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Highlights 

 

• Classification results with different deep-learning models of ischemic stroke, hemorrhagic stroke, and 

normal computed tomography images are presented. 

• Pre-trained deep learning networks have been adjusted for fine-tuning and transfer learning. 

• The results have been compared with performance evaluation metrics. 

• The result of the study gave promising results in the classification of stroke types and normal images 

in computed tomography images. 
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ABSTRACT: A stroke is a case of damage to a brain area due to a sudden decrease or complete cessation 

of blood flow to the brain. The interruption or reduction of the transportation of oxygen and nutrients 

through the bloodstream causes damage to brain tissues. Thus, motor or sensory impairments occur in 

the body part controlled by the affected area of the brain. There are primarily two main types of strokes: 

ischemic and hemorrhagic. When a patient is suspected of having a stroke, a computed tomography 

scan is performed to identify any tissue damage and facilitate prompt intervention quickly. Early 

intervention can prevent the patient from being permanently disabled throughout their lifetime. This 

study classified ischemic, hemorrhage, and normal computed tomography images taken from 

international databases as open source with AlexNet, ResNet50, GoogleNet, InceptionV3, ShuffleNet, 

and SqueezeNet deep learning models using transfer learning approach. The data were divided into 80% 

training and 20% testing, and evaluation metrics were calculated by five-fold cross-validation. The best 

performance results for the three-class output were obtained with AlexNet as 0.9086±0.02 precision, 

0.9097±0.02 sensitivity, 0.9091±0.02 F1 score, 0.9089±0.02 accuracy. The average area under curve values 

was obtained with AlexNet 0.9920±0.005 for ischemia, 0.9828±0.008 for hemorrhage, and 0.9686±0.012 for 

normal. 
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1. INTRODUCTION 

Stroke, the most common cause of disability in the world, is also the third leading cause of death. 

Stroke, a disease that affects the brain vessels, accounts for more than half of the neurological disorders 

that require hospitalization. The majority of strokes are of ischemic origin (85%-87%), while the 

remainder are hemorrhagic strokes (15%-13%). It has been reported that more than 795,000 people have 

a stroke each year in the United States. In Turkey, cerebrovascular diseases include ischemic strokes 

with a rate of 72% and hemorrhagic strokes with a rate of 28%. When this disease occurs in different 

parts of the brain, it causes paralysis in different body parts, which increases the loss of labor and the 

cost of care. Rapid intervention at the time of stroke is critical in reducing the level of disability as well 

as prolonging the patient's life expectancy. Therefore, when the disease is diagnosed and the stroke site 

is quickly identified, the patient's quality of life will improve significantly. Computed tomography (CT) 

and magnetic resonance (MR) imaging methods are of great importance for the clinical diagnosis of 

stroke. In the diagnosis of stroke, CT and MR images are interpreted by a specialist radiologist. Because 

CT images can be obtained more quickly than MR images, they are primarily preferred for early 

diagnosis. Depending on the test results, the hemorrhage protocol is applied if the bleeding is caused. If 

the cause is ischemia, the thrombolytic protocol is activated. However, in cases of ischemic stroke, it is 

important to intervene within the first 3 hours after the onset of symptoms. The new findings show that 

this time could be extended to 4.5 hours. The rapid diagnosis process helps to save brain tissues with 

minimal damage with early intervention [1-3].  

Medical image analyses are performed by specialist radiologists in hospitals. In radiological image 
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analysis, difficulties such as the necessity of intervention in a short time, problems in accessing 

specialists who need to interpret images, limitations of facilities in hospitals in small regions, and 

shortages in the number of radiologists can be encountered. Considering all the disadvantages 

mentioned, to overcome these shortcomings, the number of studies on image processing and artificial 

intelligence-based radiological image analysis has been increasing recently and continues to be a hot 

topic in the literature [4, 5]. Deep learning models have recently been used frequently in the literature for 

the classification, segmentation, and object detection of medical images [5-7]. In medical studies, where 

classical machine-learning methods were used for a period, deep-learning models began to be used over 

time. In classical machine learning methods, features are extracted and classification is performed on the 

image with different methods. However, there are many different feature extraction methods for this 

process. Since not every feature is important for classification, then the appropriate feature selection 

method should be used. Many feature selections can be used for this process as well. There are many 

feature extraction, feature selection, and machine learning algorithms in this process for the classification 

application of medical images. Hence, numerous trials are required to determine the most suitable 

methodology to be applied In deep learning models, the features on medical images are selected by 

extracting them along the layers. Therefore, less costly and higher accuracy results can be obtained 

compared to classical machine learning methods [8]. In the future, it is anticipated that analyzing images 

on high-speed computers, by pre-processing them and offering doctors preliminary information about 

the diseases in the images, will become a standard technology in the field of medicine [9]. It may not be 

predicted whether the cause of stroke is ischemia or hemorrhage in the patient who comes to the 

emergency room. Because of this, deep learning-based clinical decision support systems can be used as 

auxiliary tools for the identification of stroke types. In the literature, some studies classify stroke using 

deep learning algorithms on CT images. However, many of these studies are focused on classifying 

either ischemic or hemorrhagic strokes [9-28]. Fewer studies simultaneously classify normal, ischemic, 

and hemorrhagic stroke images [9, 12, 14, 23].  In this study, ischemia, hemorrhage, and normal CT 

images taken from two different databases were classified using deep learning models. 300 ischemic 

brain CT images, 300 hemorrhagic brain CT images, and 300 normal brain CT images were used from 

the databases of the Ischemic Stroke Lesion Segmentation Competition 2018 (ISLES 2018) [29] and the 

North American Society of Radiology (RSNA) [30]. Data augmentation was applied by performing 

certain pre-processing steps on the images. The images were randomly divided into 80% training and 

20% test data, and validation was performed with 5-fold cross-validation. AlexNet [31], ResNet50 [32], 

GoogleNet [33], InceptionV3 [34], ShuffleNet [35], and SqueezeNet [36] deep learning models were 

trained with the transfer learning strategy. The successful performances of the networks were compared 

with the criteria of precision, recall (sensitivity), F1 score, accuracy, receiver operating characteristic 

(ROC) curve, the area under the ROC curve (AUC), and training time. As a result of the study, the 

disease classification performances of the models were compared. 

2. MATERIAL AND METHODS 

2.1. Dataset 

In this study, 300 ischemia and 18 normal CT images obtained from the ISLES 2018 (Ischemic Stroke 

Lesion Segmentation) database [29, 37], 300 hemorrhage and 282 normal CT images obtained from the 

open source RSNA Intracranial Hemorrhage Detection database published by the Radiological Society of 

North America were used [30]. The data in DICOM (Digital Imaging and Communications in Medicine) 

and NIfTI (The Neuroimaging Informatics Technology Initiative) formats were saved as a PNG (Portable 

Network Graphics) image with a contrast value of 120 and a brightness value of 60 using the MRIcro 

program [38]. Hemorrhage and ischemia CT slices were determined according to the label information 

in the databases. Data other than these two labels were filed as normal CT slices. Thus, 300 normal, 300 

hemorrhage and 300 ischemia images were collected using multi-center data. Each class was created in 

equal numbers to avoid an unbalanced data set. Figure 1a shows the ischemic stroke CT slice from the 
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ISLES dataset, and Figure 1b shows the normal CT slice from the ISLES dataset. Figure 2a shows the 

hemorrhagic CT slice from the RSNA dataset, and Figure 2b shows the normal CT slice from the RSNA 

dataset. 

 

 
(a)                                                                               (b) 

Figure 1. ISLES dataset (a) Ischemic stroke CT slice (b) Normal CT slice [29, 39] 

 

 
(b)                                                                               (b) 

Figure 2. RSNA dataset (a) Hemorrhagic stroke CT slice (b) Normal CT slice [30, 39] 

 

2.2. Deep Learning Models and Transfer Learning  

In this study, CT images were classified and the performance of the AlexNet [31], ResNet-50 [32], 

GoogleNet [33], InceptionV3 [34], ShuffleNet [35], SqueezeNet [36] deep learning models were 

investigated. All experiments were conducted using the Matlab R2021a program running on a 64-bit 

Windows operating system with an Intel Core i7-7700HQ CPU 2.80 GHz, 16 GB RAM, and an NVIDIA 

GeForce GTX 1050 Ti graphics card with 8 GB of memory. The deep learning models in the MATLAB 

program are already trained with the IMAGENET dataset and produce 1000-class outputs. By using 

these pre-trained networks, classification can be performed without the need for new training. However, 

when training with a new dataset, some parameters in the network need to be changed. Thus, pre-

trained networks can be used as a starting point for learning a new task. This process, called transfer 

learning, allows training with the new data set by using pre-trained model weights. In this process, 

instead of training the network with random weights from scratch by fine-tuning, it becomes quick and 

easy to perform the training process using the existing pre-trained weights. Fine-tuning a network with 

transfer learning is often much quicker and more straightforward compared to training a network with 
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randomly initialized weights from scratch [40]. Transfer learning and fine-tuning processes were carried 

out by changing the last layers of the six deep learning models used in this study to give three classes of 

output. These models train according to standard input image size and three-channel color images. CT 

image sizes should be normalized to 227-by-227 for AlexNet, ShuffleNet, and SqueezeNet, 224-by-224 

for GoogleNet and ResNet-50, and 229-by-229 for InceptionV3. CT images were automatically 

normalized to these dimensions by MATLAB during the training process. Necessary parameter settings 

were arranged so that the images entered the model inputs as a three-channel color image. In this 

process, the images were added one after the other, and they acted as if they were colored images. The 

image contents did not change, they were only converted to the format accepted by the models. Data 

augmentation was carried out using projection methods and random rotation in the x-direction and y-

direction up to 30 pixels. The necessary hyperparameters for measuring the performance results of the 

models under the same conditions were set as given in Table 1. 

 

Table 1. Hyper-parameters for deep learning models [39] 

Hyper-parameters Values 

Momentum 0.9 

InitialLearnRate 1.00E-04 

LearnRateDropFactor 0.2 

LearnRateDropPeriod 5 

L2Regularization 1.00E-04 

GradientThresholdMethod l2norm 

MaxEpochs 7 

MiniBatchSize 20 

Shuffle every-epoch 

ExecutionEnvironment GPU 

BatchNormalizationStatistics population 

 

2.3. Performance Evaluation Metrics 

The training process was performed under equal hyper-parameters for each model and the 

performance evaluation metrics were calculated. The data used were randomly divided into five parts 

80% training and 20% test, one part in each fold was used as test data, and the other four were used as 

training data. Thus, the images in all data were used in the training and testing process, and the average 

of the performance values obtained as a result of five-fold cross-validation was calculated. Table 2 shows 

the five-fold cross-validation strategy for splitting data. 

 

Table 2. Five-fold cross-validation strategy 

    Data-1 (20%) Data-2 (20%) Data-3 (20%) Data-4 (20%) Data-5 (20%) 

1. Fold Test Train Train Train Train 

2. Fold Train Test Train Train Train 

3. Fold Train Train Test Train Train 

4. Fold Train Train Train Test Train 

5. Fold Train Train Train Train Test 

 

True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) values were 

determined by creating a confusion matrix for each fold. The values determined as actual and predicted 

were placed in the confusion matrix as shown in Figure 3 according to the abbreviations expressed 

below. (I: Ischemic, H: Hemorrhagic, N: Normal ) 

 

CTII      : Number of correctly classified ischemic images 
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CTHH  : Number of correctly classified hemorrhagic images 

CTNN  : Number of correctly classified normal brain images 

CTIH    : Number of images misclassified as hemorrhagic while ischemic image 

CTIN    : Number of images misclassified as normal brain, while ischemic image 

CTHI    : Number of images misclassified as ischemic while images of hemorrhagic 

CTHN  : Number of images misclassified as normal brain, while hemorrhagic image 

CTNI   : Number of images misclassified as ischemic, while normal image 

CTNH : Number of images misclassified as hemorrhagic, while normal brain image 

 

  Predicted 

  Ischemic Hemorrhagic Normal 

A
ct

u
al

 Ischemic CTII CTIH CTIN 

Hemorrhagic CTHI CTHH CTHN 

Normal CTNI CTNH CTNN 

Figure 3. Confusion Matrix 

 

Performance metrics calculated using TP, TN, FP, and FN values are given in precision Equation 

1, recall Equation 2, accuracy Equation 3, and F1-score Equation 4. Cumulative results were obtained for 

each model by taking the average and standard deviation of the performance values calculated 

separately for the five folds. Another performance criterion used in this study was the AUC value, which 

indicates the ROC. ROC curve is one of the graphs used in performance reviews. An AUC value of 1 

indicates that the performance is 100% and the classification has been performed fully. The graph is 

drawn with the false positive rate value corresponding to the true positive rate value of each class. ROC 

is a probability curve and AUC shows the extent of decomposition. Figure 4 shows the confusion matrix 

and ROC graph obtained after the first fold of the AlexNet model. These graphs and matrices were 

created after each fold. Therefore, a total of 30 confusion matrices and 30 ROC graphs were obtained for 

six deep-learning models. In Figure 5, the flow diagram of the application carried out in this study is 

given. 
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              (a) 

 
              (b) 

Figure 4. (a) Confusion matrix for first fold AlexNet  (b) ROC graph for first fold AlexNet [39] 
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Figure 5. Flow chart of the application performed in this study. 

 

3. RESULTS AND DISCUSSION 

The average and standard deviation values of the performance criteria obtained as a result of the 

classification of ischemia, hemorrhage, and normal CT images using six deep learning (DL) models and 

five-fold cross-validation are given in Table 3.1. At the same time, the average training period is given in 

the table. In Table 3.2, the average AUC values of all deep learning models obtained according to classes 

are given. 

 



472  M. ALTINTAŞ, M.Ü. ÖZİÇ 

 

Table 3.1. Performance criteria obtained as a result of the classification of six DL models [39] 

DL Models Precision Recall F1-Score Accuracy  

 Training 

Time 

(hh:mm:ss) 

AlexNet 0.9086±0.02 0.9097±0.02 0.9091±0.02 0.9089±0.02 00:21:37 

ResNet50 0.9092±0.01 0.9081±0.01 0.9086±0.01 0.9067±0.01 02:33:23 

GoogleNet 0.9058±0.019 0.9001±0.024 0.9029±0.021 0.9033±0.019 00:36:10 

InceptionV3 0.8772±0.026 0.8781±0.021 0.8777±0.023 0.8778±0.026 00:56:38 

ShuffleNet 0.9017±0.014 0.8982±0.018 0.9000±0.016 0.9000±0.015 00:36:27 

SqueezeNet 0.8493±0.041 0.8374±0.052 0.8433±0.046 0.8411±0.044 00:16:44 

 

 

Table 3.2. The average AUC values of all DL models [39] 

DL Models Ischemia Hemorrhage Normal 

AlexNet 0.9920±0.005 0.9828±0.008 0.9686±0.012 

ResNet50 0.9918±0.003 0.9856±0.003 0.9688±0.009 

GoogleNet 0.9900±0.005 0.9794±0.004 0.9628±0.011 

InceptionV3 0.9872±0.007 0.971±0.012 0.9432±0.025 

ShuffleNet 0.9882±0.006 0.9784±0.003 0.9558±0.017 

SqueezeNet 0.9874±0.005 0.9488±0.020 0.9358±0.027 

 

When examining Table 3.1, the lowest average training time was 00:21:37 (hh:mm:ss), and the 

highest average accuracy result was 0.9089±0.02 from the AlexNet deep learning model. Although the 

classification performance values were generally close to each other, AlexNet yielded slightly higher 

results with fewer layers and a shorter training time. Although SqueezeNet had the shortest training 

time, it achieved the lowest result with an accuracy value of 0.8411±0.044. In general, it was observed 

that successful results were obtained in the classification of CT images using the transfer learning 

method of deep learning models. The average values of the area under the curve were calculated as 

0.9920±0.005 for ischemia, 0.9828±0.008 for hemorrhage, and 0.9686±0.012 for normal using AlexNet.  

There are studies in the literature for the detection and classification of stroke with deep learning models 

and CT images [9-28]. However, many studies classify either hemorrhage or ischemia. In some studies, 

CT segmentation applications of the stroke-related region are carried out with different deep-learning 

models [13, 17, 41-44]. There are also studies that use MR images, which are acquired over a longer 

duration compared to CT images, to perform stroke classification [45-52]. The number of studies 

classifying normal, ischemia, and hemorrhage CT images is limited[9, 12, 14, 23]. Although studies have 

shown successful results in detecting only ischemia or hemorrhage, a person who arrives at the hospital 

with a suspected stroke cannot have only hemorrhage or ischemia. A patient who arrives with a 

suspected stroke can have one of three possibilities on the CT image: normal, ischemia, or hemorrhage. 

Therefore, deep learning-based clinical decision support systems capable of predicting and detecting 

these three classes can generate quick results for diagnosis. The applications and experiments conducted 

in this study have been carried out with this motivation.  Dourado et al. developed an IoT system using 

deep learning for feature extraction and classical machine learning algorithms for classification. They 

used CT images of 140 normal cases, 140 hemorrhagic cases, and 140 ischemic cases. The dataset 

consisted of DICOM and grayscale images from two different databases, but no information about the 

data collection centers was provided. The data was split into 80% for training and 20% for testing, and 

classification experiments were performed using 10-fold cross-validation. For DICOM images, 

combining all convolutional neural network (CNN) architectures with various machine learning 

classifiers resulted in 100% accuracy, F1-score, recall, and precision. The highest accuracy rates were 

obtained when the classifiers were combined with InceptionV3, MobileNet, and VGG16 architectures. 

Similarly, for grayscale images, combining CNN architectures with different classifiers resulted in 100% 
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accuracy, F1-score, recall, and precision. The experiments showed that the highest accuracies were 

observed when different classifiers were combined with the NASNet Large architecture. The study used 

a transfer learning approach but did not mention data augmentation and the AUC metric [9]. Gautam 

and Raman created two different data sets in their study (Himalayan Institute of Medical Sciences 

(HIMS) in Dehradun, India). The first dataset consists of 192 brain images of two different classes: 

hemorrhagic stroke and ischemic stroke. The second data set is a data set containing three categories of 

brain CT scans (hemorrhagic stroke, ischemic stroke, and normal). This data set consists of a total of 900 

brain images and includes 300 images for each category. Pre-processing techniques and image fusion 

were applied to enhance image quality. In this study, the approaches of transfer learning and data 

augmentation were not mentioned. Performance metrics including precision, TPR, FPR, F-measure, and 

accuracy were calculated. For the experiments to be performed on the first data set, the data set was 

divided into 70% training and 30% testing, and for the experiments on the second data set, the data set 

was divided into 80% training and 20% testing. Additionally, 10-fold cross-validation was applied in 

both experiments. In the first data set, the highest accuracy rate was obtained by the proposed CNN 

model called P_CNN with 98.33%. In the second data set, the highest accuracy rate was again obtained 

by the P_CNN model with 92.22%. [14]. Neethi et al. collected 3D CT images of 70 ischemic, 68 

hemorrhagic, and 96 normal cases from the Sree Chitra Tirunal Institute for Medical Sciences and 

Technology (Trivandrum, India). A three-output classification study was carried out by developing a 3D 

CNN model with 3D CT images. The data was divided into 60% for training, 20% for validation, and 

20% for testing to perform the model's performance. Data augmentation, cross-validation, and transfer 

learning approach were not used. The model performance result was 0.88 F1-score, 0.84 recall, 0.94 

precision, and 0.92 accuracy. ROC and AUC values were not calculated. A voxel-based evaluation was 

made because it was a study using a 3D CNN model [23]. Pereira et al., with support from Clinical 

Trajano Almeida, collected a total of 100 normal, 100 ischemic, and 100 hemorrhagic CT images. Using 

the Particle Swarm Optimization method, a CNN model was optimized and utilized for classification. 

As a result of the study, a classification rate close to 99% was achieved. However, the study did not 

mention the utilization of transfer learning, cross-validation, or the AUC approach [12]. As observed in 

the studies, different deep learning models, images from various centers, varying data quantities, 

distinct performance criteria, diverse transfer learning, and data augmentation strategies, all contribute 

to significantly complexify result comparisons. Generally, high accuracy rates have been reported for 

three-class outputs. The differences in data quantities introduce uncertainties regarding how the 

diagnosis would perform across the entire stroke population. In this study, promising outcomes were 

achieved on data obtained from distinct centers and protocols. Especially the AUC values being very 

close to 100% indicate the substantial separability of one group from the others. 

4. CONCLUSIONS 

In this study, ischemia, hemorrhage, and normal CT images were classified using the transfer 

learning method in six different deep-learning models. The AlexNet model gave higher classification 

results than other models. Rapid diagnosis of hemorrhage and ischemia in CT images of patients 

suspected of having a stroke is essential. However, several factors can complicate stroke diagnosis, 

including time constraints, lack of experience, variations in interpretation based on experience, 

approximate pixel tone distributions in the images, confusion between hemorrhage and ischemia, a large 

number of images requiring evaluation in hospitals, and challenges in accessing doctors or radiologists 

in smaller cities. Because of this, deep learning-based clinical decision support systems can provide the 

opportunity for rapid diagnosis and early treatment. In advanced applications, the size, localization, and 

three-dimensional models of strokes can be developed using deep learning segmentation models. By 

developing mobile and desktop applications and embedding deep learning models that perform 

predictive tasks in the background, assistant diagnostic tools for doctors can be expected as a future 

technology in the field of medicine. In this study, it is clear that clinical decision support systems based 

on deep learning show significant potential in distinguishing and categorizing stroke types. However, 
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further research is needed in this area, which requires the use of comprehensive datasets covering 

various stroke subtypes, as well as the inclusion of standard assessment methodologies. 
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