
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 5, No. 1, September 2017

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

30

Abstract— This paper presents one approach for parallel

algorithms representation. The proposed model is practice

oriented and its name is AMPA (Agenda Model for Parallel

Algorithms) due to basic blocks organization like a schedule. The

model uses classical Master/Slave paradigm. One parallel merge

sorting algorithm based on quick sort is presented with the

discussed AMPA model and also three known representation

approaches (description with natural language, pseudo code and

PRAM). A survey of professional opinion about AMPA and other

approaches is conducted. The results show that most of the

interviewed people choose AMPA as the best way to understand

the algorithm.

Index Terms— Master-slave, Merge sort, Parallel algorithms,

PRAM, Programming model, Pseudo code, Quicksort.

I. INTRODUCTION

URING THE LAST YEARS the parallel programming

becomes one of the most popular techniques in

application development. Development of processors

architectures (SoC and Multi-core architectures) leads to

significant advancement in software technologies. The

possibilities lot of us to have multi processors on a small chip

leads to the development of parallel applications which could

effectively use these hardware resources. The scientific

evolution also needs of computational resources and effective

parallel programs. The complexity of software also increases

and this is the reason that new usage models for program

design are wanted. Some new parallel programming models

for specific multi-thread architectures were designed to last

year’s [1,2,3]. They are useful for designing parallel

algorithms for specific architectures like NVidia GPU.

The main idea behind this research is to be proposed a

practice oriented high-level model for parallel algorithms

representation. The proposed model uses well known

Master/Slave paradigm.

A.BOSAKOVA-ARDENSKA is with Department of Computer Systems and

Technologies University of Food Technologies, Plovdiv, Bulgaria (e-mail:

a_bosakova@uft-plovdiv.bg)

Manuscript received June 5, 2016; accepted September 17, 2016.
DOI: 10.17694/bajece.292651

II. AGENDA MODEL FOR PARALLEL ALGORITHMS

(AMPA)

AMPA is a simple to practice oriented model for parallel

algorithm representation. The name is Agenda Model for

Parallel Algorithms due to its structure. According to this

model, there are 6 basic elements and traditional Master/Slave

code organization logic. The Master/Slave code organization

logic is a variant of SPMD (Single Program Multiple Data)

models which are successfully applied in parallel algorithms

developing [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. The

operations are located in their exact positions depends on

parallel execution. This organization is like a schedule and

that is the reason for the name Agenda in AMPA.

The AMPA defines two types of processes- Master and

Slave. Master is always one but Slaves are many. The model

consists of six graphical elements:

1) Process block (Master or Slave). If the algorithm

contains only Master process this is not a parallel algorithm;

2) Operation block – this block contains some operations:

calculations or data exchanging;

3) Vertical arrow – this is a line which presents execution’s

flow in one process;

4) Horizontal arrow – this is a line which presents

communications among processes;

5) Execution type block – this is block which groups other

blocks to point sequential or parallel execution part;

6) Parallel steps block – this block groups other blocks

whose parallel execution has to be repeated and it shows how

many times the execution will be repeated.

The blocks of Master and Slave processes are situated in

parallel lines. If two blocks of Master and Slave processes are

at the same level, this means that these operations could be

executed simultaneously. I.e. the position of every block

shows when the block could be executed. Figure 1 shows an

example of the parallel algorithm presented with AMPA.

Execution type blocks and Parallel steps block are drawn

with dashed line. The AMPA model could be applied for

multi-thread application. In this case:

- the Master process is “Process” but “Slave” processes are

implemented as threads;

- horizontal arrows will be replaced with “read/write global

data” (i.e. threads will work with data of its own process).

One Approach for Parallel Algorithms

Representation

A. Bosakova-Ardenska

D

http://www.bajece.com/
mailto:a_bosakova@uft-plovdiv.bg

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 5, No. 1, September 2017

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

31

Fig.1. Sample algorithm presented with AMPA

III. APPLICATION OF AMPA

Parallel merge sort uses a “divide and conquers” approach

and data distribution maps into a binary tree [6]. Data are

divided into sub-lists and the process continues while lists

reach size one. The proposed model is used for the

representation of one modification of parallel merge sort

algorithm. This modification uses quicksort algorithm [17] to

sort sub-lists. The number of sub-lists is equal to the number

of parallel processes (processors). The sub-lists are the same

size. After their sorting with quicksort sub-lists are merged.

The next figures (fig. 2, fig. 3, fig. 4 and fig. 5) present this

algorithm using respectively a description of the natural

language, pseudo code, PRAM model [18] and proposed

AMPA model.

Fig.2. Parallel merge sort – described by natural language

Fig.3. Parallel merge sort – described by pseudo code

Fig.4. Parallel merge sort – described by PRAM

Fig.5. Parallel merge sort – AMPA described

P
ar

al
le

l
ex

ec
u

ti
o

n

log2P – parallel steps

(P- parallel

processes)

Sequential execution

Sequential execution

Start

Master

Start

Slave

Read data

from file

Send to

slave

Receive

sub-list

Sort 1 sub-

list

Sort 1 sub-

list

Merge

sorted

sub-lists

Merge

sorted

sub-lists

End

process

Write

sorted data

in file

sub-list

sorted

sub-list

Sequential execution

P
a

ra
ll

el
 e

x
ec

u
ti

o
n

K – parallel steps

(K- depends of

number of

 processes)

Start

Slave

Receive

initial

data

Process

initial

data

Send\Receive

data

Work with

data

Send

processed

data

End

Process

Write

data

Sequential execution

Start

Master

Read

some data

Send to

slave

Process

initial

data

Send\Receive

data

Work with

data

Receive

processed

data

data

initial

data

processed

data

The numbers that need to be sorted are distributed

equally to the parallel processes (processors). Each

process sorts its part of the numbers using the

quicksort algorithm. Finally, the sorted parts are

merged.

for i=1 to M-1 do in parallel

 myarr <= P0 (arr[i*n/m])

qsort(myarr)

 merge (myarr => P0 (arr[i*n/m]))

end parallel

begin

 global read(arr[i*n/m], myarr);

 qsort(myarr);

 merge (global write(myarr, arr[i*n/m]))

end

http://www.bajece.com/

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 5, No. 1, September 2017

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

32

The variables and operations which are used in fig. 3 and

fig. 4 are:

M – number of parallel processes (processors);

N – size of the array for sorting (count of all numbers);

arr – array for sorting;

myarr – local array for sub-list;

global read() – operation for global memory reading;

global write() – operation for global memory writing;

=> and <= - operations for data reading/writing.

The main assumption for pseudo code description is that

unsorted array belongs to process (processor) P0. The main

assumption for PRAM description is that unsorted array is

allocated into global memory.

The number of merge operations is equal to log2P, where P

is a number of parallel processes, i.e. the number of sub-lists.

This means that after first merge operation the number of

processors which execute merge operation will decrease twice.

For example:

P = 8, number of parallel merge operations = 3

1 parallel merge operation: 4 processes will receive sorted

sub-lists of other 4 processes and will execute merge

operation;

2 parallel merge operation: 2 processes will receive sorted

sub-lists of other 2 processes and will execute merge

operation;

3 parallel merge operation: 1 process will receive sorted

sub-lists of other process and will execute merge operation.

After this step, a final sorted list will be reached.

IV. RESULTS

Discussed parallel sorting algorithm and its four

representations are used for the short survey of opinion

among:

- students which study course Supercomputers, part of

Computer Systems and Technologies speciality at University

of Food Technologies, Plovdiv (Bulgaria);

Centre for Supercomputing Applications) in assistance with

- participants of training school “Practical Programming

Models and Skills on INTEL Xeon Phi for Scientific Research

Engineers”. This course was organized by NCSA (National

Science and Technology Facilities Council (STFC) and

Bayncore (U.K.).

More than fourteen people were included in the survey. The

questions listed in current survey are:

1) Which of the four representations of the parallel

algorithm helps you best to understand its idea?

(a) Description with natural language

(b) pseudo code

(c) PRAM

(d) AMPA

2) Which of the models for presentation of the parallel

algorithm would you use if you need to implement it? Why?

The figures six and seven present results of the survey.

Some of the answers to question “Why?” of question 2

(Which of the models for presentation of the parallel algorithm

would you use if you need to implement it? Why?) are

presented in table 1.

Fig.6 Results for question 1 of conducted survey

Preferred model for implementation Reasons

natural language This representation tells me just what needs to be done.

pseudo code

This representation is most understandable for me.

This representation is “universal” code and could be used as a basic for a

parallel program.

This representation is shortest and clearly described.

PRAM

The source code in this representation could be used for the skeleton of a

program.

This representation is short.

AMPA

This representation is the best for idea understanding.

The detailed description of the parallel algorithm is suitable for its precise

implementation.

This model gives a good visual idea and thus it will decrease the count of the

logical errors in implementation.

28%

19%
6%

47%

Which of the four ways to represent parallel
algorithm helps you best to understand its idea?

natural language

pseudo code

PRAM

AMPA

http://www.bajece.com/

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 5, No. 1, September 2017

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

33

Fig.7. Results for question 2 of conducted survey

V. CONCLUSIONS AND FUTURE WORK

A novel approach for parallel algorithms representation

with graphical elements is presented in this paper. One parallel

merge sort algorithm is described using natural language,

pseudo code, PRAM and AMPA. These four presentations

were evaluated by students and participants of professional

course for parallel programming. The results show that:

- Preferred model is AMPA because it gives is good visual

idea about algorithm (47% of interviewed people choose

AMPA as the best way to understand the algorithm);

- When the algorithm has to be implemented the AMPA and

pseudo code models are most preferred (44%- AMPA and

26%- pseudo code).

In the future, the research will continue with developing a

software tool for AMPA modelling. This tool will facilitate

the use of the model.

ACKNOWLEDGMENT

The author would like to thanks to NCSA and Prof. Stoyan

Markov for their assistance in the survey of opinions about the

proposed model.

REFERENCES

[1] Kirtzic J. S., O. Daescu, A parallel algorithm development model for the

GPU architecture, Proc. of International Conference on Parallel and

Distributed Processing Techniques and Applications (PDPTA), 2012

[2] Valiant L., A bridging model for multi-core computing, Journal of

Computer and System Sciences, vol. 77, no. 1, pp. 154–166, 2011.

[3] Luebke D., CUDA: Scalable parallel programming for high-performance

scientific computing, 5th IEEE International Symposium on Biomedical

Imaging: From Nano to Macro, Paris, pp. 836-838, 2008

[4] Yukiya Aoyama, Jun Nakano, “RS/6000 SP: Practical MPI

Programming”, International Technical Support Organization, IBM,

1999

[5] Seyed H. Roosta, Parallel Processing and Parallel Algorithms: theory

and computation, Springer, ISBN 0-387-98716-9, 2000

[6] Wilkinson B. and Allen M., Sorting Algorithms, Parallel Programming:

Techniques and Applications Using Networked Workstations and

Parallel Computers, Prentice-Hall, 1999

[7] Sahni S. and G. Vairaktarakis, The master-slave paradigm in parallel

computer and industrial settings, Journal of Global Optimization, 9, pp.

357–377, 1996

[8] Baldo L., L. Brenner, L. G. Fernandes, P. Fernandes, A. Sales,

Performance Models For Master/Slave Parallel Programs, Electronic

Notes in Theoretical Computer Science, 2004

[9] Mostaghim S., J. Branke, A. Lewis, H. Schmeck, Parallel Multi-

objective Optimization using Master-Slave Model on Heterogeneous

Resources, Proceedings of the IEEE Congress on Evolutionary

Computation, 2008

[10] Cazenave T., Nicolas Jouandeau, A Parallel Monte-Carlo Tree Search

Algorithm, Computers and Games, 2008

[11] Shuping LIU, Yanliu CHENG, The Design and Implementation of MPI

Master-Slave Parallel Genetic Algorithm, International Conference on

Education Technology and Computer (ICETC2012), 2012

[12] Depolli M., R. Trobec, B. Filipiˇc, Asynchronous Master-Slave

Parallelization of Differential Evolution for Multiobjective

Optimization, Evolutionary Computation 21 (2), pp. 261–291, 2013

[13] Krichene H., M. Baklouti, Jean-Luc Dekeyser, Ph. Marquet, M. Abid,

Master-Slave Control structure for massively parallel System on Chip,

DSD SEAA - 16th Euromicro Conference on Digital System Design, Sep

2013, Santander, Spain. 2013

[14] Scrucca L., On some extensions to GA package: Hybrid optimisation,

parallelisation and islands evolution, The R Journal 9(1), pp.187-206,

2017

[15] Jiaxing Qu, Guoyin Zhang, Zhou Fang, Jiahui Liu, A Parallel Algorithm

of String Matching Based on Message Passing Interface for Multicore

Processors, International Journal of Hybrid Information Technology,

Vol.9, No.3, pp. 31-38, 2016

[16] Jiahui Liu, Dahua Song, Yiqiu Xu, A Parallel Encryption Algorithm for

Dual-core Processor Based on Chaotic Map, Proceedings of SPIE - The

International Society for Optical Engineering SPIE Proceedings, 2012

[17] Hoare C.A.R., Quicksort, The Computer Journal, vol. 5, pp 10-16, 1962

[18] JaJa Joseph, An Introduction to Parallel Algorithms, Addison-Wesley

publishing company, 1992

BIOGRAPHIES

ATANASKA D. BOSAKOVA-ARDENSKA
was born in 1980. She received the M.Sc. degree

of Computer Systems and Technologies at

Technical University of Sofia, Plovdiv branch

2004. She receives Ph.D. in 2009 with thesis

“Parallel information processing in image

processing systems”. From 2010 she is assistant in

the department of Computer Systems and

Technologies in University of Food Technologies.

From 2014 she is associated professor by

“Synthesis and Analysis of Algorithms” in

Department of Computer Systems and

Technologies in the University of Food Technologies in Plovdiv, Bulgaria.

She is a member of USB (The Union of Scientist in Bulgaria) and head of

Club of Young Scientists in Plovdiv (USB – Plovdiv in Bulgaria). Her

research interests include: parallel algorithms, sorting algorithms, image

processing, MPI (Message Passing Interface), C/C++ programming.

9%

26%

21%

44%

Which of the models for presentation of parallel
algorithm would you use if you need to implement it?

natural language

pseudo code

PRAM

AMPA

http://www.bajece.com/

