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Özcan GELİŞGEN 1 ID , Zeynep ÇOLAK 2 ID

Abstract
There are two aims of this paper. First one, we want to give a detailed exposition of basic properties of deltoidal
hexacontahedron, pentakis dodecahedron and triakis icosahedron which are Catalan solids. Also, we construct
the spaces by covering related metrics. The spheres of these spaces are deltoidal hexacontahedron, pentakis
dodecahedron and triakis icosahedron. Second one is to find the isometry group of these solids. In fact, the
main aim of this paper is the second one. We show that the group of isometries of the spaces covering with
deltoidal hexacontahedron, pentakis dodecahedron, and triakis icosahedron metrics is the semi-direct product of
the icosahedral group Ih and T (3), where Ih is the (Euclidean) symmetry group of the icosahedron and T (3) is
the group of all translations of the 3-dimensional space.

Keywords and 2020 Mathematics Subject Classification
Keywords: Isometry group — deltoidal hexacontahedron — pentakis dodecahedron — triakis icosahedron—
Catalan solids
MSC: 51B20, 51N25, 51F99
1 Department of Mathematics and Computer Sciences, Eskişehir Osmangazi University, 26040, Eskişehir, Türkiye
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1. Introduction
To a classical Greek geometer, a polyhedron was solid. Over the past 200 years, it has become more convenient to think of
polyhedra as surfaces. It has been said that the only thing all polyhedra have in common is the name. However, there is some
common ground to be found. Their most obvious property is that they are made of polygons. This fundamental property
constituted a definition of polyhedron for many centuries. We shall make a distinction the constituent parts of polygons and
those of polyhedra. Thereby a polygon has sides and corners, whereas a polyhedron has faces, edges and vertices. Each edge
of a polyhedron is formed from the sides of two faces [1]. Examples of polyhedra in architecture, art, ornament, nature and
cartography. The ancient pyramids in Egypt which were built four thousand years ago. Much modern abstract sculpture has a
polyhedral form. This is as simple as a cube with one corner embedded in the ground. Mostly, platonic solids are used [1].

In three-dimensional space, a Platonic solid is a regular convex polyhedron. It consists of congruent, regular polygonal
faces that meet at each vertex. Five solids meet these criteria, and each is named after the number of its faces. Geometers
have studied the mathematical beauty and symmetry of the Platonic solids for thousands of years. They are named after the
ancient Greek philosopher Plato, who theorised in his dialogue Timaeus that the classical elements are made up of these
regular solids. Examples of semi regular polyhedra are Archimedean solids. In geometry, an Archimedean solid is a highly
symmetric, semi-regular convex polyhedron consisting of two or more types of regular polygons meeting at identical vertices.
They differ from Platonic solids, which consist of only one kind of polygons meeting at identical vertices, and from Johnson
solids, whose regular polygon faces do not meet in identical vertices. In mathematics, a Catalan solid or Archimedean dual is a
dual polyhedron to an Archimedean solid. Catalan solids are named after the Belgian mathematician Eugène Catalan, who first
described them in 1865. Catalan solids are all convex. They are surface-transitive, but not vertex-transitive. The reason for this
is that the dual Archimedean solids are vertex-transitive and not face-transitive. Unlike the Platonic solids and the Archimedean
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solids, the faces of the Catalan solids are not regular polygons. However, the vertex figures of the Catalan solids are regular.
The fundamental problem of geometric investigations for given space S with metric d is to describe the group G of isometries.

It is known that for the Euclidean space, G = E(3) is the semi-direct product of its two subgroups O(3) (the orthogonal group)
and T (3) (the translation group) consist of all translations of 3-dimensional space. During this work we use the following
descriptions, quoted from Martin [2]:

i. A transformation is one to one equivalence from the set of points in space onto itself. If d(X ,Y ) = d(α(X),α(Y )) for
every point X and Y , then transformation α is named an isometry.

ii. For all points X , if i(X) = X , then i is called identity.

iii. If α fixes which set of points then isometry α is called a symmetry.

iv. For plane ∆, If σ∆(X) = X for point X on ∆ and if σ∆(X) = Y for point X on ∆ and ∆ is perpendicular bisector of line
segment XY , then σ∆, which is mapping on the points in R3, is called reflection.

v. σ∆σΓ is defined as a rotation about axis l, if Γ and ∆ are two intersecting planes at line l.

vi. σΠσ∆σΓ is defined as a rotary reflection about the common point to Γ,∆ and Π if Γ,∆ ,which each one perpendicular to
Π, are intersecting planes.

vii. If σN(X) = Y for every X points and N is midpoint of X and Y , then σN inversion about N is called a transformation.
At the same time σN is defined a point reflection.

Some mathematicians have studied isometry groups of some planes and spaces covering with different metrics [3–19]. In this
work, we show that isometry groups of Deltoidal Hexacontahedron, Pentakis Dodecahedron and Triakis Icosahedron spaces are
the semi direct product of icosahedral group Ih and translation group T (3).

2. Preliminaries
A deltoidal hexacontahedron (sometimes called a trapezoidal hexacontahedron, strombic hexacontahedron, or tetragonal
hexacontahedron) is a Catalan solid that is the dual polyhedron of the rhombicosidodecahedron, an Archimedean solid. The 60
faces are deltoids or kites. A pentakis dodecahedron or kisdodecahedron is a dodecahedron with a pentagonal pyramid covering
each face, that is, it is the cloetop of the dodecahedron. The usual Catalan pentakis dodecahedron, a convex hexacontahedron
with sixty isosceles triangular faces. It is a Catalan solid, dual to the truncated icosahedron, an Archimedean solid. The Pentakis
dodecahedron is also a model for some icosahedron symmetric viruses, such as the adeno-associated virus. These have 60
symmetry-related capsid proteins, which together give the 60 symmetric faces of a Pentakis dodecahedron. The pentakis
dodecahedron in a model of Buckminsterfullerene, with each surface segment representing a carbon atom. Similarly, a truncated
icosahedron is a model of Buckminsterfullerene where each vertex represents a carbon atom. The Triakis icosahedron (or
Kisikosahedron) is an Archimedean dual body or a Catalan body. Its dual is the truncated dodecahedron. It can be considered
as an icosahedron with triangular pyramids on each face, that is, it is the cloetop of the icosahedron. This interpretation is
expressed in the name Triakis. The 60 faces are isosceles triangular, (see [20–22]).

We asserted the deltoidal hexacontahedron, pentakis dodecahedron and triakis icosahedron metrics in [23,24]. Let R3
DH , R3

PD
and R3

T I which are called deltoidal dodecahedron, pentakis dodecahedron and triakis icosahedron space point out 3-dimensional
analytical space furnishing deltoidal hexacontahedron metric, pentakis dodecahedron metric and triakis icosahedron metric,
respectively. R3

DH , R3
PD, R3

T I are almost the same the Euclidean 3-dimensional space R3. All of them are Minkowski geometry.
The points, lines and planes in Minkowski geometry are the same Euclidean geometry’s points, lines and planes, but the distance
function is different. The taxicab (Manhattan) and the maximum (Chebyshev) norms are defined as ∥X∥1 = |x|+ |y|+ |z|
and ∥X∥

∞
= max{|x| , |y| , |z|}, respectively and they are special cases of lp-norm; ∥X∥p = (|x|p + |y|p + |z|p)1/p, where

X = (x,y,z) ∈ R3. Among lp-metrics only crystalline metrics, i.e., metrics having polygonal unit balls are l1− and l∞−
metrics [25].

The deltoidal hexacontahedron, pentakis dodecahedron and triakis icosahedron metrics and some properties of them are
given shortly from [21] and [22]. First, we give some notions that will be used in the descriptions of distance functions we
define. For P1 = (x1,y1,z1), P2 = (x2,y2,z2) ∈ R3, M denotes ∥P1 −P2∥∞

and S denotes ∥P1 −P2∥1. Moreover, X −Y −Z −X
and Z −Y −X −Z orientations are called positive (+) direction and negative (-) direction, respectively. M+ and M− expresses
the next term in the respective direction according to M. For example, if M = |x1 − x2|, then M+ = |y1 − y2| and M− = |z1 − z2|.
The metrics for which the unit spheres are the deltoidal hexacontahedron, the pentakis dodecahedron and the triakis icosahedron
are defined as following:
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(a) (b) (c)

(d) (e)
Fig. 1. a) Deltoidal hexecontahedron, b) Pentakis dodecahedron, c) Triakis icosahedron, d) A model of buckminsterfullerene, e)
Adeno-associated virüs

Definition 1. Let P1 = (x1,y1,z1) and P2 = (x2,y2,z2) be distinct two points in R3. The distance functions for deltoidal
hexacontahedron, pentakis dodecahedron and triakis icosahedron distance, respectively between P1 and P2 are defined by

dDH(P1,P2) = max{(3ϕ −4)M+(ϕ −1)M−,M+(2ϕ −3) [M++M−] ,(4−2ϕ)M+(ϕ −1)M++(2−ϕ)M−} ,
dPD(P1,P2) = max

{
M+ ϕ−1

3 M+, ϕ+1
3 M+ 2(ϕ−1)

3 M++ 1
3 M−, 2(ϕ+1)

3 M+ ϕ−1
3 M++ 2

3 M−
}
,

dT I(P1,P2) = max
{

M+ 3ϕ−4
5 M−, 2ϕ+4

5 M+ 2ϕ−1
5 M++ 6−2ϕ

5 M−, 4ϕ−2
5 M+ 3ϕ−4

5 M++ 2ϕ−1
5 M−

}
,

where ϕ =
√

5+1
2 the golden ratio.

Geometrically, there are three possible ways for the shortest paths between the points the P1 and P2 in R3
DH as shown in

Figure 2 (a)-(b). These paths are:

i. The DH-path from P1 and P2 is union of three line segments, one segment is parallel to one of the coordinate axes and
the other two make arctan(2) radian angle with one of the other coordinate axes.

ii. The DH-path from P1 and P2 is union of two line segments, one segment is parallel to one of the coordinate axes and the
other makes arctan

(
10−3

√
5

10

)
radian angle with one of the other coordinate axes.

iii. The DH-path from P1 and P2 is union of three line segments, one segment is parallel to one of the coordinate axes and
the other two make arctan

(
3
√

5−5
8

)
and arctan

( 3
4

)
radians angle with one of the other coordinate axes.

Thus deltoidal hexacontahedron distance between P1 and P2 is for part i the sum of Euclidean lengths of mentioned three line
segments, for part ii 3

√
5−5
2 times the sum of Euclidean lengths of mentioned two line segments, for part iii

(
3−

√
5
)

times the
sum of Euclidean lengths of mentioned three line segments.

(a) (b)
Fig. 2. The shortest paths between the points the P1 and P2 in R3

DH
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By a similar discussion pentakis dodecahedron and triakis icosahedron ways from P1 and P2 are would easily be considered.
To the definition of dPD- distance there are three possible ways for the shortest paths between the points the P1 and P2 as shown
in Figure 2 (a)-(b). These paths are:

i. The PD-path from P1 and P2 is union of two line segments, one segment is parallel to one of the coordinate axes and the
other makes arctan

(
4
√

5+5
6

)
radian angle with one of the other coordinate axes.

ii. The PD-path from P1 and P2 is union of two line segments, one segment is parallel to one of the coordinate axes and the
other makes arctan

(
538

√
5−117

76

)
and arctan

(
3033+299

√
5

19

)
radians angle with one of the other coordinate axes.

iii. The PD-path from P1 and P2 is union of three line segments, one segment is parallel to one of the coordinate axes and the
other two make arctan

(
2730+424

√
5

31

)
and arctan

(
4645

√
5+867

31

)
radians angle with one of the other coordinate axes.

Thus pentakis dodecahedron distance between P1 and P2 is for part i the sum of Euclidean lengths of mentioned two line
segments, for part ii 9−

√
5

6 times the sum of Euclidean lengths of mentioned three line segments, for part iii 6−
√

5
3 times the sum

of Euclidean lengths of mentioned three line segments.
To the definition of dT I- distance there are three possible ways for the shortest paths between the points the P1 and P2 as

shown in Figure 2 (a)-(b). These paths are:

i. The T I-path from P1 and P2 is union of two line segments, one segment is parallel to one of the coordinate axes and the
other makes arctan

(
15−3

√
5
)

radian angle with one of the other coordinate axes.

ii. The T I-path from P1 and P2 is union of two line segments, one segment is parallel to one of the coordinate axes and the
other makes arctan

( 3
4

)
and arctan

(
2
√

5−3
)

radians angle with one of the other coordinate axes.

iii. The T I-path from P1 and P2 is union of three line segments, one segment is parallel to one of the coordinate axes and the
other two make arctan

(
91

√
5−12

44

)
and arctan

(
1281

√
5−690

44

)
radians angle with one of the other coordinate axes.

Thus triakis icosahedron distance between P1 and P2 is for part i the sum of Euclidean lengths of mentioned two line segments,
for part ii 2

√
5

5 times the sum of Euclidean lengths of mentioned three line segments, for part iii 15+
√

5
10 times the sum of

Euclidean lengths of mentioned three line segments.

Corollary 2. Let M0 = ∥X −X0∥∞
for X = (x,y,z) and X0 = (x0,y0,z0) . The equation of the deltoidal hexacontahedron with

center (x0,y0,z0) and radius r,

max
{
(3ϕ −4)M0 +(ϕ −1)M−

0 ,M0 +(2ϕ −3)
[
M+

0 +M−
0
]
,(4−2ϕ)M0 +(ϕ −1)M+

0 +(2−ϕ)M−
0
}
= r

that is a polyhedra which has 60-faces with vertices. The coordinates of the vertices are translations to (x0,y0,z0) such that

all possible +/− sign changes of each axis component of (0,0,r), (r,0,0), (0,r,0),
(

0, 3
√

5+1
22 r, 5

√
5+9

22 r
)
,
(

5
√

5+9
22 r,0, 3

√
5+1

22 r
)
,(√

5+3
6 r,

√
5+1
6 r,0

)
,

(
0,

√
5+3
6 r,

√
5+1
6 r

)
,

(√
5−1
4 r, 1

2 r,
√

5+1
4

)
,

(√
5+1
4 r,

√
5−1
4 r, 1

2 r
)
,

(
1
2 r,

√
5+1
4 r,

√
5−1
4 r

)
and(√

5+4
11 r,

√
5+4
11 r,

√
5+4
11 r

)
.

The equation of pentakis dodecahedron with center (x0,y0,z0) and radius r,

max
{

M0 +
ϕ −1

3
M+

0 ,
ϕ +1

3
M0 +

2(ϕ −1)
3

M+
0 +

1
3

M−
0 ,

2(ϕ +1)
3

M0 +
ϕ −1

3
M+

0 +
2
3

M−
0

}
= r

that is a polyhedra which has 60-faces with vertices. The coordinates of the vertices are translations to (x0,y0,z0) such
that all possible +/− sign changes of each axis component of (0, 3−

√
5

2 r,r), (r,0, 3−
√

5
2 r), ( 3−

√
5

2 r,r,0), ( 6
√

5−3
19 r,0, 3

√
5+27
38 r),

( 3
√

5+27
38 r, 6

√
5−3

19 r,0), (0, 3
√

5+27
38 r, 6

√
5−3

19 r), (
√

5−1
2 r,

√
5−1
2 r,

√
5−1
2 r) (see Figure 3 (b)).

The equation of the triakis icosahedron with center (x0,y0,z0) and radius r,

max
{

M0 +
3ϕ −4

5
M−

0 ,
2ϕ +4

5
M0 +

2ϕ −1
5

M+
0 +

6−2ϕ

5
M−

0 ,
4ϕ −2

5
M0 +

3ϕ −4
5

M+
0 +

2ϕ −1
5

M−
0

}
= r

that is a polyhedra which has 60-faces with vertices. The coordinates of the vertices are translations to (x0,y0,z0) such that
all permutations of the three axis components and all possible +/− sign changes of each axis component of (0,r,

√
5−1
2 r),

(0, 4
√

5−5
11 r, 7

√
5+5

22 r), ( 7
√

5+5
22 r,0, 4

√
5−5

11 r),( 4
√

5−5
11 r, 7

√
5+5

22 r,0), ( 15−
√

5
22 r, 15−

√
5

22 r, 15−
√

5
22 r) (see Figure 3 (c)).
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(a) (b) (c)
Fig. 3. a) The spheres of spaces of Deltoidal hexecontahedron, b) Pentakis dodecahedron, c) Triakis icosahedron

Lemma 3. Let Md = ∥P∥
∞

for P = (p,q,r) . Let l be the line through the points P1 = (x1,y1,z1) and P2 = (x2,y2,z2) in the
analytical 3-dimensional space and dE denotes the Euclidean metric. If l has direction vector (p,q,r), thendDH(P1,P2) = µDH(P1P2)dE(P1,P2),

dPD(P1,P2) = µPD(P1P2)dPD(P1,P2),
dT I(P1,P2) = µT I(P1P2)dT I(P1,P2),

where

µDH(P1P2) =
max

{
(3ϕ −4)Md +(ϕ −1)M−

d ,Md +(2ϕ −3)
[
M+

d +M−
d

]
,(4−2ϕ)Md +(ϕ −1)M+

d +(2−ϕ)M−
d

}√
p2 +q2 + r2

,

µPD(P1P2) =
max

{
Md +

ϕ−1
3 M+

d , ϕ+1
3 Md +

2(ϕ−1)
3 M+

d + 1
3 M−

d , 2(ϕ+1)
3 Md +

ϕ−1
3 M+

d + 2
3 M−

d

}
√

p2 +q2 + r2

and

µT I(P1P2) =
max

{
Md +

3ϕ−4
5 M−

d , 2ϕ+4
5 Md +

2ϕ−1
5 M+

d + 6−2ϕ

5 M−
d , 4ϕ−2

5 Md +
3ϕ−4

5 M+
d + 2ϕ−1

5 M−
d

}
√

p2 +q2 + r2
.

The above lemma says that dDH , dPD and dT I distance along any line is some positive constant multiple of Euclidean
distance along same line. Thus, one can immediately state the following corollaries:

Corollary 4. If P1, P2 and X are any three collinear points in R3, thendE(P1,X) = dE(P2,X)⇔ dDH(P1,X) = dDH(P2,X),
dE(P1,X) = dE(P2,X)⇔ dPD(P1,X) = dPD(P2,X),
dE(P1,X) = dE(P2,X)⇔ dT I(P1,X) = dT I(P2,X).

Corollary 5. If P1, P2 and X are any three collinear points in R3, then

dDH(P1,X)

dDH(P2,X)
=

dPD(P1,X)

dPD(P2,X)
=

dT I(P1,X)

dT I(P2,X)
=

dE(P1,X)

dE(P2,X)
.

So the ratios of the dE , dDH , dPD and dT I distances along a line are the same.

3. Isometries of R3
DH , R3

PD and R3
T I

The symmetry group of an object is the group of all transformations under which the object is invariant, where composition is
the group operation. For a space with a metric, it is a subgroup of the isometry group of the space in question. The icosahedral
group known as a regular icosahedron has 60 rotational symmetries (or orientation-preserving symmetries) and a symmetry
order of 120 including transformations combining a reflection and a rotation. A regular dodecahedron has the same set of
symmetries since it is the dual of the icosahedron. The list of these transformations can be represented as follows;

identity
12 × rotation by 72◦, order 5,
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12 × rotation by 144◦, order 5,
20 × rotation by 120◦, order 3,
15 × rotation by 180◦, order 2,
inversion
12 × rotoreflection by 108◦, order 10,
12 × rotoreflection by 36◦, order 10,
20 × rotoreflection by 60◦, order 6,
15 × reflection, order 2.
Deltoidal hexacontahedron, pentakis dodecahedron and triakis icosahedron have Ih icosahedral symmetry. Because of the

deltoidal hexacontahedron, pentakis dodecahedron and triakis icosahedron are the study of Euclidean points, lines planes and
angles in R3, an isometry of R3

DH , R3
PD and R3

T I are isometry of real with respect to the dDH , dPD and dT I metrics. So, we
show that which Euclidean isometries are the isometries for R3

DH , R3
PD and R3

T I .
There are three main methods of geometric investigations: synthetic, metric and group approach. The group approach takes

isometry groups of a geometry and convex sets plays an essential role in specifying the isometry group of geometries. These
properties are invariant under the group of motions and geometry studies these properties. There are many studies on isometry
groups of a space (See [3–19]).

It was mentioned in the introduction that in Minkowski geometry the linear structure is the same as in Euclidean geometry,
but the distance is not the same in all directions. Instead of the usual sphere in Euclidean space, the unit sphere is a certain
symmetric closed convex set. In [26] the author gives the following example:

Theorem 6. If the unit ball C of (V,∥∥) does not intersect a two-plane in an ellipse, then the group I (3)of isometries of (V,∥∥)
is isomorphic to the semi-direct product of the translation group T (3) of R3 with a finite subgroup of the group of linear
transformations with determinant ±1.

After this theorem, a single question remains. That question is: what is the relevant subgroup? We now show that all
isometries of R3

DH are in T (3).G(DH) and also all isometries R3
PD are in T (3).G(PD). In the rest of the paper, we take ∆ = DH,

∆ = PD or ∆ = T I. That is, ∆ ∈ {DH,PD,T I} .
Definition 7. Let A, B be two points in R3

∆
. The minimum distance set of A, B

{X | d∆(A,X)+d∆(B,X) = d∆(A,B)}

and denoted by [AB] (see Figure 4).

In general, [AB] stand for a parallelepiped with diagonal AB as in Figure 4 (a)-(b)-(c).

(a) (b) (c)
Fig. 4. a) The minimum distance sets of spaces of Deltoidal hexecontahedron, b) Pentakis dodecahedron, c) Triakis icosahedron

Proposition 8. Let φ : R3
∆
→ R3

∆
be an isometry and [AB] be the parallelepiped. Then

φ([AB]) = [φ(A)φ(B)] .

Proof. Let Y ∈ φ([AB]) Then

Y ∈ φ([AB]) ⇔ ∃X ∈ [AB] ∋ Y = φ(X)
⇔ d∆(A,X)+d∆(B,X) = d∆(A,B)
⇔ d∆(φ(A),φ(X))+d∆(φ(B),φ(X)) = d∆(φ(A),φ(B))
⇔ Y = φ(X) ∈ [φ(A)φ(B)] .
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■

Corollary 9. Let φ : R3
∆
→ R3

∆
be an isometry and [AB] be the parallelepiped. Then φ maps vertices to vertices and preserves

the lengths of the edges of [AB].

Proposition 10. Let φ : R3
∆
→ R3

∆
be an isometry such that φ(O) = O. Then φ ∈ G(∆).

Proof. Because of ∆ ∈ {DH,PD,T I}, there are three possibility for ∆. Let ∆ = DH and let A6 = (0, 3
√

5+1
22 , 5

√
5+9

22 ),

A26 = (0,
√

5+3
6 ,

√
5+1
6 ),A30 = (

√
5−1
4 , 1

2 ,
√

5+1
4 ) and D = ( 13

√
5−25

44 ,
√

5+6
6 , 73

√
5+61

132 ) be four points in R3
DH . Consider [OD]

that is the parallelepiped with diagonal [OD] (see Figure 5 (a)). The points A6, A26, A30 are on the minimum distance
set [OD] and unit sphere with center at origin. However three points are the corner points of deltoidal hexacontahedron
by Corollary 9. Because of φ preserves the lengths of the edges, φ(A6) = Ai, φ(A26) = A j , φ(A30) = Ak such that
i ∈ {6,7,8,9,10,11,12,13,14,15,16,17,54,55,56,57,58,59,60,61}, j ∈ {18,19,20,21,22,23,24,25,26,27,28,29},
k ∈ {0,1,2,3,4,5,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53}. Because of deltoidal
hexacontahedron have 60 kites, there are 60 possibility to points which they can map and also there are two possibility to points
which they can map on the face of deltoidal hexacontahedron. Thus the possibility number are 120. Some of these cases can be
seen as below:

i. If φ(A6) = A6, φ(A26) = A26 and φ(A30) = A34 then φ = σ∆ is the reflection about plane ∆ : x = 0

ii. If φ(A6) = A8, φ(A26) = A28 and φ(A30) = A32 then φ = σ∆ is the reflection about plane ∆ : y = 0.

iii. If φ(A6) = A8, φ(A26) = A28 and φ(A30) = A32 then φ = σ∆ is the reflection about plane ∆ : y = 0.

iv. If φ(A6) = A9, φA26) = A29 and φ(A30) = A33 then φ = rπ is the rotation with rotation axis ∥ (1,0,0).

v. If φ(A6) = A6, φ(A26) = A26 and φ(A30) = A30 then φ is the identity.

vi. If φ(A6) = A9, φ(A26) = A29 and φ(A30) = A37 then f is the inversion.

The other cases can be similarly.

(a) (b) (c)
Fig. 5. a) The intersection of the sphere and minimum distance set of spaces of Deltoidal hexecontahedron, b) Pentakis dodecahedron, c)
Triakis icosahedron

Let ∆= PD and A0 = (0, 3−
√

5
2 ,1), A20 = (0, 3

√
5+27
38 , 6

√
5−3

19 ), A24 = (
√

5−1
2 ,

√
5−1
2 ,

√
5−1
2 ) and D= (

√
5−1
2 , 3

√
5+65
38 , 31

√
5+13

38 )

be four points in R3
PD. Consider [OD] that is the parallelepiped with diagonal OD (see Figure 5 (b)).

The points A0, A20, A24 are on the minimum distance set [OD] and unit sphere with center at origin. However three points
are the corner points of pentakis dodecahedron by Corollary 9. Because of φ preserves the lengths of the edges, φ(A0) = Ai,
φ(A20) = A j, φ(A24) = Ak such that i,k ∈ {0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31},
j ∈{12 ,13,14,14,15,16,7,18,19,20,21,22,23}. Because of pentakis dodecahedron 60 isosceles faces, there are 60 possibility
to points which they can map and also there are two possibility to points which they can map on the face of pentakis
dodecahedron. Thus, the possibility number is 120. Some of these cases can be seen as below:

i. If φ(A0) = A0 φ(A20) = A20 φ(A24) = A24, then φ is the identity.
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ii. If φ(A0) = A3 φ(A20) = A23 φ(A24) = A31, then φ is the inversion.

iii. If φ(A0) = A31 φ(A20) = A15 φ(A24) = A3, then φ = σ∆ is the reflection about the plane ∆ : x+ϕy+(1−ϕ)z = 0.

iv. If φ(A0) = A8 φ(A20) = A20 φ(A24) = A24, then φ = σ∆ is the reflection about the plane ∆ : −x+ϕy+(1−ϕ)z = 0.

v. If φ(A0) = A6 φ(A20) = A18 φ(A24) = A28, then φ = r 8π

5
is the rotation axis ∥ (0,

√
50+10

√
5

10 ,−
√

50−10
√

5
10 ).

vi. If φ(A0) = A2φ(A20) = A14 φ(A24) = A0, then φ = r 2π

5
is the rotation axis ∥ (

√
50−10

√
5

10 ,0,
√

50+10
√

5
10 ).

The other cases can be similarly.
Let ∆ = T I and A0 = (

√
5−1
2 ,0,1), A8 = (0, 4

√
5−5

11 , 7
√

5+5
22 ), A12 = (0,1,

√
5−1
2 ) and D = (

√
5−1
2 , 4

√
5+6

11 , 16+18
√

5
22 ) be four

points in R3
T I . Consider [OD] that is the parallelepiped with diagonal OD (see Figure 5 (c)).

The points A0, A8, A12 are on the minimum distance set [OD] and unit sphere with center at origin. However three points
are the corner points of triakis icosahedron by Corollary 9. Because of φ preserves the lengths of the edges, φ(A0) = Ai,
φ(A8) = A j, φ(A12) = Ak such that j, k ∈ {0,1,2,3,4,5, ...,26,27,28,29,30,31}, i ∈ {0,1,2,3,4,5,6,7,8,9,10,11}. Because
of triakis icosahedron 60 isosceles faces, there are 60 possibility to points which they can map and also there are two possibility
to points which they can map on the face of triakis icosahedron. Thus, the possibility number is 120. Some of these cases can
be seen as below:

i. If φ(A0) = A0, φ(A8) = A8, φ(A12) = A12 then φ is the identity.

ii. If φ(A0) = A1, φ(A8) = A11, φ(A12) = A15 then φ is the inversion.

iii. If φ(A0) = A2 φ(A8) = A8 φ(A12) = A12 then φ = σ∆ is the reflection about the plane ∆ : x = 0.

iv. If φ(A0) = A0, φ(A8) = A10 φ(A12) = A14 then φ = σ∆ is the reflection about the plane ∆ : y = 0.

v. If φ(A0) = A4, φ(A8) = A0 φ(A12) = A16 then φ = r 2Π

3
is the rotation axis ∥ ( 1√

3
, 1√

3
, 1√

3
).

vi. If φ(A0) = A9, φ(A8) = A6 φ(A12) = A22 then φ = r 2π

5
is the rotation axis ∥ (− 1√

3
, 1√

3
, 1√

3
).

The other cases can be similarly. ■

Theorem 11. Let φ : R3
∆
→ R3

∆
be an isometry. Then there exists a unique TA ∈ T (3) and g ∈ G(∆) where φ = TA ◦g.

Proof. Let φ(O) = A such that A = (a1,a2,a3). φ is definition φ = T−A ◦φ . We know φ(O) = O and φ is an isometry and by
Proposition 10, φ ∈ G(∆). The proof of uniqueness. ■

4. Conclusions
In this paper, the spaces that their sphere are Deltoidal Hexacontahedron, Pentakis Dodecahedron and Triakis icosahedron
are introduced and some properties of metrics which are used setting up these space are given. Also, the isometry groups of
these spaces are given. So each of the groups of isometries of the spaces covering with deltoidal hexacontahedron, pentakis
dodecahedron, and triakis icosahedron metrics is the semi-direct product of the icosahedral group Ih and T (3), where Ih is the
(Euclidean) symmetry group of the icosahedron and T (3) is the group of all translations of the 3-dimensional space. In the
future works, handled solids in this paper are Catalan solids, the new metric space by considering different solids from these
solids can be constructed and investigate their some properties which are related to metrics.
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[13] Ermiş, T., Savcı, Ü. Z., & Gelişgen, Ö. (2019). A note about truncated rhombicuboctahedron and truncated
rhombicicosidodecahedron space, Scientific Studies and Research Series Mathematics and Informatics, 29(1), 73–88.
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