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Abstract 
This paper deals with the usual Pell, Pell-Lucas and Modified Pell numbers and Toeplitz matrices. 
First, the Toeplitz matrices whose entries are the usual Pell, Pell-Lucas and Modified Pell numbers are 
constructed, and then the Frobenius, row and column norms of such matrices are computed. 
Furthermore, the upper and lower bounds for the spectral norms of these matrices are obtained. 
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1. Introduction 

 
In the literature, there exist a lot of integer sequences defined by a recurrence relation. 
Admittedly, the Fibonacci sequence is one of the most famous and curious integer sequences 
in mathematics and has been widely studied from both algebraic and combinatorial 
prospective. It is an inexhaustible source of many interesting identities. The monograph in 
[1,2] presents the fairly  extensive systematic investigation on the subject. 
 
The above-mentioned statements can be said for the Pell, Pell-Lucas and Modified Pell 
sequences, which is as important as the Fibonacci sequence. The Pell sequence are defined by 
the recursive equation: 
 
 1 22n n nP P P      

 
with initial terms 0 0P   and 1 1P  . Also, the Pell-Lucas and Modified Pell sequences are 

defined by the same recurrence but the initial conditions such as 0 1 2Q Q   and 0 1 1q q      

respectively. It should be noted that there exists an interrelation between the Pell-Lucas and 
Modified Pell sequences as follows [3]: 
 
 2n nQ q   
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Hence, the known properties of the Pell-Lucas numbers can easily be written for the Modified 
Pell numbers. Thus, a study of Modified Pell numbers involves inevitably familiarity with the 
Pell-Lucas numbers. The monograph in [4,5] provides many information about these 
sequences. The following identities can be found in [6-9]: 
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The Pell, Pell-Lucas and Modified Pell sequences can also be defined with negative 
subscripts. The terms with the negative subscripts can be obtained to extend these sequences 
to the left by employing the corresponding recurrence relation. Furthermore, 
 

   1
1

n

n nP P


   ,  1
n

n nQ Q    and  1
n

n nq q     

 
can be found in [6,7]. 
 

Let   0n n
t




 be a doubly infinite sequence. A Toeplitz matrix is an n n  matrix such that  

 

, : , 0,1, , 1n i j i jT t t i j n      . Clearly, the explicit form of this matrix is as follows: 
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The Frobenius norm and spectral norm of a matrix ij n n
A a


     is defined by; 
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2 1
max i

i n
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respectively, where the numbers i ’s are the eigenvalues of the matrix HA A , and HA  

denotes the conjugate of transpose of the matrix A . The matrix norms induced by the vector 
1-norm (the largest absolute column sum) and -norm (the largest absolute row sums) are as 
follows: 
 

 
1

max ij
j

i

A a   and max ij
i

j

A a

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The maximum column length norm  1 .c  and the maximum row length norm  1 .r  of an   

matrix of order n n  are defined as follows: 
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1 1
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Hence, the following inequality holds for any matrix [10,11]: 
 

    1 12

1
F

A A r B c C
n

     

 
where A  is equal to the Hadamard product of the matrices B  and C . 
 
In this study, the Toeplitz matrices involving the usual Pell, Pell-Lucas and Modified Pell 
numbers and their Frobenius, row and column norms are obtained. In addition, the lower and 
upper bounds of their spectral norms are presented. 
 

2. Main results 
 
In this section, the fundamental results are considered. To do this, first of all, the matrices 
 

 1 : , 0,1, , 1n ij i j n n
P i j n   

       ,  

 

 1 : , 0,1, , 1n ij i j n n
Q i j n   

       ,   

 
and 
 

 1 : , 0,1, , 1n ij i j n n
q i j n   

          

 
are defined. Note that the entries of the matrices consist of the Pell, Pell-Lucas and Modified 
Pell numbers. Throughout this paper, the symbol   is defined as follows: 
 

  2 1
n      
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Hence, the following theorem is given. 
 
Theorem 2.1 Let n  be an n n  matrix as in (13). Then, 
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and  
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Proof. Considering the matrix n  and by the definition of the Frobenius norm, from Eqs. (5-

6), the following equation can be written: 
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By Eq. (3), the second side of Eq. (17) can be obtained. On the other hand,  
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are directly written from Eq. (4). Thus, the proof is completed. 
 
Now the upper and lower bounds of spectral norm of the matrix n  are presented. 

 
Theorem 2.2 Let n  be an n n  matrix as in (13). Then, 
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Proof. By Theorem 1 and from Eq. (12), 
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is obtained. Also define two matrices such that 
, 1
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Considering Eq. (12), the desired result is readily obtained. 
 
Theorem 2.3 Let n  be an n n  matrix as in (14). Then, we have 
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Proof. By the definition of the Frobenius norm, 
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can be written, that is, which is desired. Furthermore, 
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Thus, the proof is completed. 
 
Theorem 2.4 Let n  be an n n  matrix as in (14). Then, 
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Proof. Considering Theorem 3 and from Eq. (12), 
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Considering Equation (12), the proof is readily completed. 
 

Recall that for two matrices ij n n
A a


     and ij ij n n

B b a


    , we can write 

 
 A B , 

 

where   is any matrix norm. Hence, from Eq. (2), the following corollary can be given by 

using Theorems 3. and 4. without the proof. 
 
Theorem 2.5 Let n  be an n n  matrix as in (15). Then, 
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iii.     2 2 1 2 12

1 1
2

2n n n nq q q
n

             

 
where / 2  . 
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