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Abstract. We study exact solutions of the Schrödinger equation in a topo-

logically massive space-time. Exact solutions are obtained in terms of the

hypergeometric functions. We also obtained the momentum quantization with
the help of the condition of the wave function to be bounded. The investigation

is performed in the framework of rainbow formalism of the General Relativity
Theory (RGT). The quantized momentum is evaluated for different choices of

the rainbow functions.

1. Introduction

In last decades, it has been a crucial area to study exact solutions of the non-
relativistic and relativistic wave equations that present precious data concerning to
the quantum mechanical systems. In this circumstances, the Schrödinger (for spin-
less and non-relativistic massive particles), the Klein-Gordon (KG) (spin-0 particles,
e.g., pions), the Dirac (for spin-1/2, e.g., electrons) and the Duffin-Kemmer-Petiau
(DKP) (for spin-1, e.g., W±, Z0 bosons and photons) equations are the most exam-
ined equations [1, 2, 3, 4, 5, 6, 7, 8]. Except the Schrödinger equation, the rest are
the fundamental single particle equations of the relativistic quantum mechanics.

The Schrödinger equation defines the non-relativistic quantum mechanical char-
acter of an isolated physical system by evolution of a wave function over the time.
Its solutions given for the presence of external electromagnetical fields have fun-
damental applications used in technology, engineering, electro-mechanics, particle
physics, medical physics, and so on. Compared to the other wave equations the
Schrödinger equation has much less been studied in curved geometry. Examin-
ing the Schrödinger equation in curved space-time is a way of finding the effective
low-energy characterization of a quantum particle in a curved geometry.

Recently, a new approach to the Einstein’s General Relativity (EGG), which
is called ”Doubly General Relativity” (DGR) is introduced [9], thereafter called
as Rainbow Gravity (RG) to study the quantum effects of the gravitation in the
smallest accessible regions, namely the Planck scale. The idea behind the RG
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approach of gravitation is that at ultra-high energy regimes the geometry of classical
space-time alters by the probing particles that have different energies [9, 10, 11].
Thus, the standard metric is deformed and this phenomenon is represented in space-
time metric with rainbow functions. Because of this modified perspective, the

rainbow version of a metric can be written by the replacements dx0 → dx0

f for the

time coordinate and dxi → dxi

g for the spatial coordinates. As the particle moves

in geometry, it will perceive gravity differently for each energy it has, as the way a
prism acts on light.

The structure of the paper will be as follows. In section 2, we give a brief theoret-
ical set-up of the problem and in section 3, we will solve the Schrödinger equation
for the considered rainbow space-time. In section 4, by obtaining approximate solu-
tions, the quantization condition of the momentum will be derived. Finally, section
5 is devoted to the discussion of results.

2. Preliminaries

For the investigation of our problem, we will study in the RG formalism and discuss
the dynamics of particle by the topologically massive space-time given by,

(2.1) ds2 = dθ2 + dφ2 + 2 cos(νθ)dψdφ+ dψ2

which is basically a de Sitter space with the polar angle suffering a conic defect.
This metric has been offered by Aliev et.al. [12] and it has obvious importance
for the gauge field theories. Here, the term ν is the topological mass and it is

related to the cosmological constant as λ = ν2

4 . The metric can be diagonalized by
introducing new variables as ϕ = ψ+φ and χ = ψ−φ. Therefore the above metric
takes the following form,

(2.2) ds2 = dθ2 + cos2
νθ

2
dϕ2 + sin2 νθ

2
dχ2

In the modified perspective, the rainbow counterpart of the above metric can be
written as

(2.3) ds2 =
1

g2(ε)

[
dθ2 + cos2

νθ

2
dϕ2 + sin2 νθ

2
dχ2

]
where g(ε) is the energy-dependent rainbow function, ε = E

EPl.
, E is the energy of

the probing particle and EPl. is the Planck energy.

3. Exact solution of the Schrödinger equation

The covariant form of the Schrödinger equation in curved space is given as follows
[13],

(3.1) i~
∂Ψ

∂t
=
−~2

2m

[
1√

detgµν

∂

∂xµ
(
√
detgµνg

µν ∂Ψ

∂xν
)

]
− ~2

6
RΨ

where m is the mass of particle, ~ is the Planck constant, gµν is the metric given
by Eq.(2.3) and R is the scalar curvature of the space which is calculated by the
contradiction of the Ricci tensor and given as

(3.2) R = gµνRµν = gµν
(
∂αΓαµν − ∂µΓααν + ΓααρΓ

ρ
µν − ΓαµρΓ

ρ
αν

)
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where

(3.3) Γανλ =
1

2
gαβ (∂νgλβ + ∂λgβν − ∂βgνλ)

are the Christoffel symbols [14] and obtained as follows

(3.4) Γ1
ij =

 0 0 0
0 ν

4 sin(νθ) 0
0 0 −ν4 sin(νθ)

 ,

(3.5) Γ2
ij =

 0 −ν2 tan(νθ) 0
−ν2 tan(νθ) 0 0

0 0 0

 ,

and

(3.6) Γ2
ij =

 0 0 ν
2 cot(νθ)

0 0 0
ν
2 cot(νθ) 0 0

 .

By using the line element given by Eq.(2.3) and (3.4, 3.5, 3.6) in Eq.(3.2), the

scalar curvature is obtained as R = 3g2(ε)ν2

2 . With the help of these results and

reminding that
√
detgµν = sin(νθ)

2g3 , the Schrödinger equation (3.1) reduces to the

following form,

(3.7) f
′′
(θ) + 2 cot(2y)f

′
(θ) +

[
c−

(
a

cos2(y)
+

b

sin2(y)

)]
f(θ) = 0

where the definitions Ψ = ei(αϕ+βχ−Et)f(θ), a = 4α2

ν2 , b = 4β2

ν2 , c = 8m
ν2g2

(
E + ν2g2

4

)
and y = νθ

2 were made. If the variable is changed as cos2 y = 1
u , Eq.(3.7) is

transformed to into the below form,

(3.8) 4u2(u− 1)2f
′′
(u) + 4u2(u− 1)f

′
(u)−

[
au2 −Bu+ c

]
f(u) = 0

where B = a− b+ c.
If we define the wave function as f(u) = up−1(u − 1)qΩ(u), Eq.(3.8) can be

written as
(3.9)

u(u− 1)Ω
′′

+ [u(2p+ 2q + 1) + 2(1− p)]Ω
′
+[

2pq +
p2(u− 1)− 2pu+ u3p

u
+
qu(q − 2) + 2q + uK

4 + L
4

u− 1
+

M

4u(u− 1)

]
Ω = 0

where K = 4− a, L = B − 12 and M = 8− c.
For the choices of p2 − 3p + M

4 = 0, 4q2 + K + L + M = 0 and definitions

2(p− 1) = γ, 2(p+ q) + 1 = P +Q+ 1, 2pq+ p2− 2(p+ q)− M+L
4 = PQ, we obtain

(3.10) u(u− 1)Ω
′′
(u) + [(P +Q+ 1)u− γ]Ω

′
(u) + PQΩ(u) = 0

which has the form of hypergeometric differential equation [15]. Solutions of this
equation are given by

(3.11) Ω(u) = 2F1 (P,Q, γ;u)

and

(3.12) Ω(u) = u1−γ2F1 (P + 1− γ,Q+ 1− γ, 2− γ;u)
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where 2F1 are hypergeometric functions. Thence, exact solutions of the Schrödinger
equation is obtained as

(3.13) Ψ = ei(αϕ+βχ−Et)
[
cos(

νθ

2
)

]2(1−p) [
cos(

νθ

2
)

]−2q

2F1

(
P,Q, γ; cos−2(

νθ

2
)

)
For the specific discussions of our general results, one can use various scenar-

ios introduced in literature for the rainbow functions. We give a few well-known
proposals of the rainbow functions in TABLE I.

Table 1. Most studied proposals of the rainbow functions. Here,
c1, c2, c3, c4 and t are arbitrary parameters.

f g Reference

1
√

1− c1χt [16]
(c2χ)−1(exp[c2χ]− 1) 1 [16]

(1− c3χ)−1 (1− c3χ)−1 [16]
(1− c4χ)−1 1 [17]

exp[−χ
2

2 ] 1 [18]
1 1 + χ

2 [19]
1 + χ

2 1 + (2χ)−1 [19]
1 1 + χt [20]

4. Asymptotic solution of the Schrödinger equation

For the small value of the argument, namely y = νθ
2 � 1, Eq. (3.7) transforms

into

(4.1) y2f
′′
(y) + 2yf

′
(y) + [(c− a)y2 − b]f(y) = 0

This is the Bessel differential equation and solution is given by [15]

(4.2) f(y) =
1
√
y
Z√

b+ 1
4

(
√
c− ay)

where Zµ(ζ) are the cylindrical functions and can be written in terms of the Bessel
functions as

(4.3) Zµ = c1Jµ + c2Yµ

where Jµ is first type and Yµ is second type of Bessel functions that are related to
Kummer functions, M(a, b, z), as following [15]

(4.4) Jµ =
(y2 )µ

Γ(µ+ 1)
e−iyM(µ+

1

2
, 2µ+ 1, 2iy)

and

(4.5) Yµ =
Jµ cos(µπ)− J−µ

sin(µπ)

In order Kummer functions to be finite, we require the bound condition of the Kum-
mer functions as µ+ 1

2 = −n [15]. Therefore, we obtain the quantized momentum
of the Schrödinger particle in terms of the topological mass as in the follow,

(4.6) β =
ν

2

√
n(n+ 1)
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which is the momentum in the χ-direction.

5. Conclusion

In this study, we have analyzed the Schrödinger equation in a modified rain-
bow background. In the process of obtaining the solutions we used the separation
of variables method. Both the wave function and momentum of the Schrödinger
particle are obtained depending on the topological mass. The topological massive
(3 + 0)-space is hard to study for the relativistic higher spinning particles. So, this
study may have the potential of providing insights into the relativistic spinning
particles as well. This is going to be a further study in the corresponding space.
One of the interesting finding of this study is that although the dynamics of the
particle depends on the angular variables, topological mass term and energy of the
probing particle, the quantized momentum depends on only the topological mass.
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