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ABSTRACT
This study addresses the integrated disassembly line balancing and pickup-delivery vehicle routing problem of companies with
multiple disassembly centers. In a supply chain with distributed disassembly centers, the products to be disassembled must be
collected from the factories where they are supplied and brought to the disassembly centers. Then, these collected products must
be disassembled in the disassembly centers and these disassembled components must be distributed to the factories that demand
the disassembled parts. Since there are distributed disassembly centers, factories that request components and factories that
supply products should be assigned to the disassembly centers. This study aims to provide an integrated plan for the assignment,
disassembly line balancing and collection-distribution processes. In this study, there are distributed disassembly centers with
limited product supplies, and distribution and collection operations are considered together in the vehicle routing problem. The
problem differs from the studies in the literature with these features. The simultaneous collection and distribution operations aim
to save time and reduce transportation costs of vehicles. A mixed-integer nonlinear programming model, a mixed-integer linear
programming model and a constraint programming model are presented to solve the integrated problem. The performance of the
mixed-integer linear programming and constraint programming models has been evaluated using small-sized instances, and the
computational findings indicate that both models can provide effective solutions for the problem.

Keywords: Disassembly line balancing, pickup and delivery vehicle routing problem, mixed-integer programming, constraint
programming

1. Introduction

With the developing technology, companies aim to find solution methods that will save time and cost in production and
distribution processes. In addition, regarding the environmental regulations and high environmental pollution, companies need to
consider environmental factors as well as the production and distribution costs. The importance of the recycling and disassembly
processes is increasing due to the increasing consumption rate of natural resources. Consequently, it is expected that the integration
of vehicle routing problem (VRP) and disassembly line balancing (DLB) problem can result in more profitable solutions in terms
of cost minimization and help to enhance the sustainability of companies.

Besides the disassembly line balancing, this study considers the collection of the products to be disassembled from the factories
and the distribution of the components that emerge after the disassembly process to the factories. The focus of this study is the
integrated problem of balancing the disassembly lines in a system where there is more than one disassembly center, and the
collection of the products to be disassembled for the next planning period from the factories, while the disassembled components
that emerge after the disassembly process are distributed to the factories. Therefore, there are three subproblems. The first
subproblem is balancing the disassembly lines in the disassembly centers, the second subproblem is the collection of the products
to be disassembled for the next planning period with minimum cost, and the third subproblem is the distribution of the components
resulting from the disassembly process to the factories with minimum cost. Consequently, this study integrates the disassembly
line balancing, collection of products and distribution of components processes across multiple disassembly centers.
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DLB and VRP have been widely studied separately in the literature (Özceylan et al., 2019; Braekers et al., 2016). There are
relatively few studies on integrated DLB and VRP in the literature. Habibi et al. (2014) studied an integrated disassembly problem
with the collection of products to be recycled, where the distribution of recycled components was not considered. Diri Kenger
et al. (2020a) considered the disassembly line balancing with the distribution of disassembled components, and they proposed
mathematical models for the case where there is a single disassembly center. Later, as extensions of that problem, Diri Kenger et al.
(2020b) considered a production system with 3D printers to support the disassembly line and Diri Kenger et al. (2021b) considered
a distribution system with a fleet of trucks equipped with 3D printer technology. In these studies, the authors made scenario
analyses by presenting mathematical models. As far as we know, there is a study in the literature that considers the collection-
distribution problem as integrated with disassembly line balancing (Diri Kenger et al., 2021a). Diri Kenger et al. (2021a) proposed
a mathematical model for the problem and solved small-sized instances. However, only one disassembly center was considered in
that study. Recently Çil et al. (2023) have presented mixed-integer programming models, a constraint programming model and a
multi-start simulated annealing algorithm for the integrated distributed disassembly line balancing and vehicle routing problem,
where there are multiple disassembly centers. However, in the study by Çil et al. (2023), only the distribution of disassembled
components was considered, and the collection of products to be recycled was not considered in the vehicle routing phase. Also, it
is assumed that there are no product supply limits for the disassembly centers in the study by Çil et al. (2023). The studied problem
in our study differs from the integrated DLB and vehicle routing problems in the literature, since in the studied problem, there are
multiple disassembly centers with limited product supplies, and distribution and collection operations are considered together as
a pickup-delivery vehicle routing problem.

In real-life problems, there can be more than one disassembly center, and for these disassembly centers, performing the
distribution of components and collection of products simultaneously can provide advantages in terms of cost and time. Therefore,
different from the related studies in literature, this study integrates the distributed disassembly line balancing problem with the
pickup and delivery vehicle routing problem. In the studied integrated problem, both the optimization of the disassembly lines in
the disassembly centers and the optimization of the vehicle routes for the collection of products and distribution of components are
provided simultaneously. Today, enterprises can establish more than one disassembly center to increase capacity of their systems
and to adapt the changes in demand easily. Therefore, in the studied problem, multiple disassembly centers with limited product
supplies are considered. In addition, in the studied problem, the collection and distribution processes are planned simultaneously
using the same vehicle fleet. To the best of our knowledge, the integrated distributed disassembly line balancing and pickup-delivery
vehicle routing problem (DDLB-PDVRP) has not been studied in the literature before. Consequently, this study aims to resolve
this research gap existing for practical applications by studying the integrated disassembly line balancing and pickup-delivery
vehicle routing problem for the distributed disassembly centers, which has not been studied before in the literature.

In reverse supply chain systems, effective disassembly line balancing and collection-distribution processes are crucial to achieve
an effective resource management, reduced disassembly and transportation costs, and a high sustainability. In a dynamic supply
chain environment, effective planning for these disassembly and transportation processes is essential for adapting to changing
customer demands and product supplies. Integrating disassembly line balancing and pickup-delivery vehicle routing problem for
distributed disassembly centers can help to reduce disassembly and transportation costs and provide a better resource management
by optimizing disassembly line balancing, product collection, and component distribution operations of all disassembly centers
with an integrated approach. Also, in terms of environmental factors, integrating these problems can help to align with sustainability
goals. The optimization of the integrated problem can help to reduce waste, enhance resource efficiency, reduce environmental
pollution, and support recycling practices, by providing an effective planning for disassembly and transportation processes in a
supply chain.

In this study, a mixed-integer nonlinear programming model, a mixed-integer linear programming model and a constraint
programming model are presented for the DDLB-PDVRP. Also, the mathematical models are solved on small-sized instances. The
rest of the paper is organized as follows. A problem definition is provided in Section 2. The mixed-integer programming models
and constraint programming model are presented in Section 3. Section 4 presents the computational results. Finally, conclusions
are provided in Section 5.

2. Problem Definition

In the studied problem, products are collected from factories and brought to the disassembly centers with vehicles belonging
to these centers, while distributing the disassembled components to the factories that demand the disassembled parts. While the
disassembled components of the products are distributed to the factories from the disassembly centers, the vehicles are allowed to
have both the collected products and the distributed components in the same vehicle, regarding their capacities. Thus, by considering
collection and distribution together, the optimization of the pickup and delivery vehicle routes is ensured. The collected products
represent the product supply for the next planning period, and the distributed components represent the component demands for
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the current planning period. While the vehicles distribute the components to the factories for the current planning period, they
also collect the products to be disassembled from the factories for the next planning period. An illustrative representation for the
studied problem is provided in Figure 1.

The cycle time of each disassembly center is calculated according to the component demand of the factories assigned to that
disassembly center in the current planning period. However, the number of products to be disassembled within a planning period
should not exceed the number of existing products that arrived at that disassembly center in the previous planning period. Therefore,
there is a capacity constraint for each disassembly center. Each disassembly center can perform product disassembly regarding its
limited product supply from the previous planning period.

Figure 1. Illustrative representation of the problem

In the DDLB-PDVRP, the disassembly line of each disassembly center should be balanced by assigning tasks to the stations
according to the AND/OR precedence graph. While the AND precedence denotes that a task can be began after all its AND
predecessors are completed, the OR precedence denotes that a task can be began after at least one of its OR predecessors is
completed. When a product is disassembled, one unit of each component type is obtained. The DLB part of the problem aims to
minimize the total number of stations regarding the cycle time of each disassembly center. The cycle time of each disassembly
center is determined based on the maximum demand of each component type to be sent from that center in the current planning
period, i.e., the number of products planned to be disassembled in the current planning period. However, the number of products
to be disassembled based on the component demands in the current planning period should not exceed the number of existing
products that arrived at that disassembly center in the previous planning period.

In addition to deciding which disassembly center (DC) should collect products from which factory and distribute components
to which factory, it is also important to decide on the routes of the vehicles to reduce transportation costs. Therefore, in the
DDLB-PDVRP, pickup and delivery routes are also determined for the vehicle fleet of each disassembly center, resulting in a
multi-depot pickup and delivery vehicle routing problem. It is assumed that a vehicle can only transport component/product from
a single disassembly center and return to its own center after its route, and there are identical vehicles. The component demand
and product supply of a factory cannot be divided between disassembly centers.

The DDLB-PDVRP aims to optimize simultaneously the assignment of the factories to disassembly centers, disassembly line
balancing of each disassembly center, and the pickup-delivery vehicle routes for each disassembly center, by minimizing the total
station and transportation costs. The developed mixed-integer nonlinear programming (MINLP) model, the mixed-integer linear
programming (MILP) model, and the constraint programming (CP) model are presented in the following section of the paper,
respectively. The sets and parameters used in these models are explained in Table 1.
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Table 1. Sets and parametersTable 1. Sets and parameters 

Sets 
A = Set of tasks 
B = Set of stations 
DC = Set of disassembly centers {1,2…, s} 
E = Set of customer/supplier factories {1, 2,…, n} 
H = Set of nodes {1, 2,…, n, n+1, …, n+s}, where {n+1, …, n+s} are starting/ending DCs 
H’ = Set of nodes {1, 2,…, n, n+1, …, n+s,…, n+2s}, where {n+1, …, n+s} are starting DCs and {n+s+1, 

…, n+2s} are ending DCs 
𝑭𝒅 = Set of vehicles for DC d 
G = Set of components 

Parameters 
wtime = total working time 
𝒑𝒕𝒊𝒎𝒆𝒊 = processing time of task i 
𝒅𝒆𝒎𝒂𝒏𝒅𝒋𝒈 = demand of node j for component g (demands of DCs are zero) 

𝒑𝒓𝒐𝒅𝒋 = number of products supplied from node j for the next planning period (supply of DCs are zero) 

𝒔𝒄𝒂𝒑𝒅 = number of products that have been supplied to DC d in the previous planning period 
capacity = capacity of a vehicle 
𝒕𝒓𝒂𝒗𝒆𝒍𝒋𝒍 = travelling distance from node j to node l 

𝒄𝒐𝒔𝒕𝒋𝒍 = travelling cost from node j to node l 

scost = cost of a station 
𝑨𝑵𝑫𝒊 = set of AND predecessors of task i 
𝑶𝑹𝒊 = set of OR predecessors of task i 

3. Mathematical Models 

Since the studied integrated problem has not been addressed before in the literature, mixed-integer 
programming and constraint programming models are developed for the problem. There are three 
different models, and each has some advantages and disadvantages in terms of ease of modeling, 
solution time, and solution quality within a limited time. All these features of the models are discussed 
after explaining each model. 

3.1 Mixed-Integer Nonlinear Programming Model 

In this section, the MINLP model of the problem is presented. The decision variables used in this model 
are described in Table 2. The objective function and the constraints of the MINLP model are explained 
as follows. 

Table 2. Decision variables for MINLP 

𝑼𝒋 = visiting rank of node j 
𝒗𝒊𝒃𝒅 =1, if task i is assigned to station b in DC d; 0 otherwise 
𝒙𝒋𝒍𝒎𝒅 =1, if vehicle m of DC d travels from node j to node l; 0 otherwise 
𝒚𝒃𝒅 =1, if station b is opened in DC d; 0 otherwise 
𝒏𝒑𝒅 = number of products (maximum number of components) that are demanded from DC d 
𝒄𝒚𝒄𝒍𝒆𝒅 = cycle time of DC d 
𝒍𝒅𝒋 = load of vehicle after having serviced node j 
𝒍𝒃𝒎𝒅 = load of vehicle m of DC d when leaving the DC 

 

Minimize Z = ∑ ∑ 𝑠𝑐𝑜𝑠𝑡 ∗ 𝑦ௗௗ∈∈ + ∑ ∑ ∑ 𝑐𝑜𝑠𝑡 ∗ 𝑥ௗ∈ி,∈ுௗ∈  (1) 

3. Mathematical Models

Since the studied integrated problem has not been addressed before in the literature, mixed-integer programming and constraint
programming models are developed for the problem. There are three different models, and each has some advantages and
disadvantages in terms of ease of modeling, solution time, and solution quality within a limited time. All these features of the
models are discussed after explaining each model.

3.1. Mixed-Integer Nonlinear Programming Model

In this section, the MINLP model of the problem is presented. The decision variables used in this model are described in Table
2. The objective function and the constraints of the MINLP model are explained as follows.

Table 2. Decision variables for MINLP

𝑼𝒋 = visiting rank of node j 

𝒗𝒊𝒃𝒅 =1, if task i is assigned to station b in DC d; 0 otherwise 
𝒙𝒋𝒍𝒎𝒅 =1, if vehicle m of DC d travels from node j to node l; 0 otherwise 

𝒚𝒃𝒅 =1, if station b is opened in DC d; 0 otherwise 
𝒏𝒑𝒅 = number of products (maximum number of components) that are demanded from DC d 
𝒄𝒚𝒄𝒍𝒆𝒅 = cycle time of DC d 

𝒍𝒅𝒋 = load of vehicle after having serviced node j 

𝒍𝒃𝒎𝒅 = load of vehicle m of DC d when leaving the DC 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑍 = Σ𝑏∈𝐵Σ𝑑∈𝐷𝐶 𝑠𝑐𝑜𝑠𝑡 ∗ 𝑦𝑏𝑑 + Σ𝑑∈𝐷𝐶Σ 𝑗 ,𝑙∈𝐻Σ𝑚∈𝐹𝑑
𝑐𝑜𝑠𝑡 𝑗𝑙 ∗ 𝑥 𝑗𝑙𝑚𝑑 (1)

Σ𝑏∈𝐵𝑣𝑖𝑏𝑑 = 1 ∀𝑖 ∈ 𝐴, 𝑑 ∈ 𝐷𝐶 (2)

Σ𝑖∈𝐴𝑝𝑡𝑖𝑚𝑒𝑖𝑣𝑖𝑏𝑑 ≤ 𝑐𝑦𝑐𝑙𝑒𝑑𝑦𝑏𝑑 ∀𝑏 ∈ 𝐵, 𝑑 ∈ 𝐷𝐶 (3)

𝑣𝑖𝑏𝑑 ≤ Σ𝑐∈𝐵:𝑐≤𝑏𝑣𝑘𝑐𝑑 ∀𝑖 ∈ 𝐴, 𝑘 ∈ 𝐴𝑁𝐷𝑖 , 𝑏 ∈ 𝐵, 𝑑 ∈ 𝐷𝐶 (4)
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𝑣𝑖𝑏𝑑 ≤ Σ𝑘∈𝑂𝑅𝑖
Σ𝑐∈𝐵:𝑐≤𝑏𝑣𝑘𝑐𝑑 ∀𝑖 ∈ 𝐴 : 𝑂𝑅𝑖 ≠ ∅, 𝑏 ∈ 𝐵, 𝑑 ∈ 𝐷𝐶 (5)

𝑦𝑏+1,𝑑 ≤ 𝑦𝑏𝑑 ∀𝑏, 𝑏 + 1 ∈ 𝐵, 𝑑 ∈ 𝐷𝐶 (6)

𝑐𝑦𝑐𝑙𝑒𝑑 =
𝑤𝑡𝑖𝑚𝑒

𝑛𝑝𝑑
∀𝑑 ∈ 𝐷𝐶 (7)

𝑐𝑦𝑐𝑙𝑒𝑑 ≥ 𝑝𝑡𝑖𝑚𝑒𝑖 ∀𝑑 ∈ 𝐷𝐶, 𝑖 ∈ 𝐴 (8)

Σ 𝑗∈𝐻: 𝑗≠𝑙Σ𝑑∈𝐷𝐶Σ𝑚∈𝐹𝑑
𝑥 𝑗𝑙𝑚𝑑 = 1 ∀𝑙 ∈ 𝐸 (9)

Σ 𝑗∈𝐻: 𝑗≠𝑙𝑥 𝑗𝑙𝑚𝑑 − Σ 𝑗∈𝐻: 𝑗≠𝑙𝑥𝑙 𝑗𝑚𝑑 = 0 ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑 , 𝑙 ∈ 𝐸 (10)

𝑈 𝑗 −𝑈𝑙 + 𝑛 ∗ 𝑥 𝑗𝑙𝑚𝑑 ≤ 𝑛 − 1 ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑 , 𝑗 , 𝑙 ∈ 𝐸 : 𝑗 ≠ 𝑙 (11)

1 ≤ 𝑈 𝑗 ≤ 𝑛 ∀ 𝑗 ∈ 𝐸 (12)

𝑥 𝑗𝑙𝑚𝑑 = 0 ∀𝑑 ∈ 𝐷𝐶, 𝑗 ∈ 𝐻 : 𝑗 ≠ 𝑛 + 𝑑& 𝑗 > 𝑛, 𝑙 ∈ 𝐸, 𝑚 ∈ 𝐹𝑑 (13)

𝑥𝑙 𝑗𝑚𝑑 = 0 ∀𝑑 ∈ 𝐷𝐶, 𝑗 ∈ 𝐻 : 𝑗 ≠ 𝑛 + 𝑑& 𝑗 > 𝑛, 𝑙 ∈ 𝐸, 𝑚 ∈ 𝐹𝑑 (14)

Σ𝑙∈𝐸𝑥𝑛+𝑑,𝑙𝑚𝑑 ≤ 1 ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑 (15)

Σ 𝑗∈𝐻Σ𝑙∈𝐸: 𝑗≠𝑙Σ𝑚∈𝐹𝑑
𝑑𝑒𝑚𝑎𝑛𝑑𝑙𝑔𝑥 𝑗𝑙𝑚𝑑 ≤ 𝑛𝑝𝑑 ∀𝑔 ∈ 𝐺, 𝑑 ∈ 𝐷𝐶 (16)

Σ𝑙∈𝐸Σ𝑚∈𝐹𝑑
𝑥𝑛+𝑑,𝑙𝑚𝑑 ≥ 1 ∀𝑑 ∈ 𝐷𝐶 (17)

𝑙𝑏𝑚𝑑 = Σ 𝑗∈𝐻Σ𝑙∈𝐸: 𝑗≠𝑙Σ𝑔∈𝐺𝑑𝑒𝑚𝑎𝑛𝑑𝑙𝑔𝑥 𝑗𝑙𝑚𝑑 ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑 (18)

𝑙𝑑 𝑗 ≥ 𝑙𝑏𝑚𝑑 − Σ𝑔∈𝐺𝑑𝑒𝑚𝑎𝑛𝑑 𝑗𝑔 + 𝑝𝑟𝑜𝑑 𝑗 − 𝑀 (1 − 𝑥𝑛+𝑑, 𝑗𝑚𝑑) ∀ 𝑗 ∈ 𝐸, 𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑 (19)

𝑙𝑑𝑙 ≥ 𝑙𝑑 𝑗 − Σ𝑔∈𝐺𝑑𝑒𝑚𝑎𝑛𝑑𝑙𝑔 + 𝑝𝑟𝑜𝑑𝑙 − 𝑀 (1 − Σ𝑑∈𝐷𝐶Σ𝑚∈𝐹𝑑
𝑥 𝑗𝑙𝑚𝑑) ∀ 𝑗 , 𝑙 ∈ 𝐸 : 𝑗 ≠ 𝑙 (20)

𝑙𝑏𝑚𝑑 ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑 (21)

𝑙𝑑𝑙 ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∀𝑙 ∈ 𝐸 (22)

𝑛𝑝𝑑 ≤ 𝑠𝑐𝑎𝑝𝑑 ∀𝑑 ∈ 𝐷𝐶 (23)

The objective (1) minimizes the total station cost and total travelling cost. Constraint (2) guarantees that each task in each DC
is assigned to a station. Constraint (3) specifies that the total processing time at each station does not exceed the cycle time of
that DC. Constraints (4) and (5) regulate the AND and OR precedence relations between the tasks, respectively. Constraint (6)
guarantees the sequential opening of stations. Constraint (7) computes the cycle time for each DC. Constraint (8) states that the
cycle time of each DC should be greater than or equal to the processing time of any task. Constraint (9) guarantees that each
customer/supplier node is visited once. Constraint (10) provides the flow balance between nodes. Constraints (11) and (12) prevent
sub-tours. Constraints (13)-(14) prohibit vehicles from visiting another disassembly center apart from their own center. Constraint
(15) ensures that each vehicle is employed at most once. Constraint (16) calculates the number of products that are demanded from
each DC. Constraint (17) states that each DC must serve at least one customer/supplier node. Constraint (18) computes the initial
load of each vehicle when leaving its own DC. Constraints (19) and (20) compute the load of a vehicle after having serviced each
customer/supplier node regarding the pickup and delivery operations in that node. Constraints (21) and (22) state that load of a
vehicle cannot exceed the capacity. Constraint (23) states that the number of products that are demanded from each DC cannot
exceed the total supply of that DC from the previous planning period.

The MINLP model provides an advantage in terms of ease of modeling. The model is established using fewer decision variables
and constraints compared to the MILP model. Such a MINLP model provides a more understandable expression of the structure of
the problem and ease of modeling. However, as shown in the study by Çil et. al. (2023) for the integrated distributed disassembly
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line balancing and vehicle routing problem, the MINLP model can provide a very poor performance in terms of both solution
time and solution quality. One of the disadvantages of the MINLP model is that it can have a worse performance compared to the
MILP and CP models. For this reason, even though the MINLP model is presented, it is not used in solution generation within the
scope of this study.

3.2. Mixed-Integer Linear Programming Model

In this section, a MILP model is presented for the problem by linearizing the nonlinear constraints of MINLP model. The
constraint linearization method proposed by Feng & Che (2023) is used to linearize the nonlinear constraints. The MILP model
uses the same decision variables as the MINLP model. However, 𝑐𝑦𝑐𝑙𝑒𝑑 decision variable is not used in the MILP model and an
additional decision variable is defined for the MILP model, which is described below.

𝑟𝑣𝑖𝑏𝑑= auxiliary decision variable for task i, station b, and DC d

The objective function and the constraints of the MILP model are provided below.

Objective Function (1) from MINLP
Constraint (2) from MINLP

Σ𝑖∈𝐴𝑝𝑡𝑖𝑚𝑒𝑖𝑟𝑣𝑖𝑏𝑑 ≤ 𝑤𝑡𝑖𝑚𝑒 ∀𝑏 ∈ 𝐵, 𝑑 ∈ 𝐷𝐶 (24)

𝑟𝑣𝑖𝑏𝑑 ≤ 𝑁𝑝𝑈𝑣𝑖𝑏𝑑 ∀𝑖 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑑 ∈ 𝐷𝐶 (25)

𝑟𝑣𝑖𝑏𝑑 ≤ 𝑛𝑝𝑑 + 𝑁𝑝𝐿 (𝑣𝑖𝑏𝑑 − 1) ∀𝑖 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑑 ∈ 𝐷𝐶 (26)

𝑟𝑣𝑖𝑏𝑑 ≥ 𝑛𝑝𝑑 + 𝑁𝑝𝑈 (𝑣𝑖𝑏𝑑 − 1) ∀𝑖 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑑 ∈ 𝐷𝐶 (27)

Σ𝑖∈𝐴𝑣𝑖𝑏𝑑 ≤ |𝐴| ∗ 𝑦𝑏𝑑 ∀𝑏 ∈ 𝐵, 𝑑 ∈ 𝐷𝐶 (28)

Constraints (4)-(6) from MINLP

𝑤𝑡𝑖𝑚𝑒 ≥ 𝑝𝑡𝑖𝑚𝑒𝑖𝑛𝑝𝑑 ∀𝑑 ∈ 𝐷𝐶, 𝑖 ∈ 𝐴 (29)

Constraints (9)-(23) from MINLP

The objective function of the MILP model remains the same as the objective function of the MINLP model. Since constraint
(3) in the MINLP model is nonlinear, constraints (24)-(28) are added instead of this constraint. Constraints (24) – (27) states that
total operation time of each station cannot exceed the cycle time of that DC, where 𝑁𝑝𝑈 and 𝑁𝑝𝐿 parameters are upper and lower
bound values for the variable 𝑛𝑝𝑑 , respectively. Constraint (28) indicates that if a task is assigned to a station, the station is open.
To complete the transformation of the model into a linear model, constraint (29) is added instead of constraints (7) and (8) in the
MINLP model. Constraint (29) states that the cycle time of each DC should be greater than or equal to the processing time of any
task. The remaining constraints are the same as constraints (2), (4)-(6) and (9)-(23) in the MINLP model.

The MILP model has a more complex structure because it uses more decision variables and constraints than the MINLP model.
However, making the constraints linear can improve the solution quality and performance of the model significantly, as shown
in the study of Çil et al. (2023). For this reason, it is aimed to benefit from the solution quality advantage of a linear model by
establishing the MILP model.
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3.3. Constraint Programming Model

In this section, a CP model is presented for the problem. The decision variables and functions used in this model are described
in Table 3. Subsequently, the objective function and constraints of the CP model are explained.

Table 3. Decision variables and functions of the CP Model

Decision Variables for CP 
𝒏𝒑𝒅 = number of products (maximum number of components) that are demanded from DC d. 
𝒏𝒅𝒋 = interval variable for node 𝑗. 

𝒚𝒋,𝒎 = an optional interval variable exists if node 𝑗 is served by vehicle m. 

𝑺𝒆𝒒𝒎 = a sequence variable defined over interval variables 𝑦, and represents the route of each 

vehicle with 𝒕𝒓𝒂𝒗𝒆𝒍𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 between nodes, respecting 𝒕𝒓𝒂𝒗𝒆𝒍𝒋𝒍. 

𝒔𝒕𝒊𝒅 = indicates the station number of task i in DC d. 

Expressions of CP 
𝒔𝒕𝒂𝒊𝒅 = 𝒎𝒊𝒏(𝒌 ∈ 𝑶𝑹𝒊)𝒔𝒕𝒌𝒅   calculates the minimum of assigned station number of tasks k’s 

which are OR predecessors of task i. 
𝒔𝒕𝒂𝒕𝒊𝒐𝒏𝑪𝒐𝒔𝒕 =  ∑ 𝐦𝐚𝐱

𝒊∈𝑨
𝒔𝒕𝒊𝒅 ∗ 𝒔𝒄𝒐𝒔𝒕𝒅∈𝑫𝑪     calculates the total station cost of DCs. 

𝒕𝒓𝒂𝒗𝒆𝒍𝑪𝒐𝒔𝒕 =  ∑ 𝒄𝒐𝒔𝒕𝒋,𝒕𝒚𝒑𝒆𝑶𝒇𝑵𝒆𝒙𝒕൫𝑺𝒆𝒒𝒎,𝒚𝒋𝒎,𝒋,𝒋൯𝒋∈𝑯ᇱ,𝒅∈𝑫𝑪,𝒎∈𝑭𝒅
 calculates the total travel cost of all 

vehicles. 

Cumulative Function of CP 

𝒄𝒇𝒎 = ∑ 𝒔𝒕𝒆𝒑𝑨𝒕𝑺𝒕𝒂𝒓𝒕൫𝒚𝒋𝒎, 𝒑𝒓𝒐𝒅𝒋൯𝒋∈𝑬 − ∑ 𝒔𝒕𝒆𝒑𝑨𝒕𝑺𝒕𝒂𝒓𝒕൫𝒚𝒋𝒎, 𝒅𝒆𝒎𝒂𝒏𝒅𝒋𝒈൯𝒋∈𝑬,𝒈∈𝑮   cumulative 

function calculates the load of each vehicle m after visiting each node by considering loaded supplies 
of next period and the unloaded demands of the current period. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑍 = 𝑡𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡 + 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 (30)

𝑠𝑡𝑘𝑑 ≤ 𝑠𝑡𝑖𝑑 ∀𝑖 ∈ 𝐴, 𝑘 ∈ 𝐴𝑁𝐷𝑖 , 𝑑 ∈ 𝐷𝐶 (31)

𝑠𝑡𝑖𝑑 ≥ 𝑠𝑡𝑎𝑖𝑑 ∀𝑖 ∈ 𝐴, 𝑑 ∈ 𝐷𝐶 (32)

Σ𝑖∈𝐴(𝑠𝑡𝑖𝑑 = 𝑏)𝑝𝑡𝑖𝑚𝑒𝑖𝑛𝑝𝑑 ≤ 𝑤𝑡𝑖𝑚𝑒, ∀𝑏 ∈ 𝐵, 𝑑 ∈ 𝐷𝐶 (33)

𝑝𝑡𝑖𝑚𝑒𝑖𝑛𝑝𝑑 ≤ 𝑤𝑡𝑖𝑚𝑒, ∀𝑖 ∈ 𝐴, 𝑑 ∈ 𝐷𝐶 (34)

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑛𝑑 𝑗 , 𝑎𝑙𝑙 (𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑)𝑦 𝑗𝑚) ∀ 𝑗 ∈ 𝐸 (35)

Σ 𝑗∈𝐸,𝑚∈𝐹𝑑
𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂 𝑓 (𝑦 𝑗𝑚) ≥ 1, 𝑑 ∈ 𝐷𝐶 (36)

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂 𝑓 (𝑦𝑛+𝑑,𝑚) = 1, ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑 (37)

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂 𝑓 (𝑦𝑛+𝑠+𝑑,𝑚) = 1, ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑 (38)

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂 𝑓 (𝑦𝑛+𝑑,𝑚) = 0, ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∉ 𝐹𝑑 (39)

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂 𝑓 (𝑦𝑛+𝑠+𝑑,𝑚) = 0, ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∉ 𝐹𝑑 (40)

Σ 𝑗∈𝐻′ ,𝑔∈𝐺𝑠𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡 (𝑦 𝑗𝑚, 𝑑𝑒𝑚𝑎𝑛𝑑 𝑗𝑔) + 𝑐 𝑓𝑚 ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑 (41)

Σ 𝑗∈𝐻′ ,𝑔∈𝐺𝑠𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡 (𝑦 𝑗𝑚, 𝑑𝑒𝑚𝑎𝑛𝑑 𝑗𝑔) ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑 (42)

𝑓 𝑖𝑟𝑠𝑡 (𝑆𝑒𝑞𝑚, 𝑦𝑛+𝑑,𝑚), ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑 (43)
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𝑙𝑎𝑠𝑡 (𝑆𝑒𝑞𝑚, 𝑦𝑛+𝑠+𝑑,𝑚), ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑 (44)

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑆𝑒𝑞𝑚, 𝑡𝑟𝑎𝑣𝑒𝑙𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 1), ∀𝑑 ∈ 𝐷𝐶, 𝑚 ∈ 𝐹𝑑 (45)

𝑛𝑝𝑑 ≥ Σ 𝑗∈𝐻′ ,𝑚∈𝐹𝑑
𝑠𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡 (𝑦 𝑗𝑚, 𝑑𝑒𝑚𝑎𝑛𝑑 𝑗𝑔), ∀𝑔 ∈ 𝐺, 𝑑 ∈ 𝐷𝐶 (46)

𝑛𝑝𝑑 ≤ 𝑠𝑐𝑎𝑝𝑑 , ∀𝑑 ∈ 𝐷𝐶 (47)

The objective (30) minimizes the total station and total travel costs. Constraint (31) indicates that if task k is an AND predecessor
of task i, task k should be assigned earlier or at the same station as task i. In constraint (32), the decision variable sta represents the
minimum station number that OR predecessors of task i have been assigned, so the station of task i must be at least this minimum
station or one of the subsequent stations. Constraint (33) calculates the cycle time of each DC, considering the total working time
and the maximum number of components that are required from that DC. This constraint also states that total operation time of
each station cannot exceed the cycle time of that DC. Constraint (34) specifies that the cycle time must be greater than or equal
to the longest processing time of the tasks. Constraint (35) guarantees that each factory is visited by exactly one vehicle. Also,
constraint (36) provides that at least one factory should be served from a DC. Constraint sets (37-40) state that all vehicles depart
and return to their corresponding disassembly centers, and vehicles cannot depart or return to the other DCs to which they do not
belong. Constraint (41) calculates the load of each vehicle during their tours using the cumulative function. In this constraint, a
vehicle starts its tour by loading all the demands of the factories included in its tour, and it delivers these demands when visiting
those factories, hence these demands are unloaded from the vehicle. Additionally, during their tours, vehicles collect product
supplies for the next period, so the quantities of these product supplies are loaded onto the vehicle from the visited factories. Thus,
Constraint (41) ensures that the vehicle capacity is not exceeded during the tour, and Constraint (42) provides the same constraints
at the beginning of the tour, considering all the demands to be distributed. Constraints (43-44) specify that their respective DCs
should be the first and last stops of the vehicles. Constraint (45) prevents overlapping tours of vehicles and provides the sequence of
the visits. Constraint (46) calculates the number of demanded products from each DC based on the demands of the visited factories
from that disassembly center. Similarly, constraint (47) states that the number of demanded products from each DC cannot exceed
the total supply of that DC from the previous planning period.

The CP model differs from the MINLP and MILP models in terms of the decision variables used, modeling technique and
solution search mechanism. The CP model is preferred for the integrated problem in this study, because of its good performance
in scheduling and vehicle routing problems and it can narrow the solution space and the domain of decision variables by using
constraints. Within the scope of this study, since the integrated problem is a complex problem with many constraints, it is aimed
to benefit from using the constraints of the CP model effectively.

4. Computational Results

In the computational experiment, small-sized instances are generated to evaluate the performance of the MILP and CP models,
following a similar instance generation procedure in Çil et al. (2023). The DLB instances presented in the study of Çil (2021)
contain both AND precedence (P) and AND/OR precedence (POR) relationships for tasks. Among these instances, P9, P11 and
POR10 instances are used for the DLB part of the studied problem. P9 and P11 instances consist of 9 and 11 tasks, respectively, and
there is only AND precedence relationship between tasks in these instances. In POR10 instance, there are 10 tasks and there is an
AND/OR precedence relationship between the tasks. For the VRP part of the studied problem, instances for the multi-depot VRP
presented by Cordeau et al. (1997) have been modified according to the studied problem. The first 6, 8 and 10 customer coordinates
are selected from the clusters to represent the factories in the studied problem. In addition, two and three depots are randomly
selected from the clusters to represent the disassembly centers. The vehicle capacities have been increased by multiplying the
number of components. The demand value for each customer is assumed as the demand for the first component, and the demands
for the rest of the components are randomly generated between the minimum and maximum of the demand values in the instances.
The product supply quantities of the factories to be collected are randomly generated between [1, 200]. The supplied products
from the previous planning period for the disassembly centers are randomly generated between [200, 500]. It is assumed that there
are four and six components in the instances. It is assumed that there is enough number of vehicles. Consequently, a total of 36
instances are generated considering the instances of P9, P11, POR10, the number of factories as 6, 8, 10, number of disassembly
centers as 2, 3, number of components as 4, 6, where there is one instance for each parameter combination.

While the MILP model is solved on IBM ILOG CPLEX 12.10 platform, CP Optimizer of IBM ILOG CPLEX 12.10 is used
to solve the CP model. All results of the models are obtained on a laptop with Intel Core i7 with 8GB of RAM. The results are
obtained by solving the 36 instances by MILP and CP models. Both models are solved under a time limit of 1800 seconds for
each instance. Table 4 presents the results of the MILP and CP models for these small-sized instances. The first column of Table
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4 includes the instance number, and the next column includes the number of tasks. The next two columns represent the number of
DC and number of factories for each instance. The relative percentage deviation (RPD%) values and solution time (in seconds)
values of the MILP and CP models are also included in this table. The RPD computes the percentage deviation of each result found
by the models from the best result for each instance, which is calculated as in Eq. (48). In the RPD calculation, result indicates the
result of each model, while best result indicates the best result found among two models.

𝑅𝑃𝐷% =
(𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑏𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡)

𝑏𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡
∗ 100 (48)

In Table 4, the number of tasks refers to the number of disassembly tasks in disassembly centers, and as this number increases,
more workloads occur at the workstations. DCs are places where the products are disassembled and turned into components.
There is a disassembly line in each DC. Any facility can have more than a single DC, so different numbers of DCs are considered
to show their effect on the solution quality. Factories are also places where the products to be disassembled are supplied and the
disassembled components are delivered. Production is carried out by reusing the components in these factories. In this study,
factories represent both suppliers (where products are collected) and customers (where components are distributed) of DCs.
Therefore, different number of factories are considered to evaluate the sensitivity of the solution quality as the number of suppliers
and customers changes.

Table 4. Computational results for the models

Instance 
Number 

of 
Tasks 

Number 
of DC 

Number 
of 

Factories 

MILP CP 

RPD (%) Computational Time(s) 
RPD 
(%) 

Computational Time(s) 

1 9 2 6 0.00 28 1.39 1800 

2 9 2 6 0.00 61 0.00 1800 

3 9 3 6 0.00 102 0.00 1800 

4 9 3 6 0.00 419 0.00 1800 

5 9 2 8 0.00 1800 0.00 1800 

6 9 2 8 0.00 1800 0.00 1800 

7 9 3 8 0.00 1800 0.00 1800 

8 9 3 8 0.00 1800 0.00 1800 

9 9 2 10 0.00 1800 0.41 1800 

10 9 2 10 0.00 1800 0.00 1800 

11 9 3 10 0.00 1800 3.04 1800 

12 9 3 10 1.41 1800 0.00 1800 

13 11 2 6 0.00 11 0.09 1800 

14 11 2 6 0.00 5 0.00 1800 

15 11 3 6 0.00 112 0.00 1800 

16 11 3 6 0.00 196 0.00 1800 

17 11 2 8 0.00 131 1.02 1800 

18 11 2 8 0.00 1800 0.00 1800 

19 11 3 8 0.00 1800 0.23 1800 

20 11 3 8 0.00 1800 0.00 1800 

21 11 2 10 0.00 1800 0.32 1800 

22 11 2 10 0.76 1800 0.00 1800 

23 11 3 10 0.11 1800 0.00 1800 

24 11 3 10 0.00 1800 0.00 1800 

25 10 2 6 0.00 113 0.00 1800 

26 10 2 6 0.00 334 0.00 1800 

27 10 3 6 0.00 1253 0.00 1800 

28 10 3 6 0.00 633 0.00 1800 

29 10 2 8 0.12 1800 0.00 1800 

30 10 2 8 0.00 1800 0.00 1800 

31 10 3 8 0.00 1800 0.87 1800 

32 10 3 8 1.69 1800 0.00 1800 

33 10 2 10 0.00 1800 0.06 1800 

34 10 2 10 0.00 1800 0.00 1800 

35 10 3 10 0.17 1800 0.00 1800 

36 10 3 10 0.30 1800 0.00 1800 

Average 0.13 1244.39 0.21 1800.00 
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When Table 4 is analyzed, there is no significant difference between MILP and CP models in solving small-sized problems. The
MILP model has an average RPD value of 0.13%, which is slightly better than the average RPD value of the CP model (0.21%).
While the MILP model finds better results than the CP model for 9 out of 36 instances, the CP model finds better results for 7
out of 36 instances. For the remaining 20 instances, the CP model and the MILP model find the same result. On the other hand,
the MILP model obtains optimal solutions for 13 of these 36 instances. The MILP model can find the optimal solutions for only
some of the instances which have 6 factories. As the number of factories increases, the MILP model cannot find optimal results
within the limited time given. These cases show the effect of the number of factories on the complexity of the problem and the
solution time. On the other hand, the CP model cannot find any proven optimal solution. Although the CP model finds the same
result for 10 of these 13 optimal solutions found by the MILP model, it cannot prove the optimality of the solutions. If we analyze
the results in terms of solution time, the CP model uses the entire time limit for all instances, while the MILP model finds the
optimal solutions for 13 instances in less computational time. Although the CP model can find the optimal results found by MILP
in a short time, since it cannot prove optimality, it uses the entire time limit, and the CPU time seems to be high. The reason why
the CP model cannot prove optimality is that it has difficulty finding a lower bound. The CP model narrows the domain of decision
variables by using constraints. At each stage, it propagates the constraints in the solution space, cuts the domains of the decision
variables and infers the values of the variables to find a solution. Since the standard branch and bound structure applied in MILP
models is not available in the CP model, it can be difficult to find a lower bound. Therefore, even if the CP finds good solutions,
it cannot prove optimality. When the computational results were analyzed in detail, in general, MILP or CP models do not have
significant superiority over each other for solving the problem. It can be said that both models are able to provide good quality
solutions for small-sized instances.

5. Conclusions

This study addressed the integrated disassembly line balancing and pickup-delivery vehicle routing problem with distributed
disassembly centers. Products collected from the factories are disassembled in the disassembly centers, and then the disassembled
components are distributed to the factories. The studied integrated problem optimizes both the line balancing of the disassembly
lines in disassembly centers and the vehicle routes for the collection of products and distribution of components, simultaneously.
The studied problem differs from the related studies on integrated DLB and vehicle routing problem in the literature, as there
are multiple disassembly centers with limited product supplies and distribution and collection operations are planned together
within the scope of this study. In terms of practical implications of the study, the integration of pickup-delivery vehicle routing and
disassembly line balancing problems for distributed disassembly centers can help to minimize total costs, achieve a more effective
resource management, and enhance the sustainability and adaptability of the system to dynamic changing demands. In this study,
mixed-integer nonlinear programming, mixed-integer linear programming and constraint programming models were presented
for this complex integrated problem. The presented mathematical models can be used by the managers for solving small-sized
problems in the planning of disassembly line balancing and collection-distribution processes for multiple disassembly centers.
Also, the performance of the MILP and CP models was tested on the small-sized instances. The computational results show that
both MILP and CP models can provide effective solutions.

In terms of limitations of the study, presented mathematical models can provide good-quality solutions for only small-sized
instances due to the complexity of the problem, as shown in Section 4. It is expected that, as the problem size increases the solution
time of the mathematical models will also increase. Hence, in future studies, heuristic or metaheuristic algorithms can be developed
for the problem to solve large-sized instances. Since effective heuristic/metaheuristic algorithms can provide good-quality solutions
in short computational times, it can be practical to develop a heuristic/metaheuristic algorithm for solving the large-sized instances
of the problem. Also, in a planning period, factories can be available for only certain time windows for the collection of products
or delivery of components. In such case, the visiting time for these factories should comply with their time windows. In future
studies, time window constraints for the factories can also be considered for the problem.
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