
172 

 

 

 

 

Journal of Computer Science 
https://dergipark.org.tr/en/pub/bbd 

Anatolian Science 

ISSN,e-ISSN: 2548-1304  

Volume:IDAP-2023, pp:172-179, 2023  

https://doi.org/10.53070/bbd.1346267 

Research Paper      

 

Improved Reptile Search Algorithm for Optimal Design of Solar Photovoltaic Module 

 

Davut Izci*1 , Serdar Ekinci1 , Murat Güleydin2  

1Department of Computer Engineering, Batman University, Batman, Turkey 

2Department of Electrical & Electronic Engineering, Batman University, Batman, Turkey 

(davut.izci@batman.edu.tr, serdar.ekinci@batman.edu.tr, mrguleydin@gmail.com) 

 

Received:Aug.19,2023 Accepted:Aug.22,2023 Published:Oct.18,2023 

 
Abstract—This study focuses on the vital role of parameter extraction in optimizing and evaluating solar 

photovoltaic (PV) systems, as it directly influences their efficiency in converting solar energy to electricity. 

Researchers have extensively explored the application of various metaheuristic algorithms to accurately estimate 

solar PV parameters due to their crucial significance, leading to an extensive body of literature on the subject. 

However, the search for a robust and user-friendly optimizer with high convergence ability remains a challenging 

task that demands further research. To address this challenge, the study conducts a comprehensive comparative 

analysis of the RSALF optimizer, an innovative metaheuristic algorithm combining the reptile search algorithm 

(RSA) with Lévy flight (LF), for parameter extraction of PV model parameters using the Photowatt-PWP201 PV 

module as a case study. The experimental results demonstrate the RSALF optimizer's remarkable accuracy in 

parameter estimation, consistently yielding lower root mean square error values and closely aligning with 

experimental data. Moreover, comparative analysis with other recent optimization approaches highlights the 

RSALF optimizer's superiority, making it a promising tool for advancing the optimization of PV models and 

facilitating more efficient and sustainable solar energy utilization. 

Keywords: Reptile search algorithm, Lévy flight concept, parameter identification, photovoltaic model.  

 

1. Introduction  

Parameter extraction plays a pivotal role in the optimization, simulation, and evaluation of solar photovoltaic 

(PV) systems, as it directly impacts the efficiency of converting solar energy into electricity (Ekinci et al., 2023). 

Given its crucial importance, researchers have devoted substantial efforts to exploring the application of various 

metaheuristic algorithms for accurately estimating solar PV parameters, as evidenced by a plethora of existing 

literature on the subject (Izci, Ekinci, Dal, et al., 2022; B. Xu et al., 2022; S. Xu & Qiu, 2022). However, identifying 

a robust and user-friendly optimizer that possesses high convergence ability remains a challenging task, demanding 

extensive research. 

In light of the above, the need for optimization algorithms with enhanced capability becomes apparent, as they 

hold the potential to further improve the performance of solar PV systems through effective parameter extraction. 

The primary objective of this study is to tackle this challenge by conducting a comprehensive comparative analysis 

of the reptile search algorithm, RSA (Abualigah et al., 2021), in combination with Lévy flight, LF (X.-S. Yang & 

Deb, 2013), termed as the RSALF optimizer (Ekinci & Izci, 2023), for parameter extraction of PV model 

parameters in the context of the Photowatt-PWP201 PV module. This novel metaheuristic algorithm promises to 

provide a valuable contribution to the field. 

In order to evaluate the efficacy of the proposed RSALF optimizer, we present experimental results obtained 

through its application to the determination of optimal solar PV model parameters. The selected case study involves 

the Photowatt-PWP201 PV module, which serves as a representative scenario for evaluating the performance of 

the RSALF optimizer with respect to existing other methods. Through various analyses, we interpret the results 

and draw meaningful conclusions regarding the effectiveness of the proposed approach in optimizing PV models. 

The experimental results of the PV module optimization utilizing the RSALF optimizer demonstrate 

remarkable accuracy in parameter estimation. Specifically, the RSALF optimizer consistently yields lower root 

mean square error (RMSE) values, signifying its superior performance in accurately estimating the I-V and P-V 
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characteristics of the PV module. Moreover, the close agreement between the experimental and estimated values 

further highlights the accurate modeling capabilities of the RSALF optimizer. 

To strengthen the claim of the RSALF optimizer's superiority, we perform a comparative analysis with several 

other recent optimization approaches, including the generalized oppositional teaching learning based optimization 

(Chen et al., 2016), multiple learning backtracking search algorithm (Yu et al., 2018), improved jaya algorithm 

(Yu et al., 2017), cuckoo search algorithm (X. S. Yang & Deb, 2009), particle swarm optimization (Kennedy & 

Eberhart, 1995) and random reselection particle swarm optimization (Fan et al., 2022). The results of the 

comparison showcase the RSALF optimizer's dominance, as it consistently achieves the lowest RMSE value 

among all the considered methods. Thus, not only does it exhibit accurate parameter estimation but also 

outperforms well-established approaches, establishing its prowess in optimizing PV models. 

In summary, the experimental findings consistently demonstrate that the RSALF optimizer surpasses other 

optimization approaches in terms of accurate parameter estimation, low RMSE values, and alignment with 

experimental data. These results underscore the significant contribution and effectiveness of the RSALF optimizer 

in the domain of PV model optimization. As a promising and advanced metaheuristic algorithm, RSALF holds 

great potential for advancing the field of solar PV system optimization and parameter extraction, paving the way 

for more efficient and sustainable solar energy utilization. 

2. RSA with LF 

The original form of RSA has been reported by Abualigah et al., in 2021  (Abualigah et al., 2021) and its power 

has been demonstrated for different applications (Almotairi & Abualigah, 2022; Can et al., 2023; Emam et al., 

2023; Izci, Ekinci, Budak, et al., 2022; Izci & Ekinci, 2023). An improved version of this algorithm named RSA 

with LF, RSALF, has been reported by Ekinci & Izci in 2023 (Ekinci & Izci, 2023). The RSALF optimizer makes 

use of the potential of the LF to improve the capacity of RSA. Random motion in a region of interest can be 

performed via LF (X.-S. Yang & Deb, 2013). This feature makes the LF a good candidate for global search capacity 

of metaheuristic algorithms (Ekinci et al., 2022; Izci et al., 2023). Fig. 1 illustrates the two dimensional LF for 100 

steps. 

 
Fig. 1. Illustration of two-dimensional LF in 100 steps  

The LF concept can be explained as 𝐿(𝑠)~|𝑠|−1−𝛽 where 𝛽 is the index within (0, 2] (Izci, Ekinci, Eker, et al., 

2022). The following definition can be used to mathematically represent the LF distribution (Izci, 2021) where 𝑠 

stands for the step length and 𝜇 denotes the transmission parameter and 𝛾 is a control parameter that arranges the 

scale of the distribution. 

𝐿(𝑠, 𝛾, 𝜇) = {√
𝛾

2𝜋
𝑒

(−
𝛾

2(𝑠−𝜇)
)

(
1

(𝑠−𝜇)3 2⁄ ) ;  0 < 𝜇 < 𝑠 < ∞

0;  𝑠 ≤ 0

         (1) 

In terms of Fourier transform, the LF distribution is defined as 𝐹(𝑘) = 𝑒(−𝛼|𝑘|𝛽) where 𝛼 is a scaling parameter 

and 𝛽  is the distribution index within (0, 2]. The step length is described as follows where 𝑢  and 𝑣  have the 

Gaussian distribution. 

𝑠 = (
𝑢

|𝑣|(1/𝛽))              (2) 

In here, 𝑢 and 𝑣 can be obtained as 𝑢~𝑁(0, 𝜎𝑢
2), 𝑣~𝑁(0, 𝜎𝑣

2) where 𝜎𝑢 and 𝜎𝑣  are the standard deviations 

and 𝜎𝑣 = 1 whereas 𝜎𝑢 is calculated as follows. 

𝜎𝑢 = (
Γ(1+𝛽)×sin(𝜋𝛽 2⁄ )

Γ((1+𝛽) 2⁄ )×𝛽×2(𝛽−1) 2⁄ )
1 𝛽⁄

            (3) 
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Fig. 2. Flowchart for RSALF optimizer 

The employment of the LF within the RSALF optimizer makes sure the population diversity. To better explain 

the structure of the RSALF optimizer, it can be described as follows. The LF operates after each iteration using 

the following expression in order to update search agents. 

𝑥𝑖
𝐿𝐹 = 𝑥𝑖 + (2 ⋅ 𝑟𝑎𝑛𝑑 − 1) ⋅ 𝐿𝑒𝑣𝑦(𝛽) ⋅ (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖)          (4) 

In here, the solution generated by LF is shown by 𝑥𝑖
𝐿𝐹 and the current solution is represented by 𝑥𝑖 whereas 

𝑥𝑏𝑒𝑠𝑡  is the best solution obtained so far and 𝑟𝑎𝑛𝑑 is a random number within [0, 1]. The RSALF optimizer also 

employs a greedy selection scheme (Ekinci & Izci, 2023) meaning better new solutions are improved further for 

the next iterations while worse ones are eliminated with the following definition in every iteration: 

𝑥𝑖(𝑡 + 1) = {
𝑥𝑖

𝐿𝐹 , 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖
𝐿𝐹) ≤ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)

𝑥𝑖 , 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖
𝐿𝐹) > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)

          (5) 

where the 𝑖𝑡ℎ search agent in the next iteration is denoted by 𝑥𝑖(𝑡 + 1). The 𝑥𝑖 (current solution) is replaced by 

𝑥𝑖
𝐿𝐹  (the one LF obtains) for cases where the former one has an equal or lower fitness value. Otherwise, the 𝑥𝑖 is 

kept which allows avoiding solutions with poor quality. Another advantage of the RSALF optimizer is to allow 

the solutions moving across flat fitness landscapes (Ekinci & Izci, 2023). The optimization process of the RSALF 
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optimizer ends with the satisfaction of the termination condition (𝑡 = 𝑇). RSALF optimizer’s detailed flowchart 

is provided in Fig. 2. 

3. Photovoltaic module model and objective function   

The photovoltaic (PV) module model captures the relationship between the incident solar irradiance, 

temperature, and the electrical characteristics of the module. The related model is typically based on the equivalent 

circuit model, which represents the PV module as an electrical circuit with various components. The main 

components of the equivalent circuit model include a current source, a diode, a series resistance, and a shunt 

resistance. The model assumes that the PV module can be represented as a single diode connected in parallel with 

a current source. Fig. 3 represents the equivalent circuit of a PV module where 𝑁𝑝 and 𝑁𝑠 are denoting the number 

of cells in parallel and series respectively. 

 
Fig. 3. Equivalent circuit of PV model 

Since the solar cells are connected in series largely, the 𝑁𝑝 value equals to 1. Therefore, the mathematical 

model of a PV module can be represented as follows where 𝐼 is the output current of the PV cell, 𝑉 is the voltage 

across the PV cell terminals, 𝐼𝑝ℎ  is the photocurrent generated by the cell under illumination, 𝐼𝑠𝑑  is the diode 

saturation current, 𝑅𝑠 and 𝑅𝑠ℎ are the series resistance and the shunt resistance of the cell, respectively, 𝑛 is the 

diode ideality factor, 𝑉𝑡 is the thermal voltage, approximately equal to 𝑘𝑇/𝑞, where 𝑘 is Boltzmann's constant, 𝑇 

is the temperature in Kelvin, and 𝑞 is the elementary charge. 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠𝑑[𝑒
(𝑉+𝐼𝑅𝑠𝑁𝑠)

(𝑛𝑁𝑠𝑉𝑡) − 1] −
(𝑉+𝐼𝑅𝑠𝑁𝑠)

𝑅𝑠ℎ𝑁𝑠
          (6) 

4. Results and analysis  

For this study, the Photowatt-PWP 201 data set is adopted which consists of 25 pairs of current voltage values 

measured at a temperature of 45°𝐶  and an irradiance of 1000 𝑊/𝑚2  for 36 photovoltaic panels made of 

polycrystalline silicon cells connected in series. For the fair comparison purpose, the total iteration is set to 𝑇 =
1000 and the population size 𝑁 = 50 while all the algorithms are run for 30 individual times. Table 1 displays the 

optimized parameters of the PV module parameters obtained using RSALF optimizer along with upper and lower 

bounds. The results indicate the achievement of a high accuracy in parameter estimation suggesting the RSALF 

optimizer’s effecacy in fine-tuning the parameters of the PV module. 

Table 1. Lower, upper boundaries and estimated parameters of PV module  

Parameter Lower bound Upper bound Optimized by RSALF 

𝐼𝑝ℎ (A) 0 2 1.03051429930735 

𝐼𝑠𝑑  (μA) 0 50 3.48226278470423 

𝑅𝑠 (Ω) 0 2 1.20127101314577 

𝑅𝑠ℎ (Ω) 0 2000 981.982212446243 

𝑛 1 50 48.6428347213304 

Fig. 4 presents the absolute current error with respect to voltage measurement. Furthermore, Fig. 5 and Fig. 6 

illustrate the I-V and P-V curve characteristics, respectively, of the PV module optimized using the RSALF 
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optimizer. The figures demonstrate that the optimized model accurately captures the behavior of the PV module, 

as the curves closely match the experimental data. 

Table 2 compares the estimated parameters and RMSE values for the PV module obtained using RSALF 

optimizer with other more recent optimization approaches, including multiple learning backtracking search 

algorithm (MLBSA) (Yu et al., 2018), generalized oppositional teaching learning based optimization (GOTLBO) 

(Chen et al., 2016), improved jaya algorithm (IJAYA) (Yu et al., 2017), cuckoo search algorithm (CS) (X. S. Yang 

& Deb, 2009), particle swarm optimization (PSO) (Kennedy & Eberhart, 1995) and random reselection particle 

swarm optimization (Fan et al., 2022). Furthermore, Table 3 presents the statistical results comparatively. The 

results highlight the RSALF optimizer’s superior performance, as it achieves the lowest RMSE value among all 

the compared methods. This emphasizes the significance of the RSALF optimizer in accurately modeling the 

behavior of the Photowatt-PWP 201 PV module. 

 
Fig. 4. Absolute current error with respect to voltage measurements  

 
Fig. 5. PV module I-V curve characteristics 
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Fig. 6. PV module P-V curve characteristics 

Table 2. The determined parameters and RMSE values for PV module model 

Algorithm 𝐼𝑝ℎ (A) 𝐼𝑠𝑑  (µA) 𝑅𝑠 (Ω) 𝑅𝑠ℎ (Ω) 𝑛 RMSE 

RSALF (proposed) 1.0305 3.4823 1.2013 981.98 48.643 2.4251E−03 
MLBSA (Yu et al., 2018) 1.0305 3.4823 1.2013 981.98 48.643 2.4251E−03 

GOTLBO (Chen et al., 2016) 1.0305 3.4441 1.2025 980.05 48.600 2.4255E−03 

IJAYA (Yu et al., 2017) 1.0307 3.5367 1.1996 977.04 48.703 2.4268E−03 

CS (X. S. Yang & Deb, 2009) 1.0294 3.7326 1.1959 1148.6 48.908 2.4450E−03 

PSO (Kennedy & Eberhart, 1995) 1.0303 3.6399 1.1967 1032.2 48.813 2.4282E−03 

PSOCS (Fan et al., 2022) 1.0305 3.4823 1.2013 981.98 48.643 2.4251E−03 

Table 3. The statistical indicator data of RMSE of different algorithms for PV module model  

Algorithm 
RMSE 

Minimum Maximum Mean Standard deviation 

RSALF (proposed) 2.4251E−03 2.4251E−03 2.4251E−03 2.6992E−17 

MLBSA (Yu et al., 2018) 2.4251E−03 3.6478E−03 2.4709E−03 2.2259E−04 

GOTLBO (Chen et al., 2016) 2.4255E−03 2.7525E−03 2.4877E−03 7.4249E−05 

IJAYA (Yu et al., 2017) 2.4268E−03 6.4710E−03 2.6365E−03 7.4574E−04 

CS (X. S. Yang & Deb, 2009) 2.4450E−03 2.6473E−03 2.5152E−03 5.0324E−05 

PSO (Kennedy & Eberhart, 1995) 2.4282E−03 3.1526E−01 1.3531E−01 1.4463E−01 

PSOCS (Fan et al., 2022) 2.4251E−03 2.4282E−03 2.4252E−03 5.9113E−07 

5. Conclusion 

Efficiently converting solar energy into electricity relies heavily on optimizing solar PV systems, with 

parameter extraction playing a vital role in this optimization process. In pursuit of improved PV system 

performance, researchers have extensively explored various metaheuristic algorithms to estimate solar cell 

parameters accurately, showcasing promising results under different conditions. Nonetheless, despite the existing 

research, the quest for optimization algorithms with high convergence ability persists, aiming to further enhance 

solar PV systems through precise parameter extraction. This study addresses this challenge by introducing and 

evaluating the RSALF optimizer, which combines the effectiveness of the RSA with the additional global search 

capability of LF, resulting in enhanced performance. The proposed RSALF optimizer is specifically applied to 

parameter extraction in the Photowatt-PWP201 solar PV module. The experimental results demonstrate the 

exceptional accuracy of the RSALF optimizer in parameter estimation, consistently surpassing other competitive 

approaches. The RSALF optimizer yields results that closely align with experimental data, closely matching the I-

V and P-V curve characteristics of the optimized models. In-depth comparative analysis with other recent 

optimization approaches reaffirms the RSALF optimizer's superiority, as it achieves the lowest RMSE values 

among all considered methods. The RSALF optimizer proves to be a promising solution for optimizing PV models 

and facilitating more efficient solar energy utilization. 
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