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Abstract 
The aim of this paper is to investigate the existence of pseudo-solutions for a First- order multivalued 
differential equation with nonlocal integral boundary condition in a Banach space. 
 
Our approach is based on the use of the technique of measures of weak noncompactness and a fixed-
point theorem of Mönch type. 
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1. Introduction 

 
There are many problems in applied mathematics such as: control theory, economical systems, 
Hamiltonian system, that lead us to the study of differential inclusions 
 

∈ ,  
 
where	 . , . is a set valued map (see [3] and [11] for instance and references there in). 
 
The main purpose of this paper is to establish the existence of pseudo-solutions to the nonlocal 
boundary value problems of integral type 
 

∈ , ,							 ∈ 0, 																																																																																																		 1
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where : →  is a multivalued map,  is a Banach space with the norm ‖. ‖, 
 
	  is the family of all subsets of  and ∈ ⋆ 
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Nonlocal problems for ordinary differential equations (single valued  ) have been investigated 
by several authors (see for instance [12] and references therein), also classical initial values 
problems for multivaled differential equations have been considered by many authors (see [15]) 
and nonlocal differential inclusions have been studied by many authors (see for instance [9] and 
the references therein). 
 
Boundary value problems with integral boundary conditions constitute a very interesting and 
important class of problems. They include two, three, multi-point and nonlocal boundary value 
problems as special cases. Integral boundary conditions are often encountered in various 
applications, it is worthwhile mentioning the applications of those conditions in the study of 
population dynamics [8] and cellular systems [1]. Moreover, boundary value problems with 
integral boundary conditions have been studied by a number of authors such as Arara and 
Benchohra [2], Benchohra et al [5 ]- [7], Infante [14] and references therein. 
 
In our investigation, we apply the method associated with the technique of measures of weak 
noncompactness and fixed point theorem of Mönch type. 
 
The remainder of this paper is organized as follows. In section 2, we present some basic 
definitions and notations about pseudo-solutions and multivalued map. In section 3, we give 
main results for nonlocal boundary value problem for differential inclusions of integral type. 
 

2. Preliminaries 
 
In this section, we introduce notations, definitions and preliminary facts that used in the 
remainder of this paper. Let  be a real Banach space with the norm ‖. ‖ and dual space ⋆ , let 

; 	  be the Banach space of all continuous functions from  to  with the norm 
 

‖ ‖ ‖ ‖; 				0 , 
 
and let ; 	  denote the Banach space of functions : →  that are lebesgue integrable 
with norm 
 

‖ ‖ ‖ ‖  

 
let ,  to be the Banach space of bounded measurable functions : →  equipped with 
the norm 
 

‖ ‖ 0;		‖ ‖ ,			 . . ∈ . 
 
Also let 	  is the set of all nonempty subsets of . 
 

∈ ; 			 	 	 . 
 

∈ ; 			 	 	 . 
 

∈ ; 			 	 	 . 
 

, ∈ ; 			 	 	 	 	 . 
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, ∈ ; 			 	 	 	 	 . 
 
Definition 2.1: A set-valued function : →  is called convex, closed and compact valued 
respectively if 	  is convex, closed, compact respectively for all ∈ . 
 
Definition 2.2: A set-valued function : →  is called bounded valued on bounded sets 

 if ⋃ ∈  is bounded in  for all ∈  or equivalently;  
 

∈ | |; 		 ∈ ∞. 
 
Definition 2.3: A set-valued function : →  is called upper semicontinuous (u.s.c) on  
if for each ∈  the set 	  is nonempty closed subset of  and if for each open set  
containing , there exist an open neighborhood 	of  such that ⊆ . In other 
words,  is u.s.c if the set ∈ :		 ∈  is open in  for every open set  in 

. Or if every closed subset  of  the set ∈ :						 ∩ ∅  is closed in . 
 
Definition 2.4: A set-valued function : →  is called sequentially weakly upper semi-
continuous (w.u.s.c) if  is u.s.c with respect to the weak topology of . 
 
Definition 2.5: A set-valued function : →  is said to be measurable if for any ∈ , the 
function ↦ , | |:				 ∈  is measurable. Or for every closed set 
,  is measurable. 

 
Definition 2.6: . : → 	is called weakly continuous (measurable) at ∈  if for every ∈
⋆, .  is continuous (measurable) at . 

 
Definition 2.7: A family , ∈  is said to be weakly equicontinuous if given 

0, ∈ ⋆ there exists 0 such that for each , 	 ∈  if | |  then 
| |  for all ∈ . 
 
Definition 2.8: The function . : →  is said to be Pettis integrable on  if and only if there 

is an element ∈  corresponding to each ⊆  such that  for all ∈
⋆ where the integral in the right is assumed to exist in the sense of Lebesgue. By definition  

 

. 

 
We denote  the space of Pettis integrable functions on . 

∈ :			 ∈  denotes the set of Pettis selections functions of  , it is clear that 
 

⊃ , ∈ :		 ∈ . 
 
Definition 2.9: Let Ω  be the family of bounded subsets of  and  be the unit ball in . The 
De Blasi measure of weak noncompactness is the map 
 

:	Ω → 0, ∞  
defined by 
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0:					 	 	 	 	 	 	Ω	 	 	 	 	 ⊂ Ω  
 
Lemma 2.10: Let ,  be bounded subsets of  and ,  be bounded sequences in . 
Then: 
 
1- ⊆  then , 
 
2-   where 	 denotes the weak closure of , 
 
3-  0 if and only if  is weakly compact, 
 
4-  ∪ max	 , , 
 
5- , 
 
6- 	 , 
 
7- 	 , 
 
8- 	  where ∈ , 
 
9- 	 , 0. 
 
Proof. Proof  See [10] 
 
Proposition 1: Let  be a normed space and element 0. Then there exists ∈ ⋆ with  
 
‖ ‖ 1 and ‖ ‖. 
 
Proof. See [19] (Chapter IV, Corollary 2). 
 
Definition 2.11: A function . ∈ ,  is said to be weakly differentiable if .  is 
derivable for every ∈ ⋆. 
 
Definition 2.12: A function . ∈ ,  is said to be pseudo-differentiable on  to a function 
: →  if for every ∈ ⋆ there exists a null set ' (i.e. )=0) such that the real 

function ↦ ,  is differentiable on \ ' and  
 

, , ,				 ∈ \ , 

 

The function  is called a pseudo-derivative of  and it will denoted by .  or by . . 
 
In the other words , .  differentiable a.e. on .  
 
Definition 2.13:  A function . : →  is said to be a pseudo-solution of problem (1)-(2) if it 
satisfies the following conditions 
1- .  is absolutely continuous, 
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2- 	 0 , 
 
3- For each ∈ ⋆ there exists a null set  such that for each ∈ \ , 
 

 
 
Where ∈ , , ∈  and ′ denotes a pseudo-derivative. 
 
In other words by a pseudo-solution of the problem (1) - (2) we will understand an absolutely 

continuous function  .  such that	 0   and for each ∈ ⋆, .  
satisfies the following: 
 

,			 . .		 ∈  
 
where ∈ , , ∈ . 
 

Remark 2.14: If  is Pettis integrable and ,then .  is weakly differentiable 
 
and . 
 
If  . : →  is a function weakly differentiable on , then we have 
 

, , ,			 ∈  

 
for every ∈ ⋆. 
 
Definition 2.15: A function : → ,  has a weakly sequentially closed graph if for any 
sequence , ∈ , ∈  for ∈ 0,1,2,3, …  with ⇀  for each ∈  
and ⇀  for each ∈ , then ∈ , where ⇀ denote a weak convergence. 
 
Lemma 2.16: If .  is Pettis integrable and .  is a measurable and essentially bounded real 
valued function, then . . 	is Pettis integrable. 
 
Next, we shall use the following fundamental theorem 
 
Theorem 2.17: (Mönch fixed point theorem) Let  be a Banach space with  a nonempty, 
bounded, closed, convex, equicontinuous subset of , . 
 
Suppose : → ,  has a weakly sequentially closed graph. If the implication 
 

∪ 0 ⇒ 	 	 	 	 								 ∗  
 
holds for every subset  of , then the operator inclusion ∈  has a solution in . 
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3.  The main result 
 
In this section we give the state and the proof of our result.  
 
Firstly we have the following lemma 
 
Lemma 3.1: Let . ∈  be a given function, then the boundary value problem 
 

,							 ∈ 0, 											 3

0 																	 4
 

 
has a solution given by  
 

,  

 
where . , .  is the function defined by the formula: 
 

,

1
,																	0

1
,				

 

 
Proof: we can reduce the equation (3) to an equivalent integral equation 
 

0  

 
By integration we have (using Fubini’s integral theorem)  
 

0 0

0  

 
applying the boundary condition (4), we get: 
 

0  

 
this implies that 
 

0 0  
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hence  
 

0 0 0  

 
therefore  
 

0
1

 

 
hence 
 

1

1
1

1
1  

 
This implies that  
 

,  

 
which completes the proof.  
 

Remark 3.2: The function ↦ | , |  is continuous on , and hence is bounded, let  
 

| , | ; 			 ∈ . 

 
Now, we are in position to state and prove our existence result for the problem (1)-(2), firstly 
we need the following assumptions; 
 
a) The set-valued function : → ,  is measurable in the first variable and ↦

,  is sequentially weakly upper semicontinuous a.e. ∈ , 
 

b) There exist ∈ ,  and a continuous nondecreasing function :	 0, ∞ →
0, ∞  such that  

 
‖ , ‖ | |; 		 ∈ , 	 ‖ ‖ , 

 
c) There exists a constant 0 such that  

 

‖ ‖
1, 

 
d) For each bounded set ⊂  and each ∈ ,  
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, . 
 
Theorem 3.3: Assume that the assumptions a)-b) are satisfied. If  
 

‖ ‖ 1, 
 
then, the boundary value problem (1) - (2) has at least one solution. 
 
Proof: From the assumptions a)-b) we deduce that there exists a petties selection function 
: →  of  (i.e. ∈ , , ∀ ∈ . 

 
Now, we transform the problem (1) - (2) into fixed point problem by considering the 
multivalued operator : , → , ,  defined by 
 

∈ , ; 			 , , ∈ , 

 
Firstly, we show that the operator  makes sense, to see this, let ∈ , , by a)-b) there 
exists a pettis integrable function : →  such that ∈ ,  for a.e. ∈ . 
 
Since , . ∈ , then , . .  is pettis integrable and thus  is well defined. 
 
Let 0, and consider the set  
 

∈ , ;					‖ ‖ 		 	‖ ‖

‖ ‖ | , , | 		 	 , ∈ . 

 
Notice that  is a closed, convex, bounded and equicontinuous subset of , . We shall 
show that  satisfies the assumptions of Mönch fixed point theorem, to see this we have 
several steps. 
 
Step1:  is convex for each ∈ . 
 
Indeed, if  and  belong to , then there exists pettis integrable functions ,  where 

, ∈ ,  such that for all ∈  we have  
 

, ,					 1,2. 

 
Let 0 1, then, for each ∈ , we have  
 

1 , 1 , 

 
since  has convex values, 1 ∈ , , and we have 

1 ∈ . 
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Step 2:  maps  into . 
 
To see this, take ∈ , then there exists ∈  with ∈  and there exists a pettis 
integrable function : →  with ,  for a.e. ∈ , without loss of generality, we 
assume 0, ∀ ∈ , then there exists ∈ ⋆ with ‖ ‖ 1 and ‖ ‖, 
hence, for each fixed ∈ , we have  
 

‖ ‖ , | , | ‖ ‖ ‖ ‖  

therefore  
 

‖ ‖  
 
Now, suppose that ∈  and , ∈  with  so that 0, then, there 
exists ∈ ⋆ such that  
 

‖ ‖ , ,  

| , , |‖ ‖ 		 ‖ ‖ | , , |  

 
therefore, ∈ . 
 
Step 3:  has a weakly sequentially closed graph. 
 
Let , 	 be a sequence in  with ⇀  for each ∈ , ⇀  for 
each ∈ , and ∈  for ∈ 0,1,2, … . We shall show that ∈ . By the relation 

∈ ), we mean that there exists ∈  such that 
 

, , 

 
we must show that there exists ∈  such that for each ∈ , 
 

, , 

 
since  has compact values (so weakly compact), then, there exists a subsequence  such 
that  
 

⇀  as → 0 
 

and  
 

∈ , 			 . .				 ∈ , 
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we have also , .  has a weakly sequentially closed graph (because , .  is sequentially 
weakly upper semicontinuous), ∈ ,  the Lebesque Dominated convergence 
theorem for pettis integral then implies that for each ∈ ⋆ we have  
 

(t)) = , → ,  

 
. . , ⇀  

 
we can repeat this for each ∈ , so ∈ . 
 
Step 4: The implication ∗  holds. 
 
Let  be a subset of  such that ∪ 0 , clearly, ⊂ ∪ 0  
for all ∈ . Also ⊂ , for each ∈ , and is bounded in . By the properties 
of the measure , we have  
 

∪ 0  

, ; 		 ∈ , , ∈ , ∈  

| , |  

 
and therefore  
 

‖ ‖ 	 ‖ ‖  

 
where ‖ ‖ ,			 ∈ . 
 
This means that  
 

‖ ‖ 1 ‖ ‖ ̅ 0 
 
and hence ‖ ‖ 0, thus,  is weakly relatively compact. Applying Mönch fixed point 
theorem, we deduce that  has a fixed point that is a solution of the problem (1) - (2). 
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