
imately 0.85, a recall of 0.86, and an F1 score of
0.85. For benign emails, the precision, recall, and
F1 score hovered around 0.87. The Matthews Cor-
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relation Coefficient (MCC) for the fastText model
was 0.73. In contrast, the BERT model exhibited
superior performance metrics. For malign emails,
the precision was 0.9985, the recall was 0.9990,
and the F1 score was 0.9988. For benign emails,
the precision was 0.9991, the recall was 0.9987,
and the F1 score was 0.9989. The MCC for the
BERT model was an impressive 0.9978. These
numerical values underscore the superiority of the
BERT model over the fastText model in detecting
targeted social engineering emails.

In addition, our comprehensive performance
analysis revealed the distinct advantages of the
Separated-BERT (Sep-BERT) model over the tra-
ditional BERT model. Notably, Sep-BERT demon-
strated superior efficiency in terms of CPU and
memory consumption, especially as email sizes in-
creased. This efficiency translates to faster infer-
ence times, making Sep-BERT particularly advanta-
geous for applications requiring real-time responses.
Furthermore, Sep-BERT’s consistent performance
across varying ingestion speeds underscores its po-
tential for scalability and cost-effectiveness in large-
scale applications. In contrast, while BERT remains
a robust model, its increased resource consumption
with growing email sizes may pose challenges in
efficiency-driven scenarios. Overall, for applications
prioritizing efficiency, scalability, and rapid process-
ing, Sep-BERT emerges as a compelling alternative
to BERT.

This research has made significant strides in
the domains of big data and cybersecurity. The
innovative approach of splitting the transformer
model, specifically BERT, and its integration with
the Lambda Architecture addresses the high re-
source requirements of transformer models, making
it feasible for real-world applications. However, it
is worth noting that this work primarily focuses
on the content-based phishing/spam email detection
technique, sidelining other machine learning-related

features such as IP addresses, URL-based informa-
tion, and email attachments.

Although the results are promising, there are
certain limitations. The study is based solely on
the content-based phishing/spam email detection
strategy, excluding other potential machine learning
features such as IP addresses, URL-based informa-
tion, and embedded email content. Future research
directions could explore the integration of these
features into a more holistic email detection system.
Additionally, the potential of implementing URL-
based features and other email-related machine-
learning features could further enhance the system’s
accuracy and reliability.

In conclusion, this study has not only filled a
significant gap in the existing literature but also
paved the way for future research in this domain.
The novel approach of separating a transformer
model and its integration with the Lambda archi-
tecture offers a scalable and efficient solution to the
ever-growing challenge of targeted social engineer-
ing email detection. The empirical results further
validate the efficacy of the proposed methodology,
marking it as a significant contribution to the fields
of big data and cybersecurity.
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