

Research Article

Estimates of the norms of some cosine and sine series

JORGE BUSTAMANTE*

ABSTRACT. In the work, we estimate the \mathbb{L}^1 norms of some special cosine and sine series used in studying fractional integrals.

Keywords: Fourier series, Dirichlet kernel, cosine and sine sums.

2020 Mathematics Subject Classification: 42A10, 41A16.

1. INTRODUCTION

Let \mathbb{L}^1 be the (class) of all 2π -periodic, Lebesgue integrable functions f on \mathbb{R} such that

$$||f||_1 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)| \, dx < \infty.$$

For $0 < \gamma < 1$, in this work, we study properties of the series

(1.1)
$$\varphi_{\gamma}(x) = \sum_{k=1}^{\infty} \frac{\cos(kx)}{k^{\gamma}} \quad \text{and} \quad \psi_{\gamma}(x) = \sum_{k=1}^{\infty} \frac{\sin(kx)}{k^{\gamma}}$$

in \mathbb{L}^1 .

Cosine series of the form

(1.2)
$$f(x) = \sum_{n=1}^{\infty} \mu_n \cos(nx)$$

have been studied by several authors (see [1], [14], [12] and [11]). In particular, necessary and sufficient conditions for the convergence in \mathbb{L}^1 of the partial sums of the series (1.2) are known (see [7], [8] and [3] and the references therein).

Here we are interested in the series given in (1.1), because of their applications in studying fractional integrals (see [5, p. 422] and [6], where the complex case was considered).

In this work, we look for estimates of the \mathbb{L}^1 norms of the functions in (1.1). We restrict the analysis to the case $0 < \gamma < 1$, because it follows from a result proved by Young in [13] (see also [4]) that, for $\gamma \ge 1, 1 + \varphi_{\gamma}(x) \ge 0$. Moreover there exists a number α_0 such that, for $0 < \gamma < \alpha_0$, the series $\varphi_{\gamma}(x)$ is not uniformly bounded below (see [9] or [14, p. 191]).

Here we proof that, if $0 < \gamma < 1$, then

$$\|\varphi_{\gamma}\|_{1} \leq 2 - \frac{1}{2^{\gamma}}$$
 and $\|\psi_{\gamma}\|_{1} \leq 2^{1+\gamma} \left(1 + \frac{1}{\gamma}\right).$

Received: 25.03.2023; Accepted: 15.08.2023; Published Online: 18.08.2023

^{*}Corresponding author: Jorge Bustamante; jbusta@fcfm.buap.mx

DOI: 10.33205/cma.1345440

2. NOTATIONS AND KNOWN RESULTS

Recall that, for $0 < |x| \le \pi$ and $n \in \mathbb{N}$, the Dirichlet kernel is given by

$$D_n(x) = 1 + 2\sum_{k=1}^n \cos(kx) = \frac{\sin((2n+1)x/2)}{\sin(x/2)}, \quad D_0(x) = 1,$$

while the Fejér kernel is defined by

(2.3)

$$F_n(x) = \frac{1}{n+1} \sum_{k=0}^n D_k(x) = \frac{1}{n+1} \left(\frac{\sin((n+1)x/2)}{\sin(x/2)} \right)^2$$

$$= 1 + 2 \sum_{k=1}^n \left(1 - \frac{k}{n+1} \right) \cos(kx)$$

(see [5, p. 42-43]).

The associated conjugate Dirichlet kernel is defined by (see [5, p. 48] or [14, p. 49])

(2.4)
$$\widetilde{D}_n(x) = 2\sum_{k=1}^n \sin(kx) = \frac{\cos(x/2) - \cos((2n+1)x/2)}{\sin(x/2)}$$

and the conjugate Fejér kernel is given by (see [14, p. 91])

$$\widetilde{F}_n(x) = \frac{1}{n+1} \sum_{k=0}^n \widetilde{D}_k(x) = \frac{1}{\tan(x/2)} - \frac{1}{2(n+1)} \frac{\sin((n+1)x)}{\sin^2(x/2)}$$

Recall that, for $n \ge 2$ (see [10, p. 151]),

 $||D_n||_1 \le 2 + \ln n.$

3. AUXILIARY RESULTS

As usually, for a given sequence $\{c_k\}$, we denote $\Delta c_k = c_k - c_{k+1}$ and $\Delta^2 c_k = c_k - 2c_{k+1} + c_{k+2}$.

The first identity in the next lemma is well known, but the second and third ones will help us to simplify some computations.

Lemma 3.1. Let $\{c_k\}_{k=0}^{\infty}$ and $\{d_k\}_{k=0}^{\infty}$ be two numerical sequences. Set $E_k = \sum_{j=0}^k d_j$. For each $n \in \mathbb{N}$,

n > 1,

$$\sum_{k=0}^{n} c_k d_k = c_n E_n + \Delta c_{n-1} \sum_{k=0}^{n-1} E_k + \sum_{k=0}^{n-2} \Delta^2 c_k \sum_{j=0}^{k} E_j,$$
$$\sum_{k=0}^{n-2} (k+1) \Delta^2 c_k = c_0 - c_n - n \Delta c_{n-1}$$

and

$$\sum_{k=n-1}^{n+m-2} (k+1)\Delta^2 c_k = c_n - c_{n+m} + n\Delta c_{n-1} - (n+m)\Delta c_{n+m-1}.$$

Proof. The first identity is obtained by applying twice the Abel transform

(3.6)
$$\sum_{k=0}^{n} c_k d_k = c_n \sum_{k=0}^{n} d_k + \sum_{k=0}^{n-1} (c_k - c_{k+1}) \sum_{j=0}^{k} d_j.$$

That is

$$co\sum_{k=0}^{n} c_k d_k = c_n E_n + \sum_{k=0}^{n-1} (c_k - c_{k+1}) E_k$$
$$= c_n E_n + (c_{n-1} - c_n) \sum_{k=0}^{n-1} E_k + \sum_{k=0}^{n-2} (c_k - 2c_{k+1} + c_{k+2}) \sum_{j=0}^{k} E_j.$$

In particular, if

(3.7)
$$d_k = \begin{cases} 1, & k = 0, \\ 0, & k \ge 1, \end{cases}$$

one has $E_k = 1$ ($k \ge 0$). Hence

$$c_0 = c_n + n(c_{n-1} - c_n) + \sum_{k=0}^{n-2} (k+1)(c_k - 2c_{k+1} + c_{k+2})$$

and

$$0 = \sum_{k=0}^{n+m} c_k d_k - \sum_{k=0}^n c_k d_k = c_{n+m} - c_n + (n+m)\Delta c_{n+m-1} - n\Delta c_{n-1} + \sum_{k=n-1}^{n+m-2} (k+1)\Delta^2 c_k.$$

Lemma 3.2. If $\gamma > 0$ and $c_k = k^{-\gamma}$ for $k \in \mathbb{N}$, then

$$0 < c_k - c_{k+1} < \frac{\gamma}{k^{1+\gamma}}$$
 and $0 < c_k - 2c_{k+1} + c_{k+2} < \frac{\gamma(1+\gamma)}{k^{2+\gamma}}$.

Proof. Set $f_{\gamma}(x) = x^{-\gamma}$. If $x \ge 1$, then

$$f_{\gamma}(x) - f_{\gamma}(x+1) = -\int_{x}^{x+1} f_{\gamma}'(y) dy = \int_{x}^{x+1} \frac{\gamma}{y^{1+\gamma}} dy < \frac{\gamma}{x^{1+\gamma}}$$

and

$$\begin{aligned} f_{\gamma}(x) - 2f_{\gamma}(x+1) + f_{\gamma}(x+2) &= \gamma \int_{x}^{x+1} \left(f_{1+\gamma}(y) - f_{1+\gamma}(y+1) \right) dy \\ &= \gamma(1+\gamma) \int_{x}^{x+1} \int_{y}^{y+1} \frac{dz}{z^{2+\gamma}} dy < \frac{\gamma(1+\gamma)}{x^{2+\gamma}}. \end{aligned}$$

Proposition 3.1. If $0 < \gamma < 1$ and $n \ge 2$, then

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \Big| \sum_{k=1}^{n} \frac{\cos(kx)}{k^{\gamma}} \Big| dx \le 2 - \frac{1}{2^{\gamma}} + \frac{1 + \ln n}{2n^{\gamma}}.$$

Moreover, if $m \in \mathbb{N}$ *, then*

(3.8)
$$\frac{1}{\pi} \int_{-\pi}^{\pi} \Big| \sum_{k=n+1}^{n+m} \frac{\cos(kx)}{k^{\gamma}} \Big| dx \le \frac{1+\ln(n+m)}{(n+m)^{\gamma}} + \frac{(3+\ln n)}{n^{\gamma}} + \frac{2n}{(n-1)^{1+\gamma}}.$$

Proof. Set $a_k = 1/k^{\gamma}$ for $k \in \mathbb{N}$, $a_0 = 2 - 1/2^{\gamma}$ and

(3.9)
$$L_n(x) = 2 - \frac{1}{2^{\gamma}} + 2\sum_{k=1}^n \frac{\cos(kx)}{k^{\gamma}}.$$

Notice that

$$a_0 - 2a_1 + a_2 = 0$$

and $\Delta^2 a_k \ge 0$ for $k \ge 0$ (see Lemma 3.2).

Taking into account Lemma 3.1 (with $d_0 = 1$ and $d_k = 2\cos(kx)$ for $k \ge 1$) and the definition of the Dirichlet and Fejér kernels, we obtain

$$L_n(x) = a_n D_n(x) + \Delta a_{n-1} \sum_{k=0}^{n-1} D_k(x) + \sum_{k=0}^{n-2} \Delta^2 a_k \sum_{j=0}^k D_j(x)$$

= $a_n D_n(x) + n \Delta a_{n-1} F_{n-1}(x) + \sum_{k=0}^{n-2} (k+1) \Delta^2 a_k F_k(x).$

Hence

$$2\sum_{k=1}^{n} \frac{\cos(kx)}{k^{\gamma}} = -a_0 + a_n D_n(x) + n\Delta a_{n-1}F_{n-1}(x) + \sum_{k=0}^{n-2} (k+1)\Delta^2 a_k F_k(x).$$

Recall that (see (2.3)) $F_k(x) \ge 0$ and

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} F_k(x) dx = 1.$$

Taking into account (2.5) and Lemma 3.1, for $n \ge 2$ and $0 < \gamma < 1$, one has

$$\frac{2}{2\pi} \int_{-\pi}^{\pi} \Big| \sum_{k=1}^{n} \frac{\cos(kx)}{k^{\gamma}} \Big| dx \le a_0 + a_n(2 + \ln n) + n\Delta a_{n-1} + \sum_{k=0}^{n-2} (k+1)\Delta^2 a_k$$
$$= a_0 + a_n(2 + \ln n) + n\Delta a_{n-1} + a_0 - a_n - n\Delta a_{n-1}$$
$$= 2a_0 + a_n(1 + \ln n).$$

Moreover

(3.10)
$$L_{n+m}(x) - L_n(x) = a_{n+m}D_{n+m}(x) + (n+m)\Delta a_{n+m-1}F_{n+m-1}(x) - a_nD_n(x) - n\Delta a_{n-1}F_{n-1}(x) + \sum_{k=n-1}^{n+m-2} (k+1)\Delta^2 a_kF_k(x).$$

Therefore

$$\begin{aligned} \frac{2}{2\pi} \int_{-\pi}^{\pi} \Big| \sum_{k=1}^{n+m} \frac{\cos(kx)}{k^{\gamma}} - \sum_{k=1}^{n} \frac{\cos(kx)}{k^{\gamma}} \Big| dx \\ = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Big| L_{n+m}(x) - L_n(x) \Big| dx \\ \leq a_{n+m}(2 + \ln(n+m)) + (n+m)\Delta a_{n+m-1} + a_n(2 + \ln n) + n\Delta a_{n-1} \\ + \sum_{k=n-1}^{n+m-2} (k+1)\Delta^2 a_k \\ = a_{n+m}(2 + \ln(n+m)) + (n+m)\Delta a_{n+m-1} + a_n(2 + \ln n) + n\Delta a_{n-1} \\ + a_n - a_{n+m} + n\Delta a_{n-1} - (n+m)\Delta a_{n+m-1} \\ = a_{n+m}(1 + \ln(n+m)) + a_n(3 + \ln n) + 2n\Delta a_{n-1} \\ \leq \frac{1 + \ln(n+m)}{(n+m)^{\gamma}} + \frac{(3 + \ln n)}{n^{\gamma}} + \frac{2n}{(n-1)^{1+\gamma}}. \end{aligned}$$

Remark 3.1. We know that (see [5, p. 50 and 43]), if $0 < \delta < \pi$ and $n \in \mathbb{N}$, then

$$\sup_{\delta \le |x| \le \pi} |D_n(x)| \le \frac{1}{\sin(\delta/2)} \quad \text{and} \quad \sup_{\delta \le |x| \le \pi} F_n(x) \le \frac{1}{(n+1)\sin^2(\delta/2)}$$

Therefore, it follows from (3.10) that $\{L_n\}$ is a Cauchy sequence in the uniform norm in $[-\pi, -\delta) \cup (\delta, \pi]$. Hence $\{L_n\}$ converges uniformly to a continuous function in this fixed interval. Since $\delta \in (0, \pi)$ is arbitrary, it implies continuity in the open interval. In particular

$$\varphi_{\gamma}(x) = -\frac{a_0}{2} + \frac{1}{2} \sum_{k=0}^{\infty} (k+1) \Delta^2 a_k F_k(x).$$

We have not found good estimates for the \mathbb{L}^1 norm of the conjugate of the Dirichlet kernel in the existing literature, that is the reason why we include the following lemma.

Lemma 3.3. For each $n \in \mathbb{N}$, one has

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \widetilde{D}_n(t) \right| dt \le 2 + 2\ln n$$

Proof. It is known that

$$\frac{2x}{\pi} \le \sin x, \qquad 0 < x \le \pi/2,$$

and

$$\frac{|\sin(nx)|}{|\sin x|} = \frac{\sin(nx)}{\sin x} \le n, \qquad 0 < x \le \pi/(2n).$$

For instance, similar inequalities appeared in [10, p. 151]. Since the second one is less known, we include a proof. Since the function $\cos x$ decreases in the interval $(0, \pi/2]$, for $0 < x \le \pi/(2n)$, $\cos(nx) \le \cos x$. If $g(x) = \sin(nx) - n \sin x$, then $g'(x) = n(\cos(nx) - \cos x) < 0$. Hence g(x) decreases in $[0, \pi/(2n)$. But g(0) = 0. Therefore

$$0 \le \sin(nx) \le n\sin(x), \qquad 0 < x \le \pi/(2n).$$

Since \widetilde{D}_n is an odd function, taking into account the trigonometric identity

$$\cos a - \cos b = 2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{b-a}{2}\right),$$

one has

$$\begin{aligned} \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \widetilde{D}_n(t) \right| dt &= \frac{1}{\pi} \int_{0}^{\pi} \left| \widetilde{D}_n(t) \right| dt = \frac{1}{\pi} \int_{0}^{\pi} \left| \frac{\cos(t/2) - \cos((2n+1)t/2)}{\sin(t/2)} \right| dt \\ &= \frac{2}{\pi} \int_{0}^{\pi/2} \left| \frac{\cos(s) - \cos((2n+1)s)}{\sin s} \right| ds = \frac{4}{\pi} \int_{0}^{\pi/2} \left| \frac{\sin((n+1)s)\sin(ns)}{\sin s} \right| ds \\ &\leq \frac{4}{\pi} \int_{0}^{\pi/2} \left| \frac{\sin(ns)}{\sin s} \right| ds \leq \frac{4}{\pi} \int_{0}^{\pi/(2n)} ndt + \frac{4}{\pi} \int_{\pi/(2n)}^{\pi/2} \frac{\pi}{2t} dt \\ &= 2 + 2 \left(\ln \frac{\pi}{2} - \ln \frac{\pi}{2n} \right) = 2 + 2 \ln n. \end{aligned}$$

Lemma 3.4. *If* $0 < \gamma < 1$ *and* n > 3*, then*

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \Big| \sum_{k=1}^{n} \frac{\sin(kx)}{k^{\gamma}} \Big| dx \le 2^{1+\gamma} \Big(1 + \frac{1}{\gamma} \Big) + \frac{(1+\ln n)}{n^{\gamma}}.$$

Moreover, if $m \in \mathbb{N}$ *, then*

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \sum_{k=n+1}^{n+m} \frac{\sin(kt)}{k^{\gamma}} \right| dt \le \frac{1 + \ln(n+m)}{(n+m)^{\gamma}} + (2 + 2^{1+\gamma}) \frac{1 + \ln n}{n^{\gamma}} + \frac{2^{1+\gamma}}{\gamma n^{\gamma}}.$$

Proof. We use the notations of Lemma 3.1 by setting $c_0 = 0$, $d_0 = 1$, and $c_k = 1/k^{\gamma}$ and $d_k = d_k(x) = 2\sin(kx)$, for $k \ge 1$. With these notations

$$\sum_{j=1}^{k} d_j(x) = 1 + \widetilde{D}_k(x), \qquad k \ge 1.$$

If we set

$$M_n(x) = 2\sum_{k=1}^n c_k \sin(kx) = \sum_{k=0}^n c_k d_k(x),$$

it follows from (3.6) that

$$M_n(x) = c_n \sum_{k=0}^n d_k(x) + \sum_{k=0}^{n-1} (c_k - c_{k+1}) \sum_{j=0}^k d_j(x)$$

= $c_n \left(1 + \widetilde{D}_n(x) \right) - c_1 + \sum_{k=1}^{n-1} (c_k - c_{k+1}) \left(1 + \widetilde{D}_k(x) \right)$
= $c_n \left(1 + \widetilde{D}_n(x) \right) - c_1 + \sum_{k=1}^{n-1} (c_k - c_{k+1}) + \sum_{k=1}^{n-1} (c_k - c_{k+1}) \widetilde{D}_k(x)$
= $c_n \widetilde{D}_n(x) + \sum_{k=1}^{n-1} (c_k - c_{k+1}) \widetilde{D}_k(x).$

Taking into account Lemmas 3.2 and 3.3, we obtain

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |M_n(t)| \, dt \le 2c_n(1+\ln n) + 2\gamma \sum_{k=1}^{n-1} \frac{(1+\ln k)}{k^{1+\gamma}}.$$

In order to estimate the sum in the previous inequality, we include some computations. By integration by part, we obtain

$$\begin{split} \gamma \sum_{k=1}^{n-1} \frac{(1+\ln k)}{k^{1+\gamma}} &\leq 2^{1+\gamma} \gamma \sum_{k=1}^{n-1} \frac{(1+\ln k)}{(k+1)^{1+\gamma}} \leq 2^{1+\gamma} \gamma \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{(1+\ln x)}{x^{1+\gamma}} dx \\ &= 2^{1+\gamma} \gamma \int_{1}^{n} \frac{(1+\ln x)}{x^{1+\gamma}} dx = 2^{1+\gamma} \Big(1 - \frac{1+\ln n}{n^{\gamma}} + \int_{1}^{n} \frac{1}{x^{1+\gamma}} dx \Big) \\ &= 2^{1+\gamma} \Big(1 - \frac{1+\ln n}{n^{\gamma}} + \frac{1}{\gamma} \Big(1 - \frac{1}{n^{\gamma}} \Big) \Big) \leq 2^{1+\gamma} \Big(1 + \frac{1}{\gamma} \Big). \end{split}$$

We conclude that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \sum_{k=1}^{n} \frac{\sin(kt)}{k^{\gamma}} \right| dt = \frac{1}{2} \frac{1}{2\pi} \int_{-\pi}^{\pi} |M_n(t)| dt \le c_n (1+\ln n) + 2^{1+\gamma} \left(1+\frac{1}{\gamma}\right).$$

Moreover,

$$\begin{aligned} &\frac{2}{2\pi} \int_{-\pi}^{\pi} \left| \sum_{k=1}^{n+m} \frac{\sin(kt)}{k^{\gamma}} - \sum_{k=1}^{n} \frac{\sin(kt)}{k^{\gamma}} \right| dt \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| c_{n+m} \widetilde{D}_{n+m}(x) - c_{n} \widetilde{D}_{n}(x) + \sum_{k=n}^{n+m-1} (c_{k} - c_{k+1}) \widetilde{D}_{k}(x) \right| dx \\ &\leq 2c_{n+m} (1 + \ln(n+m)) + 2c_{n} (1 + \ln n) + 2\gamma \sum_{k=n}^{n+m-1} \frac{(1 + \ln k)}{k^{1+\gamma}} \\ &\leq 2c_{n+m} (1 + \ln(n+m)) + 2c_{n} (1 + \ln n) + 2^{2+\gamma} \frac{(1 + \ln n)}{n^{\gamma}} + \frac{2^{2+\gamma}}{\gamma n^{\gamma}}. \end{aligned}$$

Remark 3.2. It is known that (see [14, p. 92])

 $\widetilde{F}_n(t)$ sign $t \ge 0$, $t \in (-\pi, \pi)$.

Hence $\widetilde{F}_n(x)$ is not a positive operator and different Cesàro means of $\widetilde{D}_n(x)$ share this properties. That is the reason why we use $\widetilde{D}_n(x)$ instead of $\widetilde{F}_n(x)$.

4. MAIN RESULTS

Theorem 4.1. If $0 < \gamma < 1$, then $\varphi_{\gamma}, \psi_{\gamma} \in \mathbb{L}^{1}$,

$$\|\varphi_{\gamma}\|_{1} \leq 2 - \frac{1}{2^{\gamma}} \quad and \quad \|\psi_{\gamma}\|_{1} \leq 2^{1+\gamma} \left(1 + \frac{1}{\gamma}\right).$$

Proof. If a series converges to a function $f \in \mathbb{L}^1$, then the series is the Fourier series of f (see [5, p. 51]).

If

$$H_n(x) = \sum_{k=1}^n \frac{\cos(kx)}{k^{\gamma}},$$

equation (3.8) can be rewriten as

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \left| H_{n+m}(x) - H_n(x) \right| dx \le \frac{1 + \ln(n+m)}{(n+m)^{\gamma}} + \frac{(3+\ln n)}{n^{\gamma}} + \frac{2n}{(n-1)^{1+\gamma}} dx \le \frac{1 + \ln(n+m)}{(n+m)^{\gamma}} + \frac{1}{(n-1)^{1+\gamma}} dx \le \frac{1}{(n-1)^{1+$$

Hence $\{H_n\}$ is a Cauchy sequence in \mathbb{L}^1 . Therefore there exists a function $F \in \mathbb{L}^1$ such that $\|F - H_n\|_1 \to 0$ as $n \to \infty$. But $F(x) = \varphi_{\gamma}(x)$ a.e. . Since the series is continuous for $0 < |x| \le \pi$, we have equality for $x \neq 0$.

Taking into account Proposition 3.1 (see also [2, p. 50]) and (3.9) with L_n defined as in (3.9), one has

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |\varphi_{\gamma}(t)| dt = \lim_{n \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_n(t)| dt \le \lim_{n \to \infty} \left(2 - \frac{1}{2^{\gamma}} + \frac{1 + \ln n}{2n^{\gamma}}\right) = 2 - \frac{1}{2^{\gamma}}.$$

The assertions for ψ_{γ} follow analogously.

REFERENCES

- [1] N. K. Bari: Trigonometric Series, Moscow (in Russian, 1961).
- [2] R. G. Bartle: The Elements of Integration, John Wiley and Sons, Inc., New York-London-Sydney (1966).
- [3] A. S. Belov: On the unimprovability of some theorems on the convergence in the mean of trigonometric series, J. Math. Sci. (N.Y.), 250(3) (2020), 404–418.
- [4] G. Brown, K. Y. Wang and D. C. Wilson: Positivity of some basic cosine sums, Math. Proc. Cambridge Philos. Soc., 114(3) (1993), 383–391.
- [5] P. L. Butzer, R. J. Nessel: Fourier Analysis and Approximation, New York-Basel (1971).
- [6] P. L. Butzer, U. Westphal: An access to fractional differentiation via fractional difference quotients, Fractional Calculus and Its Applications, Lecture Notes in Mathematics, 457 (1975), 116–145.
- [7] J. W. Garrett, Č. V. Stanojević: Necessary and sufficient conditions for L¹ convergence of trigonometric series, Proc. Amer. Math. Soc., 60 (1976), 68–71.
- [8] J. W. Garrett, Č. V. Stanojević: On L¹ convergence of certain cosine sums, Proc. Amer. Math. Soc., 54 (1976), 101–105.
- [9] M. Izumi, Sh. Izumi: On some trigonometrical polynomials, Math. Scand., 21 (1967), 38-44.
- [10] I. P. Natanson: Constructive Function Theory. Vol I, Frederick Ungar Publ., New York (1964).
- [11] B. Szal: On L-convergence of trigonometric series, J. Math. Anal. Appl., 373(2) (2011), 449-463.

- [12] Z. Tomovski: Convergence and integrability for some classes of trigonometric series, Dissertationes Math (Rozprawy Mat.), 420 (2003), 65 pp.
- [13] W. H. Young: On a certain series of Fourier, Proc. London Math. Soc., 11 (1913), 357-366.
- [14] A. Zygmund: Trigonometric series, Third Edition, Vol I and II combined, Cambridge Mathematical Library (2002).

JORGE BUSTAMANTE BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS FÍSICO-MATEMÁTICAS PUEBLA, MÉXICO ORCID: 0000-0003-2856-6738 *Email address*: jbusta@fcfm.buap.mx