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Abstract
After introducing some Z3-graded structures, we first give the definition of a Z3-graded quantum space and show
that the algebra of functions on it, denoted by O(C̃1|1|1

q ), has a Z3-graded Hopf algebra structure. Later, we obtain
a new Z3-graded quantum group, denoted by G̃Lq(1|1), and show that the algebra of functions on this group is a
Z3-graded Hopf algebra. Finally, we construct two non-commutative differential calculi on the algebra O(C̃1|1

q )

which are left covariant with respect to the Z3-graded Hopf algebra O(G̃Lq(1|1)).
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1 �sacelik@yildiz.edu.tr, 2 �sultan@yildiz.edu.tr
Corresponding author: Salih ÇELİK
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1. Introduction
Quantum groups were defined by Drinfeld [1] in the 1986s as certain non-commutative deformations of commutative Hopf
algebras. In 1988, Manin [2] defined quantum spaces as linear groups acting on these spaces, making quantum groups
still relevant today. A striking feature of the theory of quantum groups is its surprising relevance to many branches of
mathematics and physics. Quantum groups have connections with many mathematical fields such as Lie groups, Lie algebras
and representations, operator algebras, and noncommutative geometry [3]. From a physical point of view, quantum inverse
scattering technique is closely related to topics such as integrable model theory, elementary particle physics, quantum field
theories. Although there is no satisfactory general definition of a quantum group, they are commonly referred to as Hopf
algebras [4]. Some examples are standard deformations of envelope Hopf algebras of semisimple Lie algebras and corresponding
coordinate Hopf algebras of Lie groups [5].

From the point of view of mathematical physics, it is natural to study Z2-graded (super) versions of these structures [6].
For other grades (e.g. ZN) the problem is also mathematically interesting. In recent years, although not very many, Z3-graded
structures have been considered as an extension of Z2-grade structures and thus a new field of study in Mathematics and
Mathematical Physics has emerged. The first work on this subject was given in [7] on 1+1-space. The quantum group of 2x2
matrices of Z3-graded and its properties are introduced in [8].

Starting from the fact that, through the work of Woronowicz [9], one can define a consistent differential calculus on the
non-commutative space of a quantum group, two differential calculi covariant under the action of the quantum group GLq(n)
were developed by Wess and Zumino [10]. In the light of these two works, many authors have subsequently developed many
non-commutative differential calculi on Z2-graded spaces and groups (see for example, [11–17]), and also Z3-graded spaces
and groups [18–23].
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2. Z3-graded vector spaces
The theory of Z3-graded algebras starts with definition of the concept of Z3-graded vector space. A graded vector space is a
vector space that is a decomposition of a vector space into a direct sum of vector subspaces and has the extra structure of a
grading indexed by integers. Let us denote the set formed with the numbers 0, 1 and 2 by Z3.

Definition 1. A Z3-graded vector space over a field K is a vector space V together with a decomposition into a direct sum of
the form V =V0 ⊕V1 ⊕V2, where V0, V1 and V2 are three subspaces of V which are also vector spaces.

Each subspace Vi is called the i-grade part of V , and its elements are of grade i. The grade of an element v ∈V is denoted
by deg(v) and is equal to 0, 1 or 2. All elements of V are collectively said to be homogeneous.

Example 2. If V = C̃1|1|1, we express a vector v ∈ C̃1|1|1 as

v =

x
θ

ϕ

=

x
0
0

+

0
θ

0

+

0
0
ϕ

 ,

where deg(x) = 0, deg(θ) = 1, and deg(ϕ) = 2. Note that deg(v) = 0 (mod 3).

Example 3. We can express a vector v in a Z3-graded space C̃0|2|1 as

v =

θ1
θ2
ϕ

=

θ1
θ2
0

+

0
0
ϕ

 ,

where deg(θ1) = 1 = deg(θ2), and deg(ϕ) = 2. Note that deg(v) = 1 (mod 3).

Definition 4. A linear map f : U −→V of Z3-graded vector spaces is called a Z3-graded vector space homomorphism if it
preserves the grading of homogeneous elements, that is, it has the property f (Ui)⊆Vi+ j for all i ∈ Z3.

3. Z3-graded algebras
A graded algebra is a graded vector space with a multiplication defined on its elements.

Definition 5. An algebra A over K is called a Z3-graded algebra if it is a Z3-graded vector space over K, with a bilinear
map A ×A −→ A such that Ai ·A j ⊂ Ai+ j for i, j ∈ Z3.

Definition 6. (See, Example 2) Let K{x,θ ,ϕ} be a free associative algebra generated by x, θ , ϕ and Iq is a two-sided ideal
generated by xθ −θx, xϕ −qϕx, θϕ −q2ϕθ , θ 3 and ϕ3. The quantum space C̃1|1|1

q with the function algebra

O(C1|1|1
q ) =K{x,θ ,ϕ}/Iq

is called Z3-graded quantum space, where q is a cubic root of unity. In the Z3-graded algebra O(C̃1|1|1
q ), the generator x is of

degree zero, the generator θ is of degree 1 and the generator ϕ is of degree 2.

In accordance with Definition 6, we have [24]:

xθ = θx, xϕ = qϕx, θϕ = q2
ϕθ , θ

3 = 0 = ϕ
3. (1)

The associative algebra O(C̃1|1|1
q ) is q-commutative and known as the algebra of polynomials over the Z3-graded space, where

x, θ and ϕ are three coordinate functions. There is also a Z3-graded quantum group acting on the Z3-graded space C̃1|1|1
q . The

Z3-graded differential geometry of this space is studied in [24].

Example 7. It is easy seen that the map ρ : O(C̃1|1|1
q )→ M3(C) defined by

ρ(x) =

q 0 0
0 q 0
0 0 q2

 , ρ(θ) =

 0 0 0
q2 −q 0 0

0 0 0

 , ρ(ϕ) =

 0 0 0
0 0 0

1−q2 0 0
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is a representation of the Z3-graded algebra O(C̃1|1|1
q ), i.e. the matrices ρ(.) preserve the relation (1). There exists also a map

σ : O(C̃1|1|1
q )→ M3(O(C̃1|1|1

q )) is given by

σ(x) =

qx 0 0
0 qx 0
0 0 q2x

 , σ(θ) =

 qθ 0 0
(q2 −q)x qθ 0

0 0 q2θ

 , σ(ϕ) =

 qϕ 0 0
0 qϕ 0

(1−q2)x (q−1)θ q2ϕ

 .

The map σ is a Z3-graded C-linear homomorphism such that

σi j( f ·g) = ∑
k

qdeg( f )[deg(x j)−deg(xk)]σik( f ) ·σk j(g), ∀ f ,g ∈ O(C̃1|1|1
q ),

where x1 = x, x2 = θ , x3 = ϕ .

Definition 8. Let A be a Z3-graded algebra and the map L : A −→ A be a Z3-graded vector space homomorphism. If it
satisfies the Z3-graded Leibniz rule

L(ab) = L(a)b+qdeg(L)deg(a)aL(b), ∀a,b ∈ A ,

where q is a cubic root of unity, then L is called a Z3-graded derivation (see, Definition 26).

4. Modules of Z3-graded algebras
Since a general algebra do not need to have invertible elements, modules do not need always to have bases. In the Z3-graded
case, there is an extra requirement of compatible degree.

Definition 9. Let A be a Z3-graded algebra and M be a Z3-graded vector space. If there exists a mapping A ×M → M ,
(a,m) 7→ am such that

deg(am) = deg(a)+deg(m) and a(bm) = (ab)m

for all a,b ∈ A and all m ∈ M , then M is called a left Z3-graded A -module. If there exists a homogeneous basis
{e1, . . . ,ek,ek+1, . . . ,ek+l ,ek+l+1, . . . ,ek+l+n} for M , where e1, . . . ,ek are elements of M0, ek+1, . . . ,ek+l are elements of M1
and ek+l+1, . . . ,ek+l+n are elements of M2. So, every element m ∈ M can uniquely be expressed as

m =
k+l+n

∑
i=1

aiei, ai ∈ A .

For a Z3-graded algebra A , there is a difference between left and right A -modules. A left module can also be given the
structure of a right module by defining the map

V ×A −→V, (v,a) 7→ qdeg(v)deg(a)av.

The set of Z3-graded derivations of A is an important example of a Z3-graded A -module (see, Theorem 27).

5. Z3-graded Hopf algebras
The Z3-graded tensor product of two Z3-graded algebras A and B is a Z3-graded algebra A ⊗B with a product rule
determined in [25]:

Definition 10. If A and B are two Z3-graded algebras, then the product rule in the Z3-graded algebra A ⊗B is defined by

(a1 ⊗b1)(a2 ⊗b2) = qdeg(b1)deg(a2)a1a2 ⊗b1b2,

where ai’s and bi’s are homogeneous elements in the algebras A and B, respectively.

Definition 11. A Z3-graded Hopf algebra is a Z3-graded vector space A over K with three linear map ∆, ε and κ such that (∆⊗ id)◦∆ = (id⊗∆)◦∆,
m◦ (ε ⊗ id)◦∆ = id = m◦ (id⊗ ε)◦∆,
m◦ (κ ⊗ id)◦∆ = η ◦ ε = m◦ (id⊗κ)◦∆,

together with ∆(1) = 1⊗1, ε(1) = 1, κ(1) = 1, where m is the product map, id is the identity map and η : K−→ A .
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Remark 12. The coproduct ∆ is an algebra homomorphism from A to A ⊗A which is multiplied in the way given in
Definition 11 and the counit ε is an algebra homomorphism from A to K.

Remark 13. Any element of a Z3-graded Hopf algebra A is expressed as a product on the generators and its antipode
(coinverse) κ is calculated with the property

κ(ab) = qdeg(a)deg(b)
κ(b)κ(a), ∀a,b ∈ A

in terms of antipode of the generators, where q is a cubic root of unity.

We define the extended Z3-graded quantum space to be the algebra containing C̃1|1|1
q , the unit and the inverse of x, x−1,

which obeys xx−1 = 1 = x−1x. We will denote the unital extension of O(C̃1|1|1
q ) by F (C̃1|1|1

q ).

Theorem 14. The algebra F (C̃1|1|1
q ) is a Z3-graded Hopf algebra. The definitions of a coproduct, a counit and a coinverse on

the algebra F (C̃1|1|1
q ) are as follows:

i. The coproduct ∆ : F (C̃1|1|1
q )−→ F (C̃1|1|1

q )⊗F (C̃1|1|1
q ) is defined by

∆(x) = x⊗ x, ∆(θ) = θ ⊗ x+1⊗θ , ∆(ϕ) = ϕ ⊗1+ x⊗ϕ.

ii. The counit ε : F (C̃1|1|1
q )−→ C is given by

ε(x) = 1, ε(θ) = 0, ε(ϕ) = 0.

iii. If we extend the algebra F (C̃1|1|1
q ) by adding the inverse of x then the algebra O(C̃1|1|1

q ) admits a C-algebra antihomomorphism
(coinverse) κ : F (C̃1|1|1

q )−→ F (C̃1|1|1
q2 ) defined by

κ(x) = x−1, κ(θ) =−θx−1, κ(ϕ) =−q2
ϕx−1.

Proof. It is not difficult to verify the properties of the costructures given in Definition 11. As an example, let’s show that ∆ and
κ preserve the third relation given in (1). Since

∆(θϕ) = ∆(θ)∆(ϕ) = θϕ ⊗ x+θx⊗ xϕ +q2
ϕ ⊗θ + x⊗θϕ

= q2
ϕθ ⊗ x+qxθ ⊗ϕx+q2

ϕ ⊗θ +q2x⊗ϕθ

and

∆(ϕθ) = ϕθ ⊗ x+ϕ ⊗θ +q2xθ ⊗ϕx+ x⊗ϕθ ,

we have ∆(θϕ − q2ϕθ) = 0. Since κ(θϕ) = q2κ(ϕ)κ(θ) = qϕθx−2 and κ(ϕθ) = q2κ(θ)κ(ϕ) = θϕx−2, we have
κ(θϕ −q2ϕθ) = 0, as expected. ■

6. Z3-graded matrices

If A is a Z3-graded algebra, Z3-graded matrices with entries in A define even homomorphisms of free Z3-graded A -modules
in terms of particular bases.

Definition 15. An n×n matrix T over a Z3-graded algebra A is a Z3-graded matrix whose entries are elements of A and
which has the form T = T0 +T1 +T2, where T0, T1 and T2 are of grade 0, 1 and 2, respectively.

7. A new Z3-graded quantum group G̃Lq(1|1)

In this section, we introduce two Z3-graded quantum spaces and a new Z3-graded quantum group, denoted by G̃Lq(1|1).

34 Vol. 5, No. 2, Pages 31-40, 2023



Definition 16. [8, 21] Let O(C̃0|1|1
q ) := O(C̃1|1

q ) be the Z3-graded algebra with θ and ϕ obeying the relations

θϕ = q2
ϕθ , θ

3 = 0 = ϕ
3, (2)

where deg(θ) = 2, deg(ϕ) = 1, and q3 = 1. We call O(C̃1|1
q ) the Z3-graded function algebra of the Z3-graded quantum plane

C̃1|1
q .

Definition 17. Let Λ(C̃1|1
q ) be the Z3-graded algebra with y and η obeying the relations

yη = qηy, η
3 = 0, (3)

where deg(y) = 0, deg(η) = 2, and q3 = 1. We call Λ(C̃1|1
q ) the exterior algebra of the Z3-graded quantum plane C̃1|1

q .

Let a,β ,γ,d be the generators of a Z3-graded algebra, where the generators a and d are of grade 0, the generators β and γ are
of grade 1 and 2, respectively. We denote the polynomial algebra K[a,β ,γ,d] by O(M̃q(1|1)) and we write a point (a,β ,γ,d)

of O(M̃q(1|1)) as a Z3-graded matrix of the form T =

(
a β

γ d

)
. We write Θ′ = T Θ and Θ̂′ = T Θ̂, where Θ = (θ ,ϕ)t and

Θ̂ = (y,η)t . Then we have

Theorem 18. The generators of O(M̃q(1|1)) satisfy the following relations{
aβ = qβa, aγ = qγa, dβ = βd, dγ = qγd,
βγ = q2γβ , β 3 = 0 = γ3, ad = da+(q2 −1)βγ,

(4)

if and only if Θ′ and Θ̂′ satisfy the relations (2) and (3), respectively.

Remark 19. Strictly speaking, the demand that Θ′ and Θ̂′ satisfy relations (2) and (3), respectively, gives two commutation
relations aβ = k1βa for k1 ∈ {1,q} and dγ = k2γd for k2 ∈ {q,q2}. Here k1 = q = k2 is chosen. Also, although β 3 = 0 is not
obtained from the operations, it is chosen to be appropriate for the Z3-graded case.

A note that the relations obtained in Theorem 18 are quite different from the relations given in [8] and/or [21]. This is a
consequence of Definitions 16 and 17.

The Z3-graded quantum determinant of the matrix T is given by

Dq(T ) := Dq = ad −q2
βγ = da−βγ. (5)

Remark 20. The Z3-graded quantum determinant Dq is not central element of the Z3-graded algebra O(M̃q(1|1)) and it
satisfies the following commutation relations with the generators O(M̃q(1|1))

a ·Dq = Dq ·a, β ·Dq = q2Dq ·β , γ ·Dq = qDq · γ, d ·Dq = Dq ·d. (6)

The proofs of the following two theorems can be done similarly to the proofs given in [8].

Theorem 21. There exists a unique bialgebra structure on the algebra O(M̃q(1|1)) with the costructures

∆ : O(M̃q(1|1))−→ O(M̃q(1|1))⊗O(M̃q(1|1)), ∆(ti j) =
2

∑
k=1

tik ⊗ tk j,

ε : O(M̃q(1|1))−→ C, ε(ti j) = δi j

where t11 = a, t12 = β , t21 = γ , t22 = d. In addition, we have ∆(1) = 1⊗1 and ε(1) = 1.

Using the quantum determinant Dq, we can define a Z3-graded Hopf algebra by adding the inverse D−1
q to O(M̃q(2)). Let

O(G̃Lq(1|1)) be the quotient of the algebra O(M̃q(1|1)) by the two-sided ideal generated by the element tDq −1. For short we
write

O(G̃Lq(1|1)) := O(M̃q(2))[t]/⟨tDq −1⟩.

Then the algebra O(G̃Lq(1|1)) is again a bialgebra:

35 Vol. 5, No. 2, Pages 31-40, 2023



Theorem 22. The bialgebra O(G̃Lq(1|1)) is a Z3-graded Hopf algebra. The coinverse κ of O(G̃Lq(1|1)) is given by

κ(a) = d D−1
q , κ(β ) =−q2

β D−1
q , κ(γ) =−q2

γ D−1
q , κ(d) = aD−1

q .

In addition, we have κ(1) = 1.

Definition 23. The Z3-graded Hopf algebra O(G̃Lq(1|1)) is called the coordinate algebra of the Z3-graded quantum group
G̃Lq(1|1).

Remark 24. The cubes of the generators of the algebra O(G̃Lq(1|1)) are central elements of O(G̃Lq(1|1)).

The Z3-graded algebra O(C̃1|1
q ) is a (left) quantum space for the Z3-graded quantum group G̃Lq(1|1), where its action δL is

given by

δL(θ) = a⊗θ +β ⊗ϕ, δL(ϕ) = γ ⊗θ +b⊗ϕ. (7)

More precisely, δL has to be extended to an algebra homomorphism of O(C̃1|1
q ) into O(G̃Lq(1|1))⊗O(C̃1|1

q ).
The proof of the theorem given below can be done similarly to the proof given in [8].

Theorem 25. The algebra O(C̃1|1
q ) is a left comodule algebra of the bialgebra O(G̃Lq(1|1)) with left coaction δL given by (7).

8. Z3-graded de Rham Complexes of O(C̃1|1
q )

In this section, we will set up two noncommutative differential calculi, de Rham complexes, on the associative unital algebra
O(C̃1|1

q ) which are left-covariant with respect to the Z3-graded Hopf algebra O(G̃Lq(1|1)). A Z3-graded de Rham complex
on O(C̃1|1

q ) generated by two generators, their first and second order differentials and quadratic and cubic relations. So we
first need to find possible commutation relations between the generators θ , ϕ and their differentials for first order differential
calculus.

For information, let’s say that all the relations obtained in this section are completely different from the relations obtained
in [21].

8.1 Z3-graded first order differential calculi on O(C̃1|1
q )

Let us start with the definition of the Z3-graded first-order differential calculus on a Z3-graded algebra.

Definition 26. Let A be a Z3-graded associative algebra with unity and d : A −→ Ω1 is a linear mapping of degree one such
that

d( f ·g) = (d f ) ·g+qp( f ) f · (dg)

for all homogeneous element f ∈ A and all g ∈ A , where q is a primitive cubic root of unity. Then a pair (Ω1,d) is called a
Z3-graded differential calculus over A , where Ω1 = Lin{a ·db · c : a,b,c ∈ A }.

To obtain the commutation relations between the generators of the algebra O(C̃1|1
q ) and their first order differentials, we

consider the generators θ , ϕ together with dθ , dϕ , which we consider as elements of Ω1, a space of 1-forms. We allow the
first order differentials in Ω1 to be multiplied from the left and right by the generators of O(C̃1|1

q ), so that by definition of
multiplication the resulting 1-forms belong to Ω1. This means that Ω1 is an O(C̃1|1

q )-bimodule.

Theorem 27. There exist two Z3-graded first-order differential calculi Ω1(C̃1|1
q ) over the Z3-graded algebra O(C̃1|1

q ) which
are covariant with respect to the Z3-graded Hopf algebra O(G̃Lq(1|1)) such that {dθ ,dϕ} is the free F (G̃Lq(1|1))-module
base of Ω1(C̃1|1

q ). The bi-module structure of these calculi is determined by

{
θ ·dθ = Pdθ ·θ , θ ·dϕ =−q(q+P)dϕ ·θ +(1−qP)dθ ·ϕ,
ϕ ·dϕ = qPdϕ ·ϕ, ϕ ·dθ =−(q+P)dθ ·ϕ +(1−P)dϕ ·θ , (8)

where P ∈ {1,q2}.
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Proof. Let Ω1 be a free right module over O(C̃1|1
q ) spanned by the elements of the set {dθ ,dϕ}. In general the coordinates

will not commute with their differentials. Therefore, we assume that the possible commutation relations of the generators with
their first order differentials are of the form{

θ ·dθ = Pdθ ·θ , θ ·dϕ = A1 dϕ ·θ +A2 dθ ·ϕ,
ϕ ·dϕ = Qdϕ ·ϕ, ϕ ·dθ = A3 dθ ·ϕ +A4 dϕ ·θ , (9)

where constants P, Q and A j are possibly dependent on q. That is, let the left O(C̃1|1
q )-module structure on Ω1 be completely

defined by the above relations. We will perform the proof in three steps.

• Step 1. If we extend the operator δL given in (7) to the space Ω1, we can write

δL(dθ) = a⊗dθ +qβ ⊗dϕ, δL(dϕ) = q2
γ ⊗dθ +d ⊗dϕ. (10)

Now if we apply the operator δL to both sides of the equalities given in (9) and use the relations (4), we see that after
long operations, Q = qP, A3 = q(P−A2) and A4 = q(P−A1).

• Step 2. We now apply the differential operator d to both sides of θ 3 = 0 using the property of d in Definition 26. Then,
we can write

0 = d(θ 3) = dθ ·θ 2 +q2
θ ·d(θ 2) = dθ ·θ 2 +q2

θ · (dθ ·θ +q2
θ ·dθ) = (1+q2P+qP2)dθ ·θ 2.

Therefore 1+q2P+qP2 must be equal to zero so that the solution of this equation gives either P = 1 or P = q2.

• Step 3. Finally, when we apply the differential operator d from the left to both sides of the relation θ ·ϕ −q2ϕ ·θ = 0
and compare the resulting case with the relations (9), we get A1 =−q(q+P) and A2 = 1−qP.

■

Remark 28. Since the set {dθ ,dϕ} is homogeneous base of the space Ω1(C̃1|1
q ), a map σ : O(C̃1|1

q )→ M2(O(C̃1|1
q )) can be

defined by the formulas

f ·dθ j = qdeg( f )deg(dθ j)
2

∑
i=1

dθi ·σi j( f ), ∀ f ∈ O(C̃1|1
q ),

where θ1 = θ and θ2 = ϕ and

σ(θ) =

(
Pθ (q2 −P)ϕ
0 −(q+P)θ

)
, σ(ϕ) =

(
−(q+P)ϕ 0
(1−P)θ q2Pϕ

)
.

Theorem 29. The map σ is a Z3-graded C-linear homomorphism such that

σi j( f ·g) =
2

∑
k=1

qdeg( f )[deg(θk)−p(θ j)]σik( f ) ·σk j(g)

for all f ,g,θi ∈ O(C̃1|1
q ), and it preserves the relations (2) given in Definition 16.

8.2 High-order Z3-graded differential calculi on O(C̃1|1
q )

The appearance of higher-order differentials is a peculiar feature of the Z3-graded calculus. The second order differentials d2θ ,
d2ϕ are considered as elements of a space Ω2 of 2-forms, which is in fact also a bimodule.

Definition 30. Let A be a Z3-graded associative algebra with unity and Ω =
⊕

i∈Z3
Ωi(A ) be a Z-graded algebra with

Ω0(A ) = A . A pair (Ω,d) is called a Z3-graded differential calculus over A if d : Ω → Ω is a linear map of degree one
which satisfies

i. Z3-graded Leibniz rule of second order:

d2( f ·g) = d2 f ·g+(qdeg( f )+qdeg(d f ))d f ∧dg+q−deg( f ) f ·d2g

for all homogeneous f ∈ A and all g ∈ A , where q is a primitive cubic root of unity,
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ii. d3 = 0.

It follows from this definition that in order to arrive at a higher order differential calculus on O(C̃1|1
q ), we need to find the

commutation relations between the generators of O(C̃1|1
q ) and their second order differentials, as well as the commutation

relations between both the first order and second order differentials. If we take y and η in Definition 17 as the differentials of
the generators of O(C̃1|1

q ), i.e. dθ = y and dϕ = η , we can write the commutation relations between the first order differentials
of the generators of O(C̃1|1

q ) as

dθ ∧dϕ = qdϕ ∧dθ , dϕ ∧dϕ ∧dϕ = 0. (11)

Now we want to find the relations between the generators of the algebra O(C̃1|1
q ) and their second order differentials. But,

since d2 ̸= 0 we cannot obtain them by applying the operator d to the relations (8). However, we can consider that the relations
with the second order differentials of the generators of the algebra O(C̃1|1

q ) are of the form{
θ ·d2θ = P′ d2θ ·θ , θ ·d2ϕ = A′

1 d2ϕ ·θ +A′
2 d2θ ·ϕ,

ϕ ·d2ϕ = Q′ d2ϕ ·ϕ, ϕ ·d2θ = A′
3 d2θ ·ϕ +A′

4 d2ϕ ·θ , (12)

where constants P′, Q′ and A′
j are possibly dependent on q. To find the constants appearing in these relations, we compare the

results by applying the operator d twice to the relations (8) and once to the relations (12). In this case, we see that they are
P′ = q, A′

1 = q, A′
2 = q−q2, A′

3 = q, A′
4 = 0 and Q′ = 1. On the other hand, when we apply the operator d to relations (8), we

see that, for example,

θ ·d2
ϕ =−(1+qP)d2

ϕ ·θ +q(1−qP)d2
θ ·ϕ +q2(P−1)dϕ ∧dθ

such that relations are not homogeneous with respect to the generator and their second-order differentials. To make them
homogeneous, we compare such relations with relations (12) written in place of their respective constants. In this case, we see
the following dependencies emerge:{

dθ ∧dθ =−d2θ ·θ , dθ ∧dϕ = q(d2θ ·ϕ +d2ϕ ·θ),
dϕ ∧dθ = d2θ ·ϕ +d2ϕ ·θ , dϕ ∧dϕ =−qd2ϕ ·ϕ. (13)

These relations are obtained assuming P ̸= 1. However, it is very interesting that even if P = 1, all the relations (14)-(16)
given in the following theorem are still valid. Now we can collectively give all the relations in the following theorem:

Theorem 31. There exist two Z3-graded differential calculi Ω(C̃1|1
q ) over the Z3-graded algebra O(C̃1|1

q ) which are covariant
with respect to the Z3-graded Hopf algebra O(G̃Lq(1|1)) such that {dθ ,dϕ,d2θ ,d2ϕ} is the free F (G̃Lq(1|1))-module base
of Ω(C̃1|1

q ). The bi-module structure of these calculi is determined by:

i. The generators of O(C̃1|1
q ) with first order differentials satisfy the following commutation relations{

θ ·dθ = Pdθ ·θ , θ ·dϕ =−q(q+P)dϕ ·θ +(1−qP)dθ ·ϕ,
ϕ ·dϕ = qPdϕ ·ϕ, ϕ ·dθ =−(q+P)dθ ·ϕ +(1−P)dϕ ·θ ,

where P ∈ {1,q2}.

ii. The relations of the second order differentials with the generators of O(C̃1|1
q ) are of the form{

θ ·d2θ = qd2θ ·θ , θ ·d2ϕ = qd2ϕ ·θ +(q−q2)d2θ ·ϕ,
ϕ ·d2ϕ = d2ϕ ·ϕ, ϕ ·d2θ = qd2θ ·ϕ. (14)

iii. The relations between the first order differential are of the form

dθ ∧dϕ = qdϕ ∧dθ , dϕ ∧dϕ ∧dϕ = 0.

iv. The relations between the first order differential with the second order differentials are of the form{
dθ ∧d2θ = q2 d2θ ∧dθ , dθ ∧d2ϕ = qd2ϕ ∧dθ +(q2 −1)d2θ ∧dϕ,
dϕ ∧d2ϕ = d2ϕ ∧dϕ, dϕ ∧d2θ = q2 d2θ ∧dϕ.

(15)
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v. The relations between the second order differentials are of the form

d2
θ ∧d2

ϕ = d2
ϕ ∧d2

θ , d2
ϕ ∧d2

ϕ ∧d2
ϕ = 0. (16)

Remark 32. To check the covariance of relations (14)-(16), we extend the definition of δL to Ω(C̃1|1
q ). In this case we can write

δL(d2
θ) = a⊗d2

θ +q2
β ⊗d2

ϕ, δL(d2
ϕ) = qγ ⊗d2

θ +d ⊗d2
ϕ. (17)

Thus we have obtained all the relations and so we have completed the Rham complex of the Z3-graded algebra O(C̃1|1
q ).

9. Conclusions

In this paper, we define a Z3-graded quantum space, denoted by C̃1|1|1
q , and show that the algebra of functions on this space has

a Z3-graded Hopf algebra structure. We also define a new Z3-graded quantum plane, denoted by C̃1|1
q , obtain a new Z3-graded

quantum group of matrices acting on it, and construct two covariant differential calculi on O(C̃1|1
q ) with respect to this group.
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