

The Eurasia Proceedings of
Educational & Social Sciences (EPESS)

ISSN: 2587-1730

- This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License,
permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

- Selection and peer-review under responsibility of the Organizing Committee of the conference

*Corresponding author: Esranur Galip- E-Mail: esranur.galip@ege.edu.tr

© 2016 Published by ISRES Publishing: www.isres.org

The Eurasia Proceedings of Educational & Social Sciences (EPESS), 2016

Volume 5, Pages 42-46

ICRES 2016: International Conference on Research in Education and Science

IMPLEMENTING THE DISTRIBUTED BREADTH FIRST SEARCH

ALGORITHM IN OMNET++ FOR TEACHING AND LEARNING

PURPOSES

Esranur Galip

Ege University, Computer Engineering Department

Hasan Bulut

Ege University, Computer Engineering Department

Abstract: A distributed system is considered as a set of computers communicating through the network and

running collaboratively to coordinate their activities and to share the resources of the system to achieve a

common goal. The coordination is achieved by exchanging messages, which carry information. Distributed

algorithms play a crucial role in this coordination. However, teaching and learning distributed algorithms is

difficult due to the inherent complexities of the distributed system. Since it is costly to construct a network of

computers to run distributed algorithms to conduct research, teach and learn, many commercial and freely

available open source simulation tools have been developed for simulating network systems and hence,

distributed systems. These tools facilitate the development of distributed algorithms for different environments.

One of these tools is OMNET++, which is a component-based C++ simulation library and framework for

building network simulators and offers a graphical runtime environment.To facilitate the understanding of the

working mechanism, a distributed system can be modeled as a graph. Each computer in the distributed system is

represented by a vertex, called node and a link between two computers is represented by an edge. Hereby, many

graph algorithms can be utilized within a distributed system. For instance, traversal of computers (nodes) in a

distributed system is important and used for solving many problems. Many algorithms provide traversal of

nodes. In this study, we would like to demonstrate the use of a simulation tool for teaching and learning one of

the fundamental distributed graph algorithms called Breadth First Search (BFS) algorithm. We use OMNET++

to visualize the steps of constructing a BFS tree, where colors of edges are dynamically changed to indicate the

inner workings of the algorithm. In addition, a learner can visually trace the flow of the messages between nodes

in the simulation.

Keywords: Distributed algorithms, graph algorithms, breadth first search algorithm, simulation for education,

omnet++

Introduction

In computer science (CS), everything is a part of dynamic process and consists of abstract concepts whose

imagination is so complex and hard. The process of an algorithm’s behavior is dynamic, which cannot be

visualized using static techniques such as images or flow charts. Let’s consider a topic, which requires to be

imagined step by step. Most of lecturers explain the topic verbally without any visual material. Thereby, many

students spend hard times to solve the meaning of the long and complex sentences, which emphasize the core of

the course. In that case, visualization plays important role for understanding the topic clearly. However,

visualization can significantly affect CS education (Thomas Naps, 2003). For this purpose, Algorithm

Visualization (AV) has been used since 1981 in CS education. Many educational AVs are being implemented

and freely distributed for educational purposes. Jeliot (University of Eastern Finland, 2016) is one of them. It

was developed to help high school students to understand and learn Java programming. It visualizes the source

code by generating animation, which shows behavior of the program (Fouh, Akbar, & Shaffer, 2012).

International Conference on Research in Education and Science (ICRES), May 19-22 2016, Bodrum/Turkey

43

Distributed system is a dispensable part of CS. A distributed system is considered as a set of computers

communicating through the network and running collaboratively to coordinate their activities and to share the

resources of the system to achieve a common goal. The coordination is achieved by exchanging messages, which

carry information. In the coordination of processes in the system, distributed algorithms play a crucial role.

Designing a distributed algorithm is more complex than designing a sequential algorithm because of considering

many concurrent events in the distributed case. Hence, teaching and learning distributed algorithms is difficult

due to the inherent complexities of the distributed system, which consists of multiple independent components,

where each has a separate state and control mechanism. Since it is costly to construct a network of computers to

run distributed algorithms to conduct research, teach and learn, many commercial and freely available open

source simulation tools have been developed. These tools facilitate the development of distributed algorithms for

different environments and are so important to be used for algorithms simulations. The research of (O'Donnell,

2006) indicates that the simulation of an algorithm provides learners to think with a higher level for the

algorithm’s behaivour. For this purpose, (Abdou, Abdallah, & Mosbah, 2014) developed Java based ViSiDiA.

With developing ViSiDiA, they aim to help teaching distributed algorithms and contributing to the research

activities. The tool supports implementing, simulating and visualizing distributed algorithms for several types of

networks.

OMNET++ is a component-based C++ simulation library and framework for building network simulators and

offers a graphical runtime environment (OMNET++, 2016). In addition, it is extensible and offers an Eclipse-

based IDE that is commonly known among researchers and students. Since users do not need to spend extra time

to learn the environment, it is easier to be accepted by users. Its graphical interface enables users to build a

network by using network components easily. There are extensions for real-time simulation, network emulation,

etc. Its visualization for communications and transmission of messages facilitates the understanding of abstract

concepts. Hereby, it is currently gaining widespread popularity in the scientific community. In this study, we

would like to demonstrate the use of a simulation tool for teaching and learning one of the fundamental

distributed graph algorithms called Breadth First Search (BFS) algorithm. We use OMNET++ to visualize the

steps of constructing a BFS tree, where colors of edges are dynamically changed to indicate the inner workings

of the algorithm. In addition, a learner can visually trace the flow of the messages between nodes in the

simulation.

This paper is in detail as follows. Section 2 covers the implemented algorithms and methods. Results are

discussed in Section 3. Conclusion is covered in Section 4.

Methods

Distributed system is an important area of CS. A distributed system can be modeled as a graph. Each computer

in the distributed system is represented by a vertex, called node and a link between two computers is represented

by an edge. Hereby, many graph algorithms can be utilized within a distributed system by converting them into

distributed versions. The basic distributed graph algorithms can be stated as Breadth First Search (BFS), Depth

First Search (DFS), Topological Sort, Shortest Path Algorithms, Minimum Spanning Tree Algorithms, etc. In

this study, we examine one of the fundamental graph algorithms, distributed synchronous Breadth First Search

(BFS) algorithm. The algorithm constructs a BFS tree for a source node. Hereby, each node’s distance to the

source node is determined (Raynal, 2013). The examined BFS algorithm is implemented and simulated in

OMNET++ simulation tool.

Synchronous Breadth First Search Algorithm

In synchronous BFS algorithm, the source node initiates BFS algorithm and undertakes the synchronizer task. At

the end of the algorithm, BFS tree is constructed, where the distance of each node from the source node is found.

The source node uses different message types for synchronizing and finding parent and child relations. The

source node starts discovering nodes in each layer by sending a GO message with layer id. The GO message is

interpreted by the receiver node in two aspects. If it is received for the first time, the node is discovered by the

sender node. The sender node is the parent of the receiver node. From this moment, all messages from the source

node will come through its parent. If the receiver node has neighbors, it informs its parent about the discovery of

the next layer. We can state this node as an active node. Therefore, the edge between parent and child is colored

as red. If the receiver node has no neighbor, it informs its parent about its termination of the algorithm and the

edge between parent and the child is colored as green. We can state this node as a passive node. Hereby, the

states of the nodes in the system can be observed easily. If the node is active and if it receives a GO message

from its parent again, the node will discover nodes in the next layer or if it has already discovered all of its

children, the node undertakes the intermediary role. Then, it will forward the message to its active children to

inform them about the discovering nodes in the next layer. In each iteration, parents gather responses from their

International Conference on Research in Education and Science (ICRES), May 19-22 2016, Bodrum/Turkey

44

children about the completion of the discovering nodes for the layer. Then each parent forwards this message to

its parent until the message is received by the source node. After that, the source node initiates the discovery of

the next layer by sending a GO message with next layer id. If a parent gathers messages for the termination of

the algorithm from all its children, it forwards the message to its parent. Hereby, the subtree is discovered and

edges between parents and children are colored as green in the subtree. When the source node gets messages for

the termination of the algorithm from all of its children, the source node realizes that the desired BFS tree is

constructed.

Implementations

In OMNET++, if the developer aims to build a network, first, she should define submodule(s), which will be a

component of the network. For instance, in synchronous BFS algorithm implementation, to represent each node,

node submodule is defined in the network. Using the node submodule with existing modules, such as a channel

module, a connection is established between the components of the network. Design of the network can be

expressed as a ned file, which can also be defined by using a graphical built-in interface. This facilitates the

topology design easier for developers. A snapshot of the initial state of the network is given in Figure 1. The

topology is generated with a built-in random topology generator, where the nodes are derived from the

implemented node submodule.

Figure 1. The snapshot of the initial state of the example network

Results and Findings

In Figure 2, a snapshot of BFS algorithm’s simulation is given. To make the algorithm’s behavior clear and

enable students to understand the working mechanism of the BFS algorithm, we have colored edges during the

discovery of layers. If the child has just been discovered by its parent, the edge between the parent and the child

is colored as red. If the child node finishes searching, it means the child may be a leaf or its neighbors have

already been discovered by other nodes, the edge between child and parent is colored as green as shown in

Figure 2. For instance, nodes[10] and nodes[1] are leaves and they are discovered by their parents, nodes[9] and

nodes[0], respectively. node[6] and node[15] could not discover their own neighbors as their children before

their neighbors. Each message in the simulation is indicated with a message name and a circle filled in red. As

seen in the snapshot of the simulation in Figure 2, nodes[0] sends a GO message to its children to inform them

about the discovery of nodes in layer5.

International Conference on Research in Education and Science (ICRES), May 19-22 2016, Bodrum/Turkey

45

Figure 2. The snapshot of discovering process for bfs algorithms

The output of the BFS algorithm for the input topology shown in Figure 1 is a BFS tree, where edges between

parents and children are colored as green as shown in Figure 3. By implementing the BFS algorithm in

OMNET++, we visualize the inner workings of the BFS algorithm while reaching the final BFS tree.

Figure 3. The final BFS tree

Conclusion

Visualization is important in teaching and learning distributed algorithms because of the inherent complexities in

a distributed system. Many students spend too much effort to solve the meaning of the long and complex

sentences that explain the algorithms’ behaviours. In addition, lecturers have difficulty in explaining the abstract

concepts verbally. For this purpose, in this study, we aimed to demonstrate the use of a simulation tool for

teaching and learning one of the fundamental distributed graph algorithms. As an example for distributed graph

algorithm, we decided to implement the synchronous version of the distributed BFS algorithm, since it is easier

to understand and implement. As a simulation tool, OMNET++ was preferred due to its support for visualization.

We are able to visualize the steps of constructing a BFS tree, where colors of edges are dynamically changed to

indicate the inner workings of the algorithm. In addition, a learner can visually trace the flow of the messages

between nodes in the simulation.

References

Abdou, W., Abdallah, N., & Mosbah, M. (2014). ViSiDiA: A Java Framework for Designing, Simulating and

Visualizing Distributed Algorithms. IEEE/ACM 18th International Symposium on Distributed Simulation

and Real Time Applications (DS-RT), 43-46.

András Varga, R. H. (2008). An overview of the OMNeT++ simulation environment. In Proceedings of the 1st

international conference on Simulation tools and techniques for communications, networks and systems

& workshops, 60. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering.

International Conference on Research in Education and Science (ICRES), May 19-22 2016, Bodrum/Turkey

46

Easley, D., & Kleinberg, J. (2010). Networks, Crowds, and Markets: Reasoning about a Highly Connected

World. Cambridge University Press.

Fouh, E., Akbar, M., & Shaffer, C. A. (2012). The Role of Visualization in Computer Science Education.

Computers in the Schools, 95-117.

O'Donnell, F. (2006). Simulation Frameworks for the Teaching and Learning of Distributed Algorithms. Thesis

of Doctor of Philosophy. University of Dublin, Trinity College.

OMNET++. (2016). OMNeT++ Discrete Event Simulator. Retrieved March 15, 2016 from https://omnetpp.org/

Raynal, M. (2013). Distributed Algorithms for Message-Passing Systems. London: Springer.

Thomas Naps, S. C. (2003). Evaluating the educational impact of visualization. ACM SIGCSE Bulletin, 35(4),

124-136.

University of Eastern Finland. (2016). Jeliot3. Jeliot3. Retrieved March 15, 2016 from

https://cs.joensuu.fi/jeliot/downloads/jeliot372.php

Varga, A. (1999). Using the OMNeT++ Discrete Event Simulation System in Education. IEEE Transaction on

Education, 42(4), 372.

