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Abstract 

Leibniz algebras are nonanticommutative versions of Lie algebras. Lie algebras have many applications in 

many scientific areas as well as mathematical areas. Scientists from different disciplines have used specific 

examples of Lie algebras according to their needs. However, we mathematicians are more interested in 

generality than in obtaining a few examples. The classification problem for Leibniz algebras has an 

intrinsically wild nature as in Lie algebras. In this article, the approach of congruence classes of bilinear 

forms is extended to classify certain subclasses of seven-dimensional nilpotent Leibniz algebras over 

complex numbers. Certain cases of seven-dimensional complex nilpotent Leibniz algebras of those with 

one-dimensional Leib ideal and derived algebra of codimension two are classified.  

Keywords: Bilinear forms, Classification, Leibniz algebra, Nilpotency. 

1. Introduction

Although first considered by Bloh in 1965 [1], Leibniz 

algebras as nonantisymmetric (nonanticommutative) 

generalization of Lie algebras were presented by Loday 

[2]. A vector space 𝐿 over ℂ with a bilinear product  

[ , ] : 𝐿 × 𝐿 →  𝐿 satisfying the Leibniz identity 

 [𝑎, [𝑏, 𝑐]] = [[𝑎, 𝑏], 𝑐] + [𝑏, [𝑎, 𝑐]]  
for all 𝑎, 𝑏, 𝑐 ∈ 𝐿 is said to be a Leibniz algebra. The 

lower central series of a Leibniz algebra 𝐿 can be defined 

as 𝐿 ⊇  𝐿2 ⊇ 𝐿3  ⊇ ⋯ where 𝐿1  =  𝐿 and 𝐿𝑘  =
 [𝐿, 𝐿𝑘−1] for integers 𝑘 ≥ 2. If 𝐿𝑐+1 = 0 whenever 𝐿𝑐 ≠
0 for some 𝑐 > 0, then 𝐿 is a nilpotent Leibniz algebra of 

class 𝑐. 𝐿 is called odd-nilpotent if its all nontrivial ideals 

of the lower central series are odd-dimensional. Leibniz 

algebra 𝐿 of dimension 𝑛 is called filiform Leibniz 

algebra if 𝑑𝑖𝑚(𝐿𝑗) = 𝑛 − 𝑗 for 2 ≤  𝑗 ≤  𝑛. 𝐿𝑒𝑖𝑏(𝐿) 
generated by the squares, [𝑎, 𝑎], for all 𝑎 ∈  𝐿 is an ideal 

of 𝐿, is of the utmost importance while studying structure 

theory of Leibniz algebras. The center of a Leibniz 

algebra 𝐿 can be defined by    𝑍(𝐿) = {𝑏 ∈  𝐿 ∣  [𝑎, 𝑏] =
0 = [𝑏, 𝑎]  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  𝐿}. Non-split Leibniz algebras 

are those that cannot be expressed as the direct sum of 

nontrivial ideals. Throughout this paper, we assume 

Leibniz algebras are non-split non-Lie vector spaces over 

ℂ. 

It is an important but nontrivial task to classify any kind 

of nonassociative algebras. Because the classification of 

nilpotent Lie algebras is regarded as wild, the 

classification of nilpotent Leibniz algebras is also wild. 

In fact, the problem is more complicated for Leibniz 

algebras due to a lack of anticommutativity. Many 

researchers have provided numerous results on the 

classification of nilpotent Leibniz algebras over ℂ until 

now (see [2-14]); however, the problem has still not been 

completed. Seven-dimensional odd-nilpotent Leibniz 

algebras have been classified in [14] with the congruence 

classes of the bilinear forms approach. The main aim of 

this paper is to apply the same technique to give the 

classification of some subcases seven dimensional 

nilpotent Leibniz algebras with one-dimensional Leib 

ideal. The isomorphism test between the classes can be 

done by using Algorithm 2.6 proposed in [5]. 

2. Preliminaries

We include the following useful Lemmas from [12].  

Lemma 2.1. 𝐿𝑐 ⊆  𝑍(𝐿) if 𝐿 is a class 𝑐 nilpotent Leibniz 

algebra.  

Lemma 2.2.  Let 𝐿 be a non-split Leibniz algebra. Then, 

𝑍(𝐿) ⊆  𝐿2. 

Lemma 2.3. Any nilpotent Leibniz algebra 𝐿 satisfies 

𝐿𝑒𝑖𝑏(𝐿) ⊆  𝑍(𝐿). 
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Lemma 2.4. For any n-dimensional nilpotent Leibniz 

algebra 𝐿;  𝑑𝑖𝑚(𝑍(𝐿)) = 𝑛 − 𝑖 and 𝑑𝑖𝑚(𝐿𝑒𝑖𝑏(𝐿)) = 1 

imply 𝑑𝑖𝑚(𝐿2) ≤  
𝑖2−𝑖+2

2
. 

 

Lemma 2.5. For any n-dimensional nilpotent Leibniz 

algebra 𝐿;  𝑑𝑖𝑚(𝐿2) = 𝑛 − 𝑖, 𝑑𝑖𝑚(𝐿𝑒𝑖𝑏(𝐿)) = 1, and 

𝑑𝑖𝑚(𝐿3) = 𝑗 imply the inequality 𝑛 ≤  𝑗 +
𝑖2+𝑖+2

2
. 

Furthermore, if 𝐿𝑒𝑖𝑏(𝐿) ⊆  𝐿3, then 𝑛 ≤  𝑗 +
𝑖2+𝑖

2
. 

 

Lemma 2.6. For any n-dimensional nilpotent Leibniz 

algebra 𝐿;  𝑑𝑖𝑚(𝐿2) = 𝑛 − 𝑖 and 𝐿4 ≠ 0 imply 

𝑑𝑖𝑚(𝑍(𝐿)) <  𝑛 − 𝑖 − 1. 

 

The following matrices are the canonical forms for the 

congruence classes of matrices associated with a bilinear 

form on a complex vector space. Denoting 

 

𝑋\𝑌 ≔ (
0 𝑌
𝑋 0

)  

 

Theorem 2.1. [15] Any complex square matrix is 

congruent to a direct sum of the following canonical 

forms of matrices: 

 

𝐴2𝑛+1 = [
0 1
0 ⋱

0 0
⋱  0

0 0 0 1
] \ [

1 0
0 ⋱

0
0

0 ⋱
0 0

1
0

] 

 

𝐵2𝑛(𝛼) = [

0 0
0 0

0 𝛼
𝛼 1

0 ⋰
𝛼 1

⋰ 0
0 0

] \ [

0 0
0 0

0 1
1 𝛼

0 ⋰
1 𝛼

⋰ 0
0 0

] , 𝛼 ≠ ±1 

 

𝐶2𝑛+1 =

(

 
 
 
 

0 0 0
0 0 0
0 0 0

0 0 0 1
0 0 1 1
0 ⋰ ⋰ 0

0 0 0
0 0 1
0
1

⋰
−1

⋰
0

1 1 0 0
−1 0 0 0
0
0

0
0

0
0

0
0)

 
 
 
 

 

 

𝐷2𝑛 = [

0 0
0 0

0 1
1 −1

0 ⋰
1 −1

⋰ 0
0 0

] \ [

0 0
0 0

0 1
1 1

0 ⋰
1 1

⋰ 0
0 0

] , (𝑛 𝑒𝑣𝑒𝑛) 

 

𝐸2𝑛 =

(

 
 
 
 

0 0 0
0 0 0
0 0 0

0 0 0 1
0 0 1 1
0 ⋰ ⋰ 0

0 0 0
0 0 −1
0
−1

⋰
1

⋰
0

1 1 0 0
1 0 0 0
0
0

0
0

0
0

0
0)

 
 
 
 

 

 

𝐹2𝑛 = [

0 0
0 0

0 −1
−1 1

0 ⋰
−1 1

⋰ 0
0 0

] \ [

0 0
0 0

0 1
1 1

0 ⋰
1 1

⋰ 0
0 0

] , (𝑛 𝑜𝑑𝑑) 

 

3. Classification 

 

Let 𝐿 be 7-dimensional nilpotent Leibniz algebra with 1-

dimensional Leib ideal. Some subclasses of 7-

dimensional odd-nilpotent Leibniz algebras have been 

classified in [14]. For the sake of simplicity, we will 

consider Leibniz algebras with the derived algebra of 

codimension two, because employing the congruence 

classes of bilinear forms technique is easier in that 

situation.  

 

Choose 𝑑𝑖𝑚(𝐿2) = 𝑛 − 2 and 𝐿𝑒𝑖𝑏(𝐿) =  𝑠𝑝𝑎𝑛{𝑣𝑛}. 
Extending it to a basis {𝑣3, 𝑣4, … , 𝑣𝑛−1, 𝑣𝑛} for 𝐿2 and 

take a subspace 𝑉 in 𝐿 so that 𝐿 = 𝐿2⊕  𝑉. Therefore, 
[𝑢, 𝑣] =  𝛽3 𝑣3 + 𝛽4 𝑣4 + 𝛽𝑛−1𝑣𝑛−1 + 𝛽𝑛𝑣𝑛 for 3 ≤
 𝑘 ≤  𝑛, 𝛽𝑘 ∈  ℂ , for each 𝑢, 𝑣 ∈  𝑉. The bilinear 

form 𝑓(  , ): 𝑉 × 𝑉 →  ℂ  provided by 𝑓(𝑢, 𝑣) = 𝛽𝑛 for 

each 𝑢, 𝑣 ∈  𝑉. Let {𝑣1, 𝑣2} be a basis for 𝑉, and using 

Theorem 2.1, we can easily determine that the possible 

matrices of the bilinear form above are the following: 

 

𝐹2 = (
0 1
−1 0

) ,          𝐴1⊕𝐶1 = (
1 0
0 0

), 

 𝐶1⊕𝐶1 = (
1 0
0 1

) , 𝐸2 = (
0 1
−1 1

) , 𝐵2 = (
0 1
𝛼 0

)  

 

where  𝛼 ≠ ± 1. We only consider non-Lie Leibniz 

algebras so that we can eliminate the matrix 𝐹2.In 

addition, it is sufficient to focus only the matrices 𝐴1⊕
 𝐶1 and 𝐶1⊕ 𝐶1 since the other two matrices yield 

algebras that are always isomorphic to algebras obtained 

by these two matrices, as proved in Lemma 2.1 in [10]. 

 

Denote the following invariant  
𝜒(𝐿) = (𝑑𝑖𝑚(𝐿), 𝑑𝑖𝑚(𝐿2), 𝑑𝑖𝑚(𝐿3), … , 𝑑𝑖𝑚(𝐿𝑐)) 
where 𝑐 is the class of nilpotency. Then, take a 7-

dimensional nilpotent Leibniz algebra 𝐿 with 

𝑑𝑖𝑚(𝐿𝑒𝑖𝑏(𝐿)) = 1 where 𝑑𝑖𝑚(𝐿2) = 5. Notice that 

there is no Leibniz algebra for the cases 𝑑𝑖𝑚(𝐿3) =
0, 1, 2, as Lemma 2.5 suggests. Hence, we have 

𝑑𝑖𝑚(𝐿3) = 3. Odd-nilpotent subclasses of this case are 

already classified in [14]. The remaining cases are listed 

below: 

 

i. 𝜒(𝐿) = (7, 5, 3, 2) 
ii. 𝜒(𝐿) = (7, 5, 3, 2, 1) 

 

Theorem 3.1. There does not exist any Leibniz algebra 

with Leib ideal of dimension one in the case 𝜒(𝐿) =
(7, 5, 3, 2). 
 

Proof. Take a nilpotent Leibniz algebra 𝐿 with 𝜒(𝐿) =
(7, 5, 3, 2) and 𝑑𝑖𝑚(𝐿𝑒𝑖𝑏(𝐿)) = 1. We see that 

𝐿𝑒𝑖𝑏(𝐿) ⊆  𝑍(𝐿) by using Lemma 2.3. Besides, from 

Lemma 2.5, we obtain 𝐿𝑒𝑖𝑏(𝐿) ⊈  𝐿3. Lemma 2.2 

implies 𝐿4 ⊆  𝑍(𝐿) ⊂  𝐿2. Then, by using Lemma 2.6, we 

deduce 1 < 𝑑𝑖𝑚(𝑍(𝐿)) < 4. But 𝑑𝑖𝑚(𝑍(𝐿)) cannot be 

2, because otherwise 𝐿4 = 𝑍(𝐿) implies that 𝐿𝑒𝑖𝑏(𝐿) ⊆
 𝐿4 ⊂ 𝐿3 which contradicts with 𝐿𝑒𝑖𝑏(𝐿) ⊈  𝐿3. Hence,  
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suppose 𝑑𝑖𝑚(𝑍(𝐿)) = 3. Taking a complementary 

subspace 𝑊 to 𝐿3 in 𝐿2. Since 𝐿4 ≠  0, we have 𝐿3 ≠
 𝑍(𝐿). Moreover, from 𝐿4 ⊆ 𝑍(𝐿), we can see that the 

only possibility is 𝑑𝑖𝑚(𝐿3 ∩  𝑍(𝐿)) = 2. Using 

𝐿𝑒𝑖𝑏(𝐿) ⊈  𝐿3, 𝐿4, choose 𝐿𝑒𝑖𝑏(𝐿) = 𝑠𝑝𝑎𝑛{𝑤7}, 𝐿
4 =

𝑠𝑝𝑎𝑛{𝑤5, 𝑤6} and, 𝐿3 = 𝑠𝑝𝑎𝑛{𝑤4, 𝑤5, 𝑤6}. Then, 

𝑍(𝐿) = 𝑠𝑝𝑎𝑛{𝑤5, 𝑤6, 𝑤7} and 𝐿2 =
𝑠𝑝𝑎𝑛{𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7}. Later, take 𝐴 =
𝑠𝑝𝑎𝑛{𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7}. Then, the nonzero 

products in 𝐿 are given as follows: 

 

[𝑤1, 𝑤1] = 𝛼1𝑤7, [𝑤2, 𝑤2] = 𝛼2𝑤7, [𝑤1, 𝑤2] = 𝛼3𝑤3 +

𝛼4𝑤4 + 𝛼5𝑤5 + 𝛼6𝑤6 + 𝛼7𝑤7, [𝑤2, 𝑤1] = −𝛼3𝑤3 −

𝛼4𝑤4 − 𝛼5𝑤5 − 𝛼6𝑤6 + 𝛼8𝑤7, [𝑤1, 𝑤3] = 𝛽1𝑤4 +

𝛽2𝑤5 + 𝛽3𝑤6 = −[𝑤3, 𝑤1], [𝑤2, 𝑤3] = 𝛽4𝑤4 + 𝛽5𝑤5 +

𝛽6𝑤6 = −[𝑤3, 𝑤2], [𝑤1, 𝑤4] = 𝛾1𝑤5 + 𝛾2𝑤6 =

−[𝑤4, 𝑤1], [𝑤2, 𝑤4] = 𝛾3𝑤5 + 𝛾4𝑤6 =

−[𝑤4, 𝑤2], [𝑤3, 𝑤4] = 𝛾5𝑤5 + 𝛾6𝑤6 = −[𝑤4, 𝑤3].       

We obtain the following equations using Leibniz 

identity: 

 

𝛾5 = 0 = 𝛾6      

𝛽4𝛾1 − 𝛽1𝛾3 = 0   (3.1) 

𝛽4𝛾2 − 𝛽1𝛾4 = 0   (3.2) 

 

Assume 𝛾3 = 0. Then, 𝛾1 ≠  0 and from Equation 3.1, 

we have 𝛽4 = 0. But 𝑑𝑖𝑚(𝐿3) = 3 with Equation 3.2 

implies 𝛾4 = 0 which contradicts with the fact that 

𝑑𝑖𝑚(𝐿4) = 2. Suppose 𝛾3 ≠ 0. Later, with the change-

of-basis 𝑥1 = 𝛾3𝑤1 − 𝛾1𝑤2, 𝑥2 = 𝑤2, 𝑥3 = 𝑤3, 𝑥4 =

𝑤4, 𝑥5 = 𝑤5, 𝑥6 = 𝑤6, 𝑥7 = 𝑤7, we can force 𝛾1  = 0. 

Additionally, from Equation 3.1, we get 𝛽1 = 0. But 

𝑑𝑖𝑚(𝐿3) = 3 with Equation 3.2 implies 𝛾2 = 0 which 

contradicts with the fact that 𝑑𝑖𝑚(𝐿4) = 2. Therefore, 

there is no Leibniz algebra in the case 𝜒(𝐿) = (7, 5, 3, 2) 

and 𝑑𝑖𝑚(𝐿𝑒𝑖𝑏(𝐿)) = 1. The proof is completed. ∎ 

Suppose 𝜒(𝐿) = (7, 5, 3, 2, 1) and 𝑑𝑖𝑚(𝐿𝑒𝑖𝑏(𝐿)) = 1. 

We have 𝐿𝑒𝑖𝑏(𝐿) ⊆  𝑍(𝐿) due to Lemma 2.3. Besides, 

from Lemma 2.5, we obtain 𝐿𝑒𝑖𝑏(𝐿) ⊈  𝐿3. Lemma 2.2 

implies 𝐿5 ⊆  𝑍(𝐿) ⊂  𝐿2. Then, by using Lemma 2.6, we 

deduce 1 ≤ 𝑑𝑖𝑚(𝑍(𝐿)) < 4. If 𝑑𝑖𝑚(𝑍(𝐿)) = 1, then 

𝐿𝑒𝑖𝑏(𝐿) = 𝑍(𝐿) = 𝐿5 ⊂ 𝐿3, we arrive a contradiction. 

Hence, 𝑑𝑖𝑚(𝑍(𝐿)) = 2 or 𝑑𝑖𝑚(𝑍(𝐿)) = 3. We will first 

consider the case 𝑑𝑖𝑚(𝑍(𝐿)) = 3. 
 

Theorem 3.2. Let 𝜒(𝐿) = (7, 5, 3, 2, 1),  
𝑑𝑖𝑚(𝐿𝑒𝑖𝑏(𝐿)) = 1 and 𝑑𝑖𝑚(𝑍(𝐿)) = 3. Then, 𝐿 is 

isomorphic to one of the following algebras with 

nontrivial multiplications (𝑖2 = −1): 

 

L1  [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁5 = −[𝜁3, 𝜁1], [𝜁1, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁1], [𝜁2, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁2] 

L2 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁1], [𝜁2, 𝜁3] = 𝜁5 = −[𝜁3, 𝜁2], [𝜁2, 𝜁5] =
𝜁6 = −[𝜁5, 𝜁2] 

L3 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁5 = −[𝜁3, 𝜁1], [𝜁1, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁1], [𝜁2 , 𝜁2] =
𝜁7, [𝜁2, 𝜁3] = 𝜁4 = −[𝜁3, 𝜁2] 

L4 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁5 = −[𝜁3, 𝜁1], [𝜁1, 𝜁5] = 𝑖𝜁6 =
−[𝜁5, 𝜁1], [𝜁2 , 𝜁2] = 𝜁7, [𝜁2, 𝜁3] = 𝜁4 =
−[𝜁3, 𝜁2] , [𝜁2, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁2] 

 

Proof. Take a complementary subspace 𝑊 to 𝐿3  in 𝐿^2. 

Since 𝐿4 ≠  0, we have 𝐿3 ≠  𝑍(𝐿). We have  

𝐿3 ∩  𝑍(𝐿) ≠  ∅ , since 𝐿5 ⊆  𝑍(𝐿). Furthermore, 

𝑑𝑖𝑚(𝐿3 ∩  𝑍(𝐿)) = 1 implies 𝑊 ⊆  𝑍(𝐿) and since 

𝐿3 = [𝐿, 𝐿2] = [𝐿, 𝐿3⊕  𝑊] = 𝐿4 

we arrive at a contradiction. Therefore, 

 𝑑𝑖𝑚(𝐿3 ∩  𝑍(𝐿)) = 2. Using 𝐿𝑒𝑖𝑏(𝐿) ⊈  𝐿3, 𝐿4, 𝐿5, 

choose 𝐿𝑒𝑖𝑏(𝐿) = 𝑠𝑝𝑎𝑛{𝑤7}, 𝐿
5 = 𝑠𝑝𝑎𝑛{𝑤6}, 𝐿

4 =
𝑠𝑝𝑎𝑛{𝑤5, 𝑤6}, and 𝐿3 = 𝑠𝑝𝑎𝑛{𝑤4, 𝑤5, 𝑤6}. Then, 

𝑍(𝐿) = 𝑠𝑝𝑎𝑛{𝑤4, 𝑤6, 𝑤7} and 𝐿2 =
𝑠𝑝𝑎𝑛{𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7}. Later, take 𝑉 =
𝑠𝑝𝑎𝑛{𝑤1, 𝑤2}. 
 

Case 1. If the bilinear form matrix is 𝐴1⊕ 𝐶1, then the 

nonzero products in 𝐿 can be given as: 

 
[𝑤1, 𝑤1] = 𝑤7, [𝑤1, 𝑤2] = 𝛼1𝑤3 + 𝛼2𝑤4 + 𝛼3𝑤5 +
𝛼4𝑤6 = −[𝑤2, 𝑤1], [𝑤1, 𝑤3] = 𝛽1𝑤4 + 𝛽2𝑤5 + 𝛽3𝑤6 =
−[𝑤3, 𝑤1], [𝑤2, 𝑤3] = 𝛽4𝑤4 + 𝛽5𝑤5 + 𝛽6𝑤6 =
−[𝑤3, 𝑤2], [𝑤1, 𝑤5] = 𝛾1𝑤6 = −[𝑤5, 𝑤1], [𝑤2, 𝑤5] =
𝛾2𝑤6 = −[𝑤5, 𝑤2], [𝑤3, 𝑤5] = 𝛾3𝑤6 = −[𝑤5, 𝑤3].     
 

From Leibniz identity, we get the following equations: 

 

𝛾3 = 0    

𝛽5𝛾1 − 𝛽2𝛾2 = 0   (3.3) 

  

First, suppose 𝛾2 = 0. Then, 𝛾1 ≠  0 and from Equation 

3.3, we have 𝛽5 = 0. Using 𝑑𝑖𝑚(𝐿3) = 3, we can see that 

𝛽2, 𝛽4 ≠ 0. Then, the change of basis 𝜁1 = 𝑤1, 𝜁2 =

𝑤2, 𝜁3 = 𝛼1𝑤3 + 𝛼2𝑤4 + 𝛼3𝑤5 + 𝛼4𝑤6, 𝜁4 =

𝛼1(𝛽4𝑤4 + 𝛽6𝑤6), 𝜁5 = 𝛼1(𝛽1𝑤4 + 𝛽2𝑤5 + 𝛽3𝑤6) +

𝛼3𝛾1𝑤6, 𝜁6 = 𝛼1𝛽2𝛾1𝑤6, 𝜁7 = 𝑤7 shows 𝐿 is isomorphic 

to 𝐿1. Next, suppose 𝛾2 ≠ 0. Applying the change of 

basis 𝑥1  = 𝛾2𝑤1 − 𝛾1𝑤2, 𝑥2 = 𝑤2, 𝑥3 = 𝑤3, 𝑥4 =

𝑤4, 𝑥5 = 𝑤5, 𝑥6 = 𝑤6, 𝑥7 = 𝛾2
2𝑤7, we can force 𝛾1 = 0. 

Then, from Equation 3.3, we get 𝛽2 = 0. Therefore, 

𝛽1, 𝛽5 ≠ 0 since 𝑑𝑖𝑚(𝐿3) = 3. The change of basis 𝜁1 =

𝑤1, 𝜁2 = 𝑤2, 𝜁3 = 𝛼1𝑤3 + 𝛼2𝑤4 + 𝛼3𝑤5 + 𝛼4𝑤6, 𝜁4 =

𝛼1(𝛽1𝑤4 + 𝛽3𝑤6), 𝜁5 = 𝛼1(𝛽4𝑤4 + 𝛽5𝑤5 + 𝛽6𝑤6) +

𝛼3𝛾2𝑤6, 𝜁6 = 𝛼1𝛽5𝛾2𝑤6, 𝜁7 = 𝑤7 shows 𝐿 is isomorphic 

to 𝐿2. 

Case 2.  If the bilinear form matrix is 𝐶1⊕ 𝐶1, then the 

nonzero products in 𝐿 can be given as: 
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[𝑤1, 𝑤1] = 𝑤7, [𝑤1, 𝑤2] = 𝛼1𝑤3 + 𝛼2𝑤4 + 𝛼3𝑤5 +
𝛼4𝑤6 = −[𝑤2, 𝑤1], [𝑤2, 𝑤2] = 𝑤7, [𝑤1, 𝑤3] = 𝛽1𝑤4 +
𝛽2𝑤5 + 𝛽3𝑤6 = −[𝑤3, 𝑤1], [𝑤2, 𝑤3] = 𝛽4𝑤4 + 𝛽5𝑤5 +
𝛽6𝑤6 = −[𝑤3, 𝑤2], [𝑤1, 𝑤5] = 𝛾1𝑤6 =

−[𝑤5, 𝑤1], [𝑤2, 𝑤5] = 𝛾2𝑤6 = −[𝑤5, 𝑤2], [𝑤3, 𝑤5] =
𝛾3𝑤6 = −[𝑤5, 𝑤3].    

Again, Leibniz identity yields same equations as in 

Case 1. Let 𝛾2 = 0. Then, 𝛾1 ≠  0  since 𝑑𝑖𝑚(𝑍(𝐿)) =

3. From Equation 3.3, we have 𝛽5 = 0. Using 

𝑑𝑖𝑚(𝐿3) = 3, we obtain 𝛽2, 𝛽4 ≠ 0. Then, the change 

of basis 𝜁1 = 𝑤1, 𝜁2 = 𝑤2, 𝜁3 = 𝛼1𝑤3 + 𝛼2𝑤4 +

𝛼3𝑤5 + 𝛼4𝑤6, 𝜁4 = 𝛼1(𝛽4𝑤4 + 𝛽6𝑤6), 𝜁5 =

𝛼1(𝛽1𝑤4 + 𝛽2𝑤5 + 𝛽3𝑤6) + 𝛼3𝛾1𝑤6, 𝜁6 =

𝛼1𝛽2𝛾1𝑤6, 𝜁7 = 𝑤7 shows 𝐿 is isomorphic to 𝐿3. 

Further, take 𝛾2 ≠ 0. If 𝛾1 = 0, then 𝑥1 = 𝑤2, 𝑥2 =

𝑤1, 𝑥3 = 𝑤3, 𝑥4 = 𝑤4, 𝑥5 = 𝑤5, 𝑥6 = 𝑤6, 𝑥7 = 𝑤7 is 

the change of basis forces 𝛾2 = 0. Therefore, 𝐿 is 

isomorphic to 𝐿3. Let 𝛾1 ≠ 0. Assume that 𝛾1
2 + 𝛾2

2 ≠

0. Then 𝑥1 = 𝛾1𝑤1 + 𝛾2𝑤2, 𝑥2 = 𝛾2 𝑤1 − 𝛾1𝑤2, 𝑥3 =

𝑤3, 𝑥4 = 𝑤4, 𝑥5 = 𝑤5, 𝑥6 = 𝑤6, 𝑥7 = ( 𝛾1
2 + 𝛾2

2)𝑤7 is 

the change of basis that forces 𝛾2 = 0 and 

consequently 𝐿 is isomorphic to 𝐿3. Take 𝛾1
2 + 𝛾2

2 =

0. Then, from Equation 3.3, we obtain 𝛽2
2 + 𝛽5

2 = 0. 

Notice that 𝛽1
2  + 𝛽4

2 ≠ 0 due to 𝑑𝑖𝑚(𝐿3) = 3. When 

𝛽1
2  + 𝛽4

2 ≠ 0, applying the change of basis 𝑥1 =

𝛽4𝑤1 − 𝛽1𝑤2, 𝑥2 = 𝛽1𝑤1 + 𝛽4𝑤2, 𝑥3 = 𝑤3, 𝑥4 =

𝑤4, 𝑥5 = 𝑤5, 𝑥6 = 𝑤6, 𝑥7 = (𝛽1
2  + 𝛽4

2)𝑤7 forces 

𝛽1 = 0. Thus, without loss of generality, we can take  

𝛽1 = 0. Finally, the change of basis 𝜁1 = 𝑤1, 𝜁2 =

𝑤2, 𝜁3 = 𝛼1𝑤3 + 𝛼2𝑤4 + 𝛼3𝑤5 + 𝛼4𝑤6, 𝜁4 =

𝛼1(𝛽4𝑤4 + 𝛽5𝑤5 + 𝛽6𝑤6) + 𝛼3𝛾2𝑤6, 𝜁5 =

𝛼1𝛽2 𝑤5 + (𝛼1𝛽3 + 𝛼3𝛾1)𝑤6, 𝜁6 = 𝛼1𝛽2𝛾2𝑤6, 𝜁7 =

𝑤7 shows 𝐿 is isomorphic to 𝐿4. ∎ 

We obtain 4 single algebras. Similarly, the 

classification of the case 𝜒(𝐿) =

(7, 5, 3, 2, 1), 𝑑𝑖𝑚(𝐿𝑒𝑖𝑏(𝐿)) = 1 and 𝑑𝑖𝑚(𝑍(𝐿)) = 2 

can be obtained by applying the aforementioned 

technique above.  

Theorem 3.3. Let 𝜒(𝐿) = (7, 5, 3, 2, 1),  
𝑑𝑖𝑚(𝐿𝑒𝑖𝑏(𝐿)) = 1 and 𝑑𝑖𝑚(𝑍(𝐿)) = 2. Then, 𝐿 is 

isomorphic to one of the following algebras with 

nontrivial multiplications (here 𝑖2 = −1): 

 

L1 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁1], [𝜁1, 𝜁4] = 𝜁5 =
−[𝜁4, 𝜁1], [𝜁1, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁1] 

L2 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁1], [𝜁1, 𝜁4] = 𝜁5 =
−[𝜁4, 𝜁1], [𝜁1, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁1], [𝜁2, 𝜁3] =
𝜁6 = −[𝜁3, 𝜁2] 

L3 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁1], [𝜁1, 𝜁4] = 𝜁5 =
−[𝜁4, 𝜁1], [𝜁1, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁1], [𝜁2, 𝜁3] =
𝜁5 = −[𝜁3, 𝜁2] , [𝜁2, 𝜁4] = 𝜁6 = −[𝜁4, 𝜁2] 

L4 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁1], [𝜁1, 𝜁4] = 𝜁5 =

−[𝜁4, 𝜁1], [𝜁1, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁1], [𝜁2, 𝜁3] =
𝜁5 + 𝜁6 = −[𝜁3, 𝜁2] , [𝜁2, 𝜁4] = 𝜁6 = −[𝜁4, 𝜁2] 

L5 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁1], [𝜁1, 𝜁4] = 𝜁5 =
−[𝜁4, 𝜁1], [𝜁2, 𝜁3] = 𝜁5 = −[𝜁3, 𝜁2], [𝜁2, 𝜁5] =
𝜁6 = −[𝜁5, 𝜁2], [𝜁3, 𝜁4] = −𝜁6 = −[𝜁4, 𝜁3]  

L6 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁1], [𝜁1, 𝜁4] = 𝜁5 =
−[𝜁4, 𝜁1], [𝜁2, 𝜁3] = 𝜁5 + 𝜁6 =
−[𝜁3, 𝜁2], [𝜁2, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁2], [𝜁3, 𝜁4] =
−𝜁6 = −[𝜁4, 𝜁3]  

L7 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁5 + 𝜁6 = −[𝜁3, 𝜁1], [𝜁1, 𝜁4] = 𝜁6 =
−[𝜁4, 𝜁1], [𝜁2, 𝜁3] = 𝜁4 = −[𝜁3, 𝜁2], [𝜁2, 𝜁4] =
𝜁5 = −[𝜁4, 𝜁2], [𝜁2, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁2]  

L8 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁5 + 𝜁6 = −[𝜁3, 𝜁1], [𝜁1, 𝜁5] = 𝜁6 =
−[𝜁5, 𝜁1], [𝜁2, 𝜁3] = 𝜁4 = −[𝜁3, 𝜁2], [𝜁2, 𝜁4] =
𝜁5 = −[𝜁4, 𝜁2], [𝜁3, 𝜁4] = 𝜁6 = −[𝜁4, 𝜁3]  

L9 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁5 + 𝛼𝜁6 = −[𝜁3, 𝜁1], [𝜁1, 𝜁5] = 𝜁6 =
−[𝜁5, 𝜁1], [𝜁2, 𝜁3] = 𝜁4 = −[𝜁3, 𝜁2], [𝜁2, 𝜁4] =
𝜁5 = −[𝜁4, 𝜁2], [𝜁2, 𝜁5] = 𝜁6 =
−[𝜁5, 𝜁2], [𝜁3, 𝜁4] = 𝜁6 = −[𝜁4, 𝜁3]  

L10 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁1], [𝜁1, 𝜁4] = 𝜁5 =
−[𝜁4, 𝜁1], [𝜁1, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁1], [𝜁2 , 𝜁2] = 𝜁7 

L11 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁1], [𝜁1, 𝜁4] = 𝜁5 =
−[𝜁4, 𝜁1], [𝜁1, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁1], [𝜁2 , 𝜁2] =
𝜁7, [𝜁2, 𝜁3] = 𝜁6 = −[𝜁3, 𝜁2]  

L12 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁1], [𝜁1, 𝜁4] = 𝜁5 =
−[𝜁4, 𝜁1], [𝜁1, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁1], [𝜁2 , 𝜁2] =
𝜁7, [𝜁2, 𝜁3] = 𝜁5 + 𝛼𝜁6 = −[𝜁3, 𝜁2], [𝜁2, 𝜁4] =
𝜁6 = −[𝜁4, 𝜁2]  

L13 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁1], [𝜁1, 𝜁4] = 𝜁5 =
−[𝜁4, 𝜁1], [𝜁1, 𝜁5] = 𝛽𝜁6 = −[𝜁5, 𝜁1], [𝜁2 , 𝜁2] =
𝜁7, [𝜁2, 𝜁3] = 𝜁5 + 𝛼𝜁6 = −[𝜁3, 𝜁2], [𝜁2, 𝜁5] =
𝜁6 = −[𝜁5, 𝜁2], [𝜁3, 𝜁4] = −𝜁6 = −[𝜁4, 𝜁3]  

L14 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁1], [𝜁1, 𝜁4] = 𝜁5 =
−[𝜁4, 𝜁1], [𝜁1, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁1], [𝜁2 , 𝜁2] =
𝜁7, [𝜁2, 𝜁3] = 𝑖𝜁4 + 𝛼𝜁5 + 𝛽𝜁6 = −[𝜁3, 𝜁2],
[𝜁2, 𝜁4] = 𝑖𝜁5 + 𝛾𝜁6 = −[𝜁4, 𝜁2], [𝜁2, 𝜁5] = 𝑖𝜁6 =
−[𝜁5, 𝜁2] 

L15 [𝜁1 , 𝜁1] = 𝜁7, [𝜁1 , 𝜁2] = 𝜁3 = −[𝜁2, 𝜁1], [𝜁1, 𝜁3] =
𝜁4 = −[𝜁3, 𝜁1], [𝜁1, 𝜁4] = 𝜁5 =
−[𝜁4, 𝜁1], [𝜁1, 𝜁5] = 𝜁6 = −[𝜁5, 𝜁1], [𝜁2 , 𝜁2] =
𝜁7, [𝜁2, 𝜁3] = 𝑖𝜁4 + 𝛼𝜁5 + 𝛽𝜁6 = −[𝜁3, 𝜁2],
[𝜁2, 𝜁4] = 𝑖𝜁5 + 𝛾𝜁6 = −[𝜁4, 𝜁2], [𝜁2, 𝜁5] = 𝜃𝜁6 =
−[𝜁5, 𝜁2], [𝜁3, 𝜁4] = 𝛿𝜁6 = −[𝜁4, 𝜁3] 
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Proof. By Lemma 2.1 and Lemma 2.3, we see that 

𝐿𝑒𝑖𝑏(𝐿), 𝐿5 ⊆  𝑍(𝐿). Then by using 𝐿𝑒𝑖𝑏(𝐿) ⊈
 𝐿3, 𝐿4, 𝐿5, choose 𝐿𝑒𝑖𝑏(𝐿) = 𝑠𝑝𝑎𝑛{𝑤7}, 𝐿

5 =
𝑠𝑝𝑎𝑛{𝑤6}, 𝐿

4 = 𝑠𝑝𝑎𝑛{𝑤5, 𝑤6} and 𝐿3 =
 𝑠𝑝𝑎𝑛{𝑤4, 𝑤5, 𝑤6}. Therefore, 𝑍(𝐿) = 𝑠𝑝𝑎𝑛{𝑤6, 𝑤7} 
and 𝐿2 = 𝑠𝑝𝑎𝑛{𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7}. Take 𝑉 =
𝑠𝑝𝑎𝑛{𝑤1, 𝑤2}. 
 

Case 1. If the bilinear form matrix is 𝐴1⊕ 𝐶1, then 

the nonzero products in 𝐿 can be given as: 

 

[𝑤1, 𝑤1] = 𝑤7, [𝑤1, 𝑤2] = 𝛼1𝑤3 + 𝛼2𝑤4 + 𝛼3𝑤5 +

𝛼4𝑤6 = −[𝑤2, 𝑤1], [𝑤1, 𝑤3] = 𝛽1𝑤4 + 𝛽2𝑤5 +

𝛽3𝑤6 = −[𝑤3, 𝑤1], [𝑤2, 𝑤3] = 𝛽4𝑤4 + 𝛽5𝑤5 +

𝛽6𝑤6 = −[𝑤3, 𝑤2], [𝑤1, 𝑤4] = 𝛾1𝑤5 + 𝛾2𝑤6 =

−[𝑤4, 𝑤1], [𝑤2, 𝑤4] = 𝛾3𝑤5 + 𝛾4𝑤6 =

−[𝑤4, 𝑤2], [𝑤3, 𝑤4] = 𝛾5𝑤5 + 𝛾6𝑤6 =

−[𝑤4, 𝑤3], [𝑤1, 𝑤5] = 𝜃1𝑤6 = −[𝑤5, 𝑤1], [𝑤2, 𝑤5] =

𝜃2𝑤6 = −[𝑤5, 𝑤2], [𝑤3, 𝑤5] = 𝜃3𝑤6 = −[𝑤5, 𝑤3],

[𝑤3, 𝑤5] = 𝜃4𝑤6 = −[𝑤5, 𝑤3].    

From Leibniz identity, we get the following equations: 

𝜃4 = 𝜃3 = 𝛾5 = 0  

𝛽4𝛾1 − 𝛽1𝛾3 = 0          (3.4) 

𝛾3𝜃1 − 𝛾1𝜃2 − 𝛼1𝛾6 = 0         (3.5) 

𝛽4𝛾2 + 𝛽5(𝜃1 − 𝜃2) − 𝛽1𝛾4 + 𝛼2𝛾6 = 0(3.6) 

 

First, suppose 𝛾3  = 0. Since 𝛾1 ≠  0 and from 

Equation 3.4, we have 𝛽4 = 0. Using 𝑑𝑖𝑚(𝐿3) = 3, 

we can see that 𝛽1 ≠ 0. Suppose 𝜃2 = 0. Then, from 

Equations 3.5 and 3.6, we obtain 𝛾6 = 0 = 𝛽5𝜃1 −
𝛽1𝛾4. With the following change of basis 𝑥1 = 𝛾4𝑤1 −
𝛾1𝑤2, 𝑥2 = 𝑤2, 𝑥3 = 𝑤3, 𝑥4 = 𝑤4, 𝑥5 = 𝑤5, 𝑥6 =
𝑤6, 𝑥7 = 𝛾4

2𝑤7, we can force 𝛾2 = 0. The following is 

a transition matrix switching the basis 𝑊 =
{𝑤1, 𝑤2, … , 𝑤7} to the basis 𝜁 = {𝜁1, 𝜁2, … , 𝜁7}  

 

 

ℬ1      =

(

 
 
 
 

𝑎 0 0
0 𝑏 0
0 0 𝑎𝑏𝛼1

0 0 0 0
0 0 0 0
0 0 0 0

0 0 𝑎𝑏𝛼2
0 0 𝑎𝑏𝛼3
0
0

0
0

𝑎𝑏𝛼4
0

𝑎2𝑏𝛼1𝛽1 0 0 0

𝑎2𝑏(𝛼1𝛽2 + 𝛼2𝛾1) 𝑎3𝑏𝛼1𝛽1𝛾1 0 0

𝑎2𝑏(𝛼1𝛽3 + 𝛼3𝜃1)
0

𝑎3𝑏(𝛼1𝛽2 + 𝛼2𝛾1)𝜃1
0

𝑎4𝑏𝛼1𝛽1𝛾1𝜃1
0

0
𝑎2)

 
 
 
 

 

 

 

 If 𝛾4 = 𝛽6 = 0, then taking 𝑎 = 𝑏 = 1 in ℬ1, 

we get the algebra 𝐿1. 

 If 𝛾4 = 0 and 𝛽6 ≠ 0, then taking 𝑎 = 1, 𝑏 =
𝛽1𝛾1𝜃1

𝛽6
  in ℬ1, we obtain 𝐿2. 

 If 𝛾4 ≠ 0 and 𝛾1𝛽6 − 𝛽2𝛾4 = 0, then taking 

𝑎 = 1, 𝑏 =
𝛾1𝜃1

𝛾4
  in ℬ1, we get the algebra 𝐿3. 

 If 𝛾4 ≠ 0 and 𝛾1𝛽6 − 𝛽2𝛾4 ≠ 0, then taking 

𝑎 =
𝛾1𝛽6−𝛽2𝛾4

𝛽1𝛾1
2𝜃1
2 , 𝑏 =

(𝛾1𝛽6−𝛽2𝛾4)
2  

𝛽1
2𝛾1
3𝜃1
3𝛾4

 in ℬ1, we 

arrive the algebra 𝐿4. 

 

Take 𝜃2 ≠ 0. The following change of basis 𝑥1 =
𝜃2𝑤1 − 𝜃1𝑤2, 𝑥2 = 𝑤2, 𝑥3 = 𝑤3, 𝑥4 = 𝜃2𝑤4 −
𝛾4𝑤5, 𝑥5 = 𝑤5, 𝑥6 = 𝑤6, 𝑥7 = 𝜃2

2𝑤7 forces 𝛾4 = 𝜃1 =
0. Notice that Equation 3.5 do not allow 𝛾6 to be zero. 

Then, the change of basis 𝑥1 = 𝛾6𝑤1 − 𝛾2𝑤3, 𝑥2 =
𝑤2, 𝑥3 = 𝑤3, 𝑥4 = 𝑤4, 𝑥5 = 𝑤5, 𝑥6 = 𝑤6, 𝑥7 = 𝛾6

2𝑤7   
forces 𝛾2 = 0. Choose the transition matrix switching 

the basis 𝑊 = {𝑤1, 𝑤2, … , 𝑤7} to the basis 𝜁 =
{𝜁1, 𝜁2, … , 𝜁7}  as

 

ℬ2     =

(

 
 
 
 

𝑎 0 0
0 𝑏 0
0 0 𝑎𝑏𝛼1

0 0 0 0
0 0 0 0
0 0 0 0

0 0 𝑎𝑏𝛼2
0 0 𝑎𝑏𝛼3
0
0

0
0

𝑎𝑏𝛼4
0

𝑎2𝑏𝛼1𝛽1 0 0 0

𝑎2𝑏(𝛼1𝛽2 + 𝛼2𝛾1) 𝑎3𝑏𝛼1𝛽1𝛾1 0 0

𝑎2𝑏(𝛼1𝛽3 + 𝛼3𝜃1)
0

0
0

𝑎3𝑏2𝛼1𝛽1𝛾1𝜃2
0

0
𝑎2)

 
 
 
 

 

 

 

 If 𝛼1𝛽6 + 𝛼3𝜃2 = 0, then taking 𝑎 = 1, 𝑏 =
𝛽1𝛾1

𝛽5
  in ℬ2, we get the algebra 𝐿5. 

 If 𝛼1𝛽6 + 𝛼3𝜃2 ≠ 0, then taking 𝑎 =

√
𝛼1𝛽6+𝛼3𝜃2

𝛼1𝛽1𝛾1𝜃2
, 𝑏 =

𝛼1𝛽6+𝛼3𝜃2

𝛼1𝛽5𝜃2
  in ℬ2, we get the 

algebra 𝐿6. 

Later, suppose 𝛾3 ≠ 0. With the change of basis 𝑥1 =

𝛾3𝑤1 − 𝛾1𝑤2, 𝑥2 = 𝑤2, 𝑥3 = 𝑤3, 𝑥4 = 𝑤4, 𝑥5 =

𝑤5, 𝑥6 = 𝑤6, 𝑥7 = 𝛾3
2𝑤7, we can force 𝛾1  = 0. Then, 

by Equation 3.4, we have 𝛽1 = 0. Choose the 

transition matrix switching the basis 𝑊 =

{𝑤1, 𝑤2, … , 𝑤7} to the basis 𝜁 = {𝜁1, 𝜁2, … , 𝜁7} as the 

following 
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ℬ3      =

(

 
 
 
 

𝑎 0 0
0 𝑏 0
0 0 𝑎𝑏𝛼1

0 0 0 0
0 0 0 0
0 0 0 0

0 0 𝑎𝑏𝛼2
0 0 𝑎𝑏𝛼3
0
0

0
0

𝑎𝑏𝛼4
0

𝑎𝑏2𝛼1𝛽4 0 0 0

𝑎𝑏2(𝛼1𝛽5 + 𝛼2𝛾3) 𝑎𝑏3𝛼1𝛽4𝛾3 0 0

𝑎𝑏2(𝛼1𝛽6 + 𝛼2𝛾4 + 𝛼3𝜃2)
0

𝑎𝑏3(𝛼1𝛽4𝛾4 + 𝛼1𝛽5𝜃2 + 𝛼2𝛾3𝜃2)𝜃1
0

𝑎𝑏4𝛼1𝛽4𝛾3𝜃2(𝑜𝑟 𝑎
2𝑏3𝛼1𝛽4𝛾3𝜃1)

0

0
𝑎2)

 
 
 
 

 

 

If 𝛾6 = 0, then Equation 3.5 imply 𝜃1 = 0. Then, 

taking 𝑎 = 𝑏2
𝛾3𝜃2

𝛾2
 while 𝑏 =

√
(𝛼1𝛽3+𝛼2𝛾2) 𝛾3

2𝜃2
2−(𝛼1𝛽4𝛾4+𝛼1𝛽5𝜃2+𝛼2𝛾3𝜃2)𝛾2𝛾3𝜃2

𝛼1𝛽4𝛾2 𝛾3
2𝜃2
2  in ℬ3, 

we arrive the algebra 𝐿7. Let 𝛾6 ≠ 0. Then, with the 

changes of bases 𝑥1 = 𝛾6𝑤1 − 𝛾2𝑤3, 𝑥2 = 𝑤2, 𝑥3 =

𝑤3, 𝑥4 = 𝑤4, 𝑥5 = 𝑤5, 𝑥6 = 𝑤6, 𝑥7 = 𝛾6
2𝑤7 and 𝑥1 =

𝑤1, 𝑥2 = 𝛾6𝑤2 − 𝛾4𝑤3, 𝑥3 = 𝑤3, 𝑥4 = 𝑤4, 𝑥5 =

𝑤5, 𝑥6 = 𝑤6, 𝑥7 = 𝛾3
2𝑤7 make 𝛾2 = 0 and 𝛾4 = 0, 

respectively. 

 If 𝜃2 = 0, then letting 𝑎 = 𝑏2
𝛽4𝛾3

𝛽2
 while 𝑏 =

√
(𝛼1𝛽3+𝛼3𝜃1)𝛽4

2 𝛾3
2−(𝛼1𝛽4𝛾4)𝛽2𝛽4𝛾3

𝛼1
2𝛽4
3 𝛾3

2𝛾6
 in ℬ3, we 

obtain the algebra 𝐿8. 

 If 𝜃2 ≠ 0, then taking 𝑎 =
𝛽2𝜃2

2

𝛽4𝛾3𝜃1
2 , 𝑏 =

𝛽2𝜃2
   

𝛽4𝛾3𝜃1
  

in ℬ3, we get the algebra 𝐿9. 

Case 2. If the bilinear form matrix is 𝐶1⊕ 𝐶1, then 

the nonzero products in 𝐿 can be given as: 

 
[𝑤1, 𝑤1] = 𝑤7, [𝑤1, 𝑤2] = 𝛼1𝑤3 + 𝛼2𝑤4 + 𝛼3𝑤5 +
𝛼4𝑤6 = −[𝑤2, 𝑤1], [𝑤2, 𝑤2] = 𝑤7, [𝑤1, 𝑤3] =
𝛽1𝑤4 + 𝛽2𝑤5 + 𝛽3𝑤6 = −[𝑤3, 𝑤1], [𝑤2, 𝑤3] =
𝛽4𝑤4 + 𝛽5𝑤5 + 𝛽6𝑤6 = −[𝑤3, 𝑤2], [𝑤1, 𝑤4] =
𝛾1𝑤5 + 𝛾2𝑤6 = −[𝑤4, 𝑤1], [𝑤2, 𝑤4] = 𝛾3𝑤5 +
𝛾4𝑤6 = −[𝑤4, 𝑤2], [𝑤3, 𝑤4] = 𝛾5𝑤5 + 𝛾6𝑤6 =
−[𝑤4, 𝑤3], [𝑤1, 𝑤5] = 𝜃1𝑤6 = −[𝑤5, 𝑤1], [𝑤2, 𝑤5] =
𝜃2𝑤6 = −[𝑤5, 𝑤2], [𝑤3, 𝑤5] = 𝜃3𝑤6 = −[𝑤5, 𝑤3],
[𝑤3, 𝑤5] = 𝜃4𝑤6 = −[𝑤5, 𝑤3].    
 

Then, again from the Leibniz identity, we arrive 

Equations that obtained in case 1. Take a transition 

matrix switching the basis 𝑊 = {𝑤1, 𝑤2, … , 𝑤7} to the 

basis 𝜁 = {𝜁1, 𝜁2, … , 𝜁7}   

 

ℬ4      =

(

 
 
 
 

𝑎 0 0
0 𝑎 0
0 0 𝑎2𝛼1

0 0 0 0
0 0 0 0
0 0 0 0

0 0 𝑎2𝛼2
0 0 𝑎2𝛼3
0
0

0
0

𝑎2𝛼4
0

𝑎3𝛼1𝛽1 0 0 0

𝑎3(𝛼1𝛽2 + 𝛼2𝛾1) 𝑎4𝛼1𝛽1𝛾1 0 0

𝑎3(𝛼1𝛽3 + 𝛼3𝜃1)
0

𝑎4(𝛼1𝛽1𝛾2 + 𝛼1𝛽2𝜃1 + 𝛼2𝛾1𝜃1)
0

𝑎5𝛼1𝛽1𝛾1𝜃1(𝑜𝑟 𝑎
5𝛼1𝛽1𝛾1𝜃2)

0

0
𝑎2)

 
 
 
 

 

 

First, let 𝛾3 = 0. Then, Equation 3.4 imply 𝛽4  =
0, 𝛽1, 𝛾1 ≠ 0. Suppose 𝜃2 = 0. Then, from the 

equations 3.4 and 3.5, we get 𝛾6 = 0 and 𝛽5𝜃1 −
𝛽1𝛾4 = 0.

 If 𝛾4 = 𝛽6 = 0, then plugging 𝑎 = 1 in ℬ4 

results with the algebra 𝐿10. 

 If 𝛾4 = 0 and 𝛽6 ≠ 0, then plugging 𝑎 =

√
𝛽6

𝛽1𝛾1𝜃1
 in ℬ4, we get the algebra 𝐿11. 

 If 𝛾4 ≠ 0, then by taking 𝑎 =
𝛾4

𝛾1𝜃1
 in ℬ4, we get 

the algebra 𝐿12. 

 

Now suppose 𝜃2 ≠ 0. Then, with the change of basis 

𝑥1 = 𝑤1, 𝑥2 = 𝑤2, 𝑥3 = 𝑤3, 𝑥4 = 𝜃2𝑤4 − 𝛾4𝑤5, 𝑥5 =
𝑤5, 𝑥6 = 𝑤6, 𝑥7 = 𝑤7, we can make 𝛾4 = 0. 

Consequently, by taking 𝑎 = 1 in ℬ4, we get the 

algebra 𝐿13. 
 

Finally, consider the case 𝛾3 ≠ 0. If 𝛾1 = 0, then the 

change of basis 𝑥1 = 𝑤2, 𝑥2 = 𝑤1, 𝑥3 = 𝑤3, 𝑥4 =
𝑤4, 𝑥5 = 𝑤5, 𝑥6 = 𝑤6, 𝑥7 = 𝑤7 forces 𝛾3 = 0 and 

therefore 𝐿 is isomorphic to 𝐿10, 𝐿11, 𝐿12 or 𝐿13. 

Hence, let 𝛾1 ≠ 0. Note that when 𝛾1
2 + 𝛾3

2 ≠ 0 with 

the following change of basis 𝑥1 = 𝛾1𝑤1 +
𝛾3𝑤2, 𝑥2 = 𝛾3𝑤1 − 𝛾1𝑤2, 𝑥3 = 𝑤3, 𝑥4 = 𝑤4, 𝑥5 =
𝑤5, 𝑥6 = 𝑤6, 𝑥7 = (𝛾1

2 + 𝛾3
2)𝑤7, we can force 𝛾3 = 0 

and again 𝐿 is isomorphic to 𝐿10, 𝐿11, 𝐿12 or 𝐿13. 

Thus, 𝛾1
2 + 𝛾3

2 = 0. From Equation 3.4 we obtain 

𝛽1
2 + 𝛽4

2 = 0. 

 

 If 𝛾6 = 0, then from Equation 3.5, we obtain 

𝜃1
2 + 𝜃2

2 = 0. Hence, by taking 𝑎 = 1 in ℬ4, 

we get the algebra 𝐿14. 
 If 𝛾6 ≠ 0, then by taking 𝑎 = 1 in the change 

of basis matrix ℬ4, we obtain the algebra 𝐿15. 
 

This completes the proof. ∎ 
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4. Conclusion 

 

We reached the complete classification of nilpotent 

Leibniz algebras of dimension seven, whose derived 

algebra is of dimension five, while the Leib ideal is 

one dimensional with the restriction 𝑑𝑖𝑚(𝐿3) < 4. 

The classifications given in this paper and in [14] 

achieve that result. There exist 19 single algebras, 4 

one-parameter continuous families, 2 two-parameter 

continuous families, 1 three-parameter continuous 

family, and 1 one-parameter continuous family. It is 

left to look at the case 𝑑𝑖𝑚(𝐿3) = 4 in order to 

complete the classification of nilpotent Leibniz 

algebra of dimension seven, whose derived algebra is 

of dimension five while Leib ideal is one dimensional. 

Notice that 𝜒(𝐿) = (7, 5, 4, 3, 2, 1) is filiform Leibniz 

algebra, and the classification of this subclass with 

one-dimensional Leib ideal can be obtained by 

Theorem 2.2 in [4]. 𝑇𝐿𝑏7  in that Theorem will 

produce desired algebras. In fact, the classification of 

the subclass 𝑇𝐿𝑏7  is given in [6]. According to that 

classification, there are 13 single algebras and 9 one-

parameter continuous families of filiform non-Lie 

Leibniz algebras of dimension seven. Furthermore, 

there is no Leibniz algebra for the case 𝜒(𝐿) =
(7, 5, 4), because here 𝐿3 = 𝑍(𝐿) with the Lemma 2.4 

give 𝑑𝑖𝑚(𝐿2) ≤  4, which contradicts 𝐿2  being a 5-

dimensional ideal. Hence, we have the following six 

cases to classify: 
 

i. 𝜒(𝐿) = (7, 5, 4, 3, 2) 
ii. 𝜒(𝐿) = (7, 5, 4, 3, 1) 

iii. 𝜒(𝐿) = (7, 5, 4, 3) 
iv. 𝜒(𝐿) = (7, 5, 4, 2, 1) 
v. 𝜒(𝐿) = (7, 5, 4, 2) 

vi. 𝜒(𝐿) = (7, 5, 4, 1) 
 

Our approach of bilinear forms can also be utilized to 

classify these cases. It is known that there are 119 

single algebras and six one-parameter continuous 

families of Lie algebra of dimension seven over an 

algebraically closed field [16]. Even though, we 

restrict our attention to seven-dimensional nilpotent 

Leibniz algebras whose Leib ideal is one dimensional 

and derived algebra is of dimension five, we get 32 

single algebras, 13 one-parameter continuous families, 

two two-parameter continuous families, one three-

parameter continuous family, and one one-parameter 

continuous family so far and there are still some cases 

to cover. As a future work, classification of higher 

dimensional nilpotent Leibniz algebras with one 

dimensional Leib ideal and/or classification of 

nilpotent Leibniz algebras of higher dimensions with 

the derived algebra of codimension two can be 

obtained by the congruence classes of bilinear forms 

method. 
 

Author’s Contributions  
 

İsmail Demir: Drafted and wrote the manuscript, 

performed the experiment and result analysis. 

Ethics  
 

There are no ethical issues after the publication of this 

manuscript. 
 

References 
 

[1]. Bloh, A. 1965. On a Generalization of Lie Algebra Notion. 

Mathematics in USSR Doklady; 165(3): 471-473. 

 

[2]. Loday, JL. 1993. Une Version Non-Commutative des Algebres 

de Lie: Les Algebres de Leibniz. L'Enseignement Mathematique; 

39(3-4): 269-293. 

 

[3]. Albeverio, S, Omirov, BA, Rakhimov, IS. 2006. Classification 

of 4-Dimensional Nilpotent Complex Leibniz Algebra. Extracta 

Mathematicae; 21(3): 197-210. 

 

[4]. Rakhimov, IS, Bekbaev, UD. 2010. On Isomorphisms and 

Invariants of Finite Dimensional Complex Filiform Leibniz 

algebras. Communications in Algebra; 38: 4705-4738. 

 

[5]. Casas, JM, Insua, MA, Ladra, M, Ladra, S. 2012. An Algorithm 

for the Classification of 3-Dimensional Complex Leibniz Algebras. 

Linear Algebra and its Applications; 9: 3747-3756. 

 

[6]. Abdulkareem, AO, Rakhimov, IS, Husain, SK. On Seven-

Dimensional Filiform Leibniz Algebras, In: Kilicman, A., Leong, 

W., Eshkuvatov, Z. (eds) International Conference on Mathematical 

Sciences and Statistics, 2014, pp 1-11. 

 

[7]. Gomez, JR, Omirov, BA. 2015. On Classification of Filiform 

Leibniz Algebras. Algebra Colloquium; 22: 757-774. 

 

[8]. Demir, I, Misra, KC, Stitzinger, E. 2017. On Classification of 

Four-Dimensional Nilpotent Leibniz Algebras. Communications in 

Algebra; 45(3): 1012-1018. 

 

[9]. Rakhimov, IS, Khudoyberdiyev, AK, Omirov, BA. 2017. On 

Isomorphism Criterion for a Subclass of Complex Filiform Leibniz 

Algebras. International Journal of Algebra and Computation; 27(7): 

953-972. 

 

[10]. Demir, I. Classification of 5-Dimensional Complex Nilpotent 

Leibniz Algebras, In: N. Jing, K. C. Misra (Eds.), Representations 

of Lie Algebras, Quantum Groups and Related Topics, 

Contemporary Mathematics, Volume 713, American Mathematical 

Society, 2018, pp. 95-120. 

 

[11]. Mohamed, NS, Husain, SK, Rakhimov, IS. 2019. 

Classification of a Subclass of 10-Dimensional Complex Filiform 

Leibniz Algebras. Malaysian Journal of Mathematical Sciences; 

13(3): 465-485. 

 

[12]. Demir, I. 2020. Classification of Some Subclasses of 6-

Dimensional Nilpotent Leibniz Algebras. Turkish Journal of 

Mathematics; 44: 1925-1940.  

 

[13]. Farris, L. Finite Dimensional Nilpotent Leibniz Algebras with 

Isomorphic Maximal Algebras, Doctoral Dissertation, North 

Carolina State University, 2022. 

 

[14]. Demir, I. On Classification of 7-Dimensional Odd-Nilpotent 

Leibniz Algebras. Hacettepe Journal of Mathematics and Statistics, 

(in press). 

 

[15]. Teran, F. 2016. Canonical Forms for Congruence of Matrices 

and T-palindromic Matrix Pencils: a Tribute to H. W. Turnbull and 

A. C. Aitken. SeMA Journal: Bulletin of the Spanish Society of 

Applied Mathematics; 73: 7-16.  

 

[16]. Gong, MP. Classification of Nilpotent Lie Algebras of 

Dimension 7 (over Algebraically Closed Field 𝔽 and ℝ), Doctoral 

Dissertation, University of Waterloo, 1998. 


