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Estimates of the norms of some cosine and sine series
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ABSTRACT. In the work, we estimate the L1 norms of some special cosine and sine series used in studying fractional
integrals.
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1. INTRODUCTION

Let L1 be the (class) of all 2π-periodic, Lebesgue integrable functions f on R such that

∥f∥1 =
1

2π

∫ π

−π

| f(x) | dx <∞.

For 0 < γ < 1, in this work, we study properties of the series

(1.1) φγ(x) =

∞∑
k=1

cos(kx)

kγ
and ψγ(x) =

∞∑
k=1

sin(kx)

kγ

in L1.
Cosine series of the form

(1.2) f(x) =

∞∑
n=1

µn cos(nx)

have been studied by several authors (see [1], [14], [12] and [11]). In particular, necessary and
sufficient conditions for the convergence in L1 of the partial sums of the series (1.2) are known
(see [7], [8] and [3] and the references therein).

Here we are interested in the series given in (1.1), because of their applications in studying
fractional integrals (see [5, p. 422] and [6], where the complex case was considered).

In this work, we look for estimates of the L1 norms of the functions in (1.1). We restrict the
analysis to the case 0 < γ < 1, because it follows from a result proved by Young in [13] (see also
[4]) that, for γ ≥ 1, 1+φγ(x) ≥ 0. Moreover there exists a number α0 such that, for 0 < γ < α0,
the series φγ(x) is not uniformly bounded below (see [9] or [14, p. 191]).

Here we proof that, if 0 < γ < 1, then

∥φγ∥1 ≤ 2− 1

2γ
and ∥ψγ∥1 ≤ 21+γ

(
1 +

1

γ

)
.
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2. NOTATIONS AND KNOWN RESULTS

Recall that, for 0 <| x |≤ π and n ∈ N, the Dirichlet kernel is given by

Dn(x) = 1 + 2

n∑
k=1

cos(kx) =
sin((2n+ 1)x/2)

sin(x/2)
, D0(x) = 1,

while the Fejér kernel is defined by

Fn(x) =
1

n+ 1

n∑
k=0

Dk(x) =
1

n+ 1

( sin((n+ 1)x/2)

sin(x/2)

)2

= 1 + 2

n∑
k=1

(
1− k

n+ 1

)
cos(kx)(2.3)

(see [5, p. 42-43]).
The associated conjugate Dirichlet kernel is defined by (see [5, p. 48] or [14, p. 49])

(2.4) D̃n(x) = 2

n∑
k=1

sin(kx) =
cos(x/2)− cos((2n+ 1)x/2)

sin(x/2)

and the conjugate Fejér kernel is given by (see [14, p. 91])

F̃n(x) =
1

n+ 1

n∑
k=0

D̃k(x) =
1

tan(x/2)
− 1

2(n+ 1)

sin((n+ 1)x)

sin2(x/2)
.

Recall that, for n ≥ 2 (see [10, p. 151]),

(2.5) ∥Dn∥1 ≤ 2 + lnn.

3. AUXILIARY RESULTS

As usually, for a given sequence {ck}, we denote ∆ck = ck − ck+1 and ∆2ck = ck − 2ck+1 +
ck+2.

The first identity in the next lemma is well known, but the second and third ones will help
us to simplify some computations.

Lemma 3.1. Let {ck}∞k=0 and {dk}∞k=0 be two numerical sequences. Set Ek =
k∑

j=0

dj . For each n ∈ N,

n > 1,
n∑

k=0

ckdk = cnEn +∆cn−1

n−1∑
k=0

Ek +

n−2∑
k=0

∆2ck

k∑
j=0

Ej ,

n−2∑
k=0

(k + 1)∆2ck = c0 − cn − n∆cn−1

and
n+m−2∑
k=n−1

(k + 1)∆2ck = cn − cn+m + n∆cn−1 − (n+m)∆cn+m−1.

Proof. The first identity is obtained by applying twice the Abel transform

(3.6)
n∑

k=0

ckdk = cn

n∑
k=0

dk +

n−1∑
k=0

(ck − ck+1)

k∑
j=0

dj .
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That is

co

n∑
k=0

ckdk = cnEn +

n−1∑
k=0

(ck − ck+1)Ek

= cnEn + (cn−1 − cn)

n−1∑
k=0

Ek +

n−2∑
k=0

(ck − 2ck+1 + ck+2)

k∑
j=0

Ej .

In particular, if

(3.7) dk =

 1, k = 0,

0, k ≥ 1,

one has Ek = 1 (k ≥ 0). Hence

c0 = cn + n(cn−1 − cn) +

n−2∑
k=0

(k + 1)(ck − 2ck+1 + ck+2)

and

0 =

n+m∑
k=0

ckdk −
n∑

k=0

ckdk = cn+m − cn + (n+m)∆cn+m−1

− n∆cn−1 +

n+m−2∑
k=n−1

(k + 1)∆2ck.

□

Lemma 3.2. If γ > 0 and ck = k−γ for k ∈ N, then

0 < ck − ck+1 <
γ

k1+γ
and 0 < ck − 2ck+1 + ck+2 <

γ(1 + γ)

k2+γ
.

Proof. Set fγ(x) = x−γ . If x ≥ 1, then

fγ(x)− fγ(x+ 1) = −
∫ x+1

x

f ′γ(y)dy =

∫ x+1

x

γ

y1+γ
dy <

γ

x1+γ

and

fγ(x)− 2fγ(x+ 1) + fγ(x+ 2) = γ

∫ x+1

x

(
f1+γ(y)− f1+γ(y + 1)

)
dy

= γ(1 + γ)

∫ x+1

x

∫ y+1

y

dz

z2+γ
dy <

γ(1 + γ)

x2+γ
.

□

Proposition 3.1. If 0 < γ < 1 and n ≥ 2, then

1

2π

∫ π

−π

∣∣∣ n∑
k=1

cos(kx)

kγ

∣∣∣dx ≤ 2− 1

2γ
+

1 + lnn

2nγ
.

Moreover, if m ∈ N, then

(3.8)
1

π

∫ π

−π

∣∣∣ n+m∑
k=n+1

cos(kx)

kγ

∣∣∣dx ≤ 1 + ln(n+m)

(n+m)γ
+

(3 + lnn)

nγ
+

2n

(n− 1)1+γ
.
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Proof. Set ak = 1/kγ for k ∈ N, a0 = 2− 1/2γ and

(3.9) Ln(x) = 2− 1

2γ
+ 2

n∑
k=1

cos(kx)

kγ
.

Notice that

a0 − 2a1 + a2 = 0

and ∆2ak ≥ 0 for k ≥ 0 (see Lemma 3.2).
Taking into account Lemma 3.1 (with d0 = 1 and dk = 2 cos(kx) for k ≥ 1) and the definition

of the Dirichlet and Fejér kernels, we obtain

Ln(x) = anDn(x) + ∆an−1

n−1∑
k=0

Dk(x) +

n−2∑
k=0

∆2ak

k∑
j=0

Dj(x)

= anDn(x) + n∆an−1Fn−1(x) +

n−2∑
k=0

(k + 1)∆2akFk(x).

Hence

2

n∑
k=1

cos(kx)

kγ
= −a0 + anDn(x) + n∆an−1Fn−1(x) +

n−2∑
k=0

(k + 1)∆2akFk(x).

Recall that (see (2.3)) Fk(x) ≥ 0 and

1

2π

∫ π

−π

Fk(x)dx = 1.

Taking into account (2.5) and Lemma 3.1, for n ≥ 2 and 0 < γ < 1, one has

2

2π

∫ π

−π

∣∣∣ n∑
k=1

cos(kx)

kγ

∣∣∣dx ≤ a0 + an(2 + lnn) + n∆an−1 +

n−2∑
k=0

(k + 1)∆2ak

= a0 + an(2 + lnn) + n∆an−1 + a0 − an − n∆an−1

= 2a0 + an(1 + lnn).

Moreover

Ln+m(x)− Ln(x) = an+mDn+m(x) + (n+m)∆an+m−1Fn+m−1(x)(3.10)

− anDn(x)− n∆an−1Fn−1(x) +

n+m−2∑
k=n−1

(k + 1)∆2akFk(x).
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Therefore

2

2π

∫ π

−π

∣∣∣ n+m∑
k=1

cos(kx)

kγ
−

n∑
k=1

cos(kx)

kγ

∣∣∣dx
=

1

2π

∫ π

−π

∣∣∣Ln+m(x)− Ln(x)
∣∣∣dx

≤an+m(2 + ln(n+m)) + (n+m)∆an+m−1 + an(2 + lnn) + n∆an−1

+

n+m−2∑
k=n−1

(k + 1)∆2ak

=an+m(2 + ln(n+m)) + (n+m)∆an+m−1 + an(2 + lnn) + n∆an−1

+an − an+m + n∆an−1 − (n+m)∆an+m−1

=an+m(1 + ln(n+m)) + an(3 + lnn) + 2n∆an−1

≤1 + ln(n+m)

(n+m)γ
+

(3 + lnn)

nγ
+

2n

(n− 1)1+γ
.

□

Remark 3.1. We know that (see [5, p. 50 and 43]), if 0 < δ < π and n ∈ N, then

sup
δ≤|x|≤π

| Dn(x) |≤
1

sin(δ/2)
and sup

δ≤|x|≤π

Fn(x) ≤
1

(n+ 1) sin2(δ/2)
.

Therefore, it follows from (3.10) that {Ln} is a Cauchy sequence in the uniform norm in [−π,−δ)∪(δ, π].
Hence {Ln} converges uniformly to a continuous function in this fixed interval. Since δ ∈ (0, π) is
arbitrary, it implies continuity in the open interval. In particular

φγ(x) = −a0
2

+
1

2

∞∑
k=0

(k + 1)∆2akFk(x).

We have not found good estimates for the L1 norm of the conjugate of the Dirichlet kernel
in the existing literature, that is the reason why we include the following lemma.

Lemma 3.3. For each n ∈ N, one has

1

2π

π∫
−π

∣∣∣D̃n(t)
∣∣∣ dt ≤ 2 + 2 lnn.

Proof. It is known that
2x

π
≤ sinx, 0 < x ≤ π/2,

and
| sin(nx) |
| sinx |

=
sin(nx)

sinx
≤ n, 0 < x ≤ π/(2n).

For instance, similar inequalities appeared in [10, p. 151]. Since the second one is less known,
we include a proof. Since the function cosx decreases in the interval (0, π/2], for 0 < x ≤
π/(2n), cos(nx) ≤ cosx. If g(x) = sin(nx)− n sinx, then g′(x) = n(cos(nx)− cosx) < 0. Hence
g(x) decreases in [0, π/(2n). But g(0) = 0. Therefore

0 ≤ sin(nx) ≤ n sin(x), 0 < x ≤ π/(2n).
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Since D̃n is an odd function, taking into account the trigonometric identity

cos a− cos b = 2 sin
(a+ b

2

)
sin

(b− a

2

)
,

one has

1

2π

π∫
−π

∣∣∣D̃n(t)
∣∣∣ dt = 1

π

π∫
0

∣∣∣D̃n(t)
∣∣∣ dt = 1

π

π∫
0

∣∣∣∣cos(t/2)− cos((2n+ 1)t/2)

sin(t/2)

∣∣∣∣ dt
=

2

π

π/2∫
0

∣∣∣∣cos(s)− cos((2n+ 1)s)

sin s

∣∣∣∣ ds = 4

π

π/2∫
0

∣∣∣∣ sin((n+ 1)s) sin(ns)

sin s

∣∣∣∣ ds
≤ 4

π

π/2∫
0

∣∣∣∣ sin(ns)sin s

∣∣∣∣ ds ≤ 4

π

π/(2n)∫
0

ndt+
4

π

π/2∫
π/(2n)

π

2t
dt

= 2 + 2
(
ln
π

2
− ln

π

2n

)
= 2 + 2 lnn.

□

Lemma 3.4. If 0 < γ < 1 and n > 3, then

1

2π

∫ π

−π

∣∣∣ n∑
k=1

sin(kx)

kγ

∣∣∣dx ≤ 21+γ
(
1 +

1

γ

)
+

(1 + lnn)

nγ
.

Moreover, if m ∈ N, then

1

2π

π∫
−π

∣∣∣∣∣
n+m∑

k=n+1

sin(kt)

kγ

∣∣∣∣∣ dt ≤ 1 + ln(n+m)

(n+m)γ
+ (2 + 21+γ)

1 + lnn

nγ
+

21+γ

γnγ
.

Proof. We use the notations of Lemma 3.1 by setting c0 = 0, d0 = 1, and ck = 1/kγ and
dk = dk(x) = 2 sin(kx), for k ≥ 1. With these notations

k∑
j=1

dj(x) = 1 + D̃k(x), k ≥ 1.

If we set

Mn(x) = 2

n∑
k=1

ck sin(kx) =

n∑
k=0

ckdk(x),
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it follows from (3.6) that

Mn(x) = cn

n∑
k=0

dk(x) +

n−1∑
k=0

(ck − ck+1)

k∑
j=0

dj(x)

= cn

(
1 + D̃n(x)

)
− c1 +

n−1∑
k=1

(ck − ck+1)
(
1 + D̃k(x)

)
= cn

(
1 + D̃n(x)

)
− c1 +

n−1∑
k=1

(ck − ck+1) +

n−1∑
k=1

(ck − ck+1)D̃k(x)

= cnD̃n(x) +

n−1∑
k=1

(ck − ck+1)D̃k(x).

Taking into account Lemmas 3.2 and 3.3, we obtain

1

2π

π∫
−π

|Mn(t)| dt ≤ 2cn(1 + lnn) + 2γ

n−1∑
k=1

(1 + ln k)

k1+γ
.

In order to estimate the sum in the previous inequality, we include some computations. By
integration by part, we obtain

γ

n−1∑
k=1

(1 + ln k)

k1+γ
≤ 21+γγ

n−1∑
k=1

(1 + ln k)

(k + 1)1+γ
≤ 21+γγ

n−1∑
k=1

∫ k+1

k

(1 + lnx)

x1+γ
dx

= 21+γγ

∫ n

1

(1 + lnx)

x1+γ
dx = 21+γ

(
1− 1 + lnn

nγ
+

∫ n

1

1

x1+γ
dx

)
= 21+γ

(
1− 1 + lnn

nγ
+

1

γ

(
1− 1

nγ

))
≤ 21+γ

(
1 +

1

γ

)
.

We conclude that

1

2π

π∫
−π

∣∣∣∣∣
n∑

k=1

sin(kt)

kγ

∣∣∣∣∣ dt = 1

2

1

2π

π∫
−π

|Mn(t) | dt ≤ cn(1 + lnn) + 21+γ
(
1 +

1

γ

)
.

Moreover,

2

2π

π∫
−π

∣∣∣∣∣
n+m∑
k=1

sin(kt)

kγ
−

n∑
k=1

sin(kt)

kγ

∣∣∣∣∣ dt
=

1

2π

π∫
−π

∣∣∣cn+mD̃n+m(x)− cnD̃n(x) +

n+m−1∑
k=n

(ck − ck+1)D̃k(x)
∣∣∣dx

≤2cn+m(1 + ln(n+m)) + 2cn(1 + lnn) + 2γ

n+m−1∑
k=n

(1 + ln k)

k1+γ

≤2cn+m(1 + ln(n+m)) + 2cn(1 + lnn) + 22+γ (1 + lnn)

nγ
+

22+γ

γnγ
.
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□

Remark 3.2. It is known that (see [14, p. 92])

F̃n(t) sign t ≥ 0, t ∈ (−π, π).

Hence F̃n(x) is not a positive operator and different Cesàro means of D̃n(x) share this properties. That
is the reason why we use D̃n(x) instead of F̃n(x).

4. MAIN RESULTS

Theorem 4.1. If 0 < γ < 1, then φγ , ψγ ∈ L1,

∥φγ∥1 ≤ 2− 1

2γ
and ∥ψγ∥1 ≤ 21+γ

(
1 +

1

γ

)
.

Proof. If a series converges to a function f ∈ L1, then the series is the Fourier series of f (see [5,
p. 51]).

If

Hn(x) =

n∑
k=1

cos(kx)

kγ
,

equation (3.8) can be rewriten as

1

π

∫ π

−π

∣∣∣Hn+m(x)−Hn(x))
∣∣∣dx ≤ 1 + ln(n+m)

(n+m)γ
+

(3 + lnn)

nγ
+

2n

(n− 1)1+γ
.

Hence {Hn} is a Cauchy sequence in L1. Therefore there exists a function F ∈ L1 such that
∥F−Hn∥1 → 0 as n→ ∞. But F (x) = φγ(x) a.e. . Since the series is continuous for 0 <| x |≤ π,
we have equality for x ̸= 0.

Taking into account Proposition 3.1 (see also [2, p. 50]) and (3.9) with Ln defined as in (3.9),
one has

1

2π

∫ π

−π

| φγ(t) | dt = lim
n→∞

1

2π

∫ π

−π

| Hn(t) | dt ≤ lim
n→∞

(
2− 1

2γ
+

1 + lnn

2nγ

)
= 2− 1

2γ
.

The assertions for ψγ follow analogously. □
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[8] J. W. Garrett, Č. V. Stanojević: On L1 convergence of certain cosine sums, Proc. Amer. Math. Soc., 54 (1976), 101–105.
[9] M. Izumi, Sh. Izumi: On some trigonometrical polynomials, Math. Scand., 21 (1967), 38–44.

[10] I. P. Natanson: Constructive Function Theory. Vol I, Frederick Ungar Publ., New York (1964).
[11] B. Szal: On L-convergence of trigonometric series, J. Math. Anal. Appl., 373(2) (2011), 449–463.



150 Jorge Bustamante

[12] Z. Tomovski: Convergence and integrability for some classes of trigonometric series, Dissertationes Math (Rozprawy
Mat.), 420 (2003), 65 pp.

[13] W. H. Young: On a certain series of Fourier, Proc. London Math. Soc., 11 (1913), 357–366.
[14] A. Zygmund: Trigonometric series, Third Edition, Vol I and II combined, Cambridge Mathematical Library (2002).

JORGE BUSTAMANTE

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

FACULTAD DE CIENCIAS FÍSICO-MATEMÁTICAS

PUEBLA, MÉXICO

ORCID: 0000-0003-2856-6738
Email address: jbusta@fcfm.buap.mx


	1. Introduction
	2. Notations and known results
	3. Auxiliary results
	4. Main results
	References

