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Abstract:	The	main	concern	of	this	paper	is	the	study	and	the	development	of
numerical	methods	for	solving	fractional	order	autocatalytic	chemical	reaction
model	 problem.	 This	 is	 a	 nonlinear	 fractional	 order	 differential	 equation	 of	
fractional	 order	ߙ,	 where	0 ൏ ߙ ൏ 1.	 Three	 different	 (explicit	 and	 implicit)
schemes	based	on	multistep	methods,	nonstandard	finite	difference	method	and
the	product	 integration	(PI)	method	are	developed.	The	 first	 two	schemes	are
based	on	differential	 equation	model	 and	 the	PI	 scheme	 is	 constructed	by	 the
integral	 equation	 formulation	 of	 the	model	 problem.	 The	 accuracy,	 efficiency
and	some	numerical	comparisons	of	the	developed	methods	are	demonstrated
in	numerical	results.	

Kesirli	Mertebeden	Otokatalitik	Reaksiyon	Modelinin	Nümerik	Çözümleri	

Anahtar	Kelimeler	
Kesirli	diferansiyel	denklemler,	
Açık	ve	Kapalı	Yöntemler,	
İntegral	çarpanı	yöntemi,	
Standart	olmayan	yöntem,	
Brusselator	model		

Özet:	 Bu	 makale	 kesirli	 mertebeden	 otokatalitik	 kimyasal	 modelin	 nümerik
çözümleri	 ile	 ilgilidir.	 	 Model	0 ൏ ߙ ൏ 1		 için	ߙ	kesirli	 mertebeden	 lineer	
olmayan	 	 	 bir	diferansiyel	denklem	sistemidir.	 Çokadımlı	 yöntemlere	dayanan	
(açık	 ve	 kapalı),	 standart	 olmayan	 sonlu	 fark	 yöntemi	 ve	 integral	 çarpanı	
yöntemi	 (PI)	 olmak	 üzere	 üç	 farklı	 nümerik	 yöntem	 geliştirilmiştir.	 İlk	 iki
yöntem	diferansiyel	denklem	modeline	ve		PI	yöntemi	model	problemin	integral
denklem	 formulasyonuna	 dayanmaktadır.	 Geliştirilen	 yöntemlerin	 tamlığı,
etkinliği	ve	bazı	sayısal	karşılaştırılmaları	nümerik	sonuçlarla	gösterilmiştir.	

1. Introduction

The	 main	 concern	 of	 this	 paper	 is	 the	 numerical	
solution	of	the	autocatalytic	chemical	reaction	(ACR)	
problem	with	using	the	efficient	numerical	methods.		

The	ACR	problem	is	mathematically	modelled	by	the	
following	governing	equations	
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where	 
tc D0, 	denotes	 the	 Caputo’s	 fractional

derivative	 operator,	 with	 respect	 to	 the	 origin	 [34].	
The	 functions	 ሻݐሺݔ 	and	 ሻݐሺݕ 	are	 activator	 and	
inhibitor	variables,	respectively,	and	ߙ, 	external	are	ߤ
parameters.	 The	 full	 dynamic	 of	 the	 ACR	 system	 is	
determined	by	the	functions	ݔሺݐሻ	and	ݕሺݐሻ	[39].	

The	fractional	order	differential	equations	have	been	
studied	 extensively	 in	 recent	 years	 on	 account	 of	
their	 large	 significant	 applications	 in	 modeling	 of	
various	 problems	 in	 science	 and	 engineering.	 The	
extension	 of	 the	 concept	 of	 fractional	 order	
derivative,	 not	 only	 is	 interesting	 from	 theoretical	
point	 of	 view,	 but	 also	 many	 applied	 problems	 are	
modelled	better	by	this	extended	tool.	An	interesting	
example	 is	 the	modelling	of	 conservation	of	mass	 in	
fluid	dynamics	in	the	case	that	the	control	volume	is	
small	 enough	 with	 respect	 to	 heterogeneity	 scale	
[40].	There	are	many	more	other	applications	such	as	
the	 field	 of	mechanical	 systems,	 dynamical	 systems,	
electronic	 circuit	 theory,	 signal	 processing,	 control	
theory,	 seismology,	 chaos	 synchronization	 that	 we	
can	 extensively	 use	 the	 concept	 of	 fractional	 order	
derivatives	 in	 mathematical	 modelling	 of	 related	
problems	[3,	4,	5,	6,	7,	10,	12,	22,	25,	31,	33,	35,	39].	
For	 more	 detailed	 discussion	 on	 theoretical	 and	
numerical	 approaches	 of	 fractional	 calculus,	
especialliy	 fractional	 differential	 equations	 we	 refer	
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to	 [29,	 32,	 34,	 36].	 The	 researchers	 have	 been	
developed	 various	 schemes	 for	 solving	 fractional	
differential	 equations	 (FDE)	 in	 two	 significant	
categories:	theoretical	and	numerical	approaches.	For	
the	 sake	of	 completeness	we	 refer	 to	 some	of	 them:	
the	 nonstandard	 finite	 difference	 method	 (NSFD)	
[33],	 the	 Adomian	 decomposition	 method	 [30,	 31],	
the	 variational	 iteration	method	 [37],	 the	 homotopy	
perturbation	 method	 [30],	 the	 operational	 method	
[23],	 the	 differential	 transform	 method	 [1,	 13,	 14],	
the	 Adams‐Moulton	method	 [16,	 18],	 the	 predictor‐
corrector	 methods	 [7,	 8,	 18]	 and	 the	 product	
integration	rules	[20,	38].		
	
The	NSFD	is	one	of	the	our	approaches	to	solve	ACR	
problem	 in	 this	 paper.	 This	 scheme	 was	 firstly	
proposed	by	Mickens	for	solving	ordinary	differential	
equations	 and	 following	 that	many	 reserchers	made	
many	developments	and	extended	it	to	FDEs,	see	for	
instance	[26,	27,	28].	
	
	In	 this	 paper,	 we	 present	 implicit	 and	 explicit	
schemes	for	solving	ACR	problem	(1)	based	on	three	
methodologies	 [2]:	 the	 first	 two	 approaches	 are	
based	on	the	original	differential	equation	(1)	and	the	
third	method	 is	 based	 on	 the	 integral	 equation	 (IE)	
reformulation	of	ACR	model	problem.	The	ACR	model	
is	 equivalently	 modeled	 by	 a	 Voltera	 integral	
equation	of	the	second	kind,	in	which	we	can	produce	
both	explicit	and	 implicit	schemes	using	 the	product	
integration	 (PI)	 method.	 In	 summary,	 these	
methodologies	 provide	 three	 implicit	 and	 explicit	
methods	 based	 on	multistep,	 NSFD	 and	PI	methods.	
The	organization	of	this	paper	is	as	follow:	In	section	
2,	we	 shortly	 review	 the	preliminaries	 and	 required	
notations	 from	 fractional	 calculus.	 In	 section	 3,	 we	
derive	 the	 different	 numerical	 approaches	 for	 ACR	
model	 problem	 (1).	 More	 precisley,	 we	 develop	 the	
following	schemes,	respectively:	

1. The	explicit	and	implicit	multistep	methods	
2. The	explicit	and	 implicit	product	 integration	

methods	
3. The	explicit	and	implicit	NSFD	schemes	

Finally,	in	section	4,	we	present	the	numerical	results	
with	a	detailed	comparision	of	the	methods.	
	
2.	Introductory	Material	
	
This	section	provides	a	brief	review	of	the	necessary	
concepts	 and	 some	 of	 the	 main	 definitions	 from	
fractional	 calculus.	 There	 are	 several	 ways	 to	
introduce	 the	 notion	 of	 fractional	 derivative.	
Accordingly,	 the	 basic	 step	 in	 solving	 a	 fractional	
differential	equation	 is	 to	 find	a	way	to	approximate	
the	 corresponding	 fractional	 order	 derivatives.	 Let	
ߙ ൐ 0	be	an	arbitrary	real	number	and	m ൌ ሾߙሿ	is	the	
smallest	 integer	 such	 that	݉ ൐ ߙ .	 The	 Caputo’s	
derivative	of	fractional	order	 	is	defined	by		
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On	 the	 other	 hand,	 the	 historically	 worthwhile	
definition	 of	 the	 Riemann‐Liouville	 (RL)	 fractional	
derivative	of	order	ߙ	is	as	follow:		
	

.)()(
)(

1
=)( 1

0



 dut

dt

d

m
tuD mt

m

m

tRL


  	 (3)	

	
There	is	a	close	relation	between	Caputo’s	derivative	
in	 the	 sense	 that	 if	݃ሺݐሻ	is	 the	ߙ	‐order	 derivative	 of	
	,.i.e	ሻ,ݐሺݑ
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then	we	have		
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where	ܷ௠ିଵሺݐሻ	is	 the	 Taylor	 polynomial	 of	 degree	
݉ െ 1	about	the	origin		
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The	 inverse	 relation	 is	 also	 holds	 in	 the	 following	
sense		
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The	 practical	 alternative	 is	 the	 Grunwald‐Letnikov	
(GL)	operator		
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where	߳ݐሺݐ଴, ݄	and	ሿ,ݐ ൌ
௧

ே
	depends	 on	ݐ 	and	ܰ.	 The	

weights	ݓ௝
ఈ 	are	 the	 coefficients	 of	 power	 series	

expansion	of	  )(1 ,	i.e.,		
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Throughout	the	paper	we	shall	regularly	be	using	the	
following	notations;		
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the	 same	 notation	 also	 holds	 for	 1ny .	 Accordingly,	

the	 weights	 )( j ,	 that	 are	 the	 coefficients	 of	 the	

power	series	expansion,	can	be	written	as	follow		
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3.	Numerical	Schemes	
	
This	 section	 deals	 with	 the	 development	 of	 explicit	
and	 implicit	 numerical	 methods	 for	 solving	 ACR	
model	 problem	 (1).	 In	 implicit	 schemes	 we	 the	
reduced	 nonlinear	 system	 of	 equations	 are	 handled	
by	Newton‐Raphson	method.	
	
3.1.	Explicit	and	implicit	multistep	methods	
	
The	 linear	 multistep	 methods	 such	 as	 Adams‐
Moulton	 methods	 have	 been	 studied	 in	 detail	 by	
Garrappa	 and	 Galeone	 in	 a	 series	 of	 papers	 [15,	 16,	
17,	18].	To	develop	 the	 idea	 to	 the	ACR	problem	(1)	
we	 first	 propose	 the	 following	 general	 fractional	
differential	equation	(FODE),		
	

																												 )),(,(=)( tytftyD 		 (9)	
	
where	ݕ: ሾݐ଴, ܶሿ ⟶ Թ௤	is	 an	 unknown	 function	 and	
݂: ሾݐ଴ܶሿൈԹ௤ ⟶ Թ௤	is	 a	 sufficiently	 smooth	 function.	
Without	losing	generality,	we	propose	the	scalar	case	

1=q ,	 it	 is	 straightforward	 to	 extend	 the	 presented	
methods	 for	 the	 general	 system	 of	 FODE.	 Let	 us	
consider	the	FODE	(9)	at	the	grid	points	ݐ ൌ 	௡ିଵݐ
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where	 11111 =),(=))(,(  nnnnn fytftytf .	 To	

obtain	a	fully	discrete	scheme	it	is	required	to	find	an	

approximate	 value	 of	 )( 1ntyD 	in	 terms	 of	 point	

values	 of	 the	 unknown	 function	 y .	 To	 accomplish	
this	we	use	the	GL	operator	(8)	as	an	approximation	

of	 )( 1ntyD .	 Therefore,	 using	 the	 GL	 operator	 (8)	

the	FODE	model	(10)	can	be	written	as	follow		
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or	equivalently,		
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There	is	an	explicit	representation	for	  j
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therefore,	we	have		
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finally	the	explicit	scheme	reduces	as	follow		
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Now,	the	explicit	method	for	ACR	model	(1)	reads		
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The	implicit	variant	is	similarly	drived	by	considering	
the	 FODE	 (10)	 at	 the	 grid	 point	ݐ ൌ 	.௡ିଵݐ Therefore,	
using	 the	 truncated	 GL	 operator	 for	 fractional	
derivative	we	obtain		
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it	turns	out	that		
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The	 equation	 (13)	 is	 implicit	 in	 ny 	and	 we	 need	 a	

nonlinear	 system	 solver	 to	 find	 the	 unknown	 value	

ny To	 accomplish	 this	 we	 use	 the	 Newton‐Raphson	

method	with	the	following	iteration	function		
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then,	the	recursive	relation	to	obtain	 ny 	is	written	as	

follow		
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where	 the	 initial	 guess	 is	 10 = nyz .	 Therefore,	 the	

iterations	for	solving	ACR	problem	(1)	reads	
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3.2.	Product	integration	method	
	
In	 this	 section	we	 use	 the	 reformulation	 of	 the	 ACR	
problem	 as	 a	 Volteral	 integral	 equation	 (VIE).	 Then	
we	propose	the	numerical	solution	of	the	reduced	VIE	
with	product	integration	method.		
	
The	 corresponding	 VIE	 formulation	 of	 ACR	 problem	
is	[21]		
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this	 is	 a	 convolution	 type	 integral	 equation	 and	 the	
product	 integration	 approach	 can	 be	 applied	
efficiently	for	this	problem	[20,	38].	For	further	study	
of	the	more	recent	approaches	for	solving	FDEs	based	
on	product	integration	we	refer	to	[8,	19,	20,	23].	We	
consider	 a	 uniform	 grid	ݐ௝ ൌ ଴ݐ ൅ ݆݄,	 where	݄	is	 grid	
spacing	 and	 we	 consider	 the	 piecewise	 constant	

approximation	 ))(,(=))(,( jjj tytffsysf  	for	

all	 ],[ 1 jj tts .	 Then,	 the	 explicit	 product	

integration	method	is	given	by		
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where	we	have		

	

dsstdsstdsst n
jt

nt
n

nt

jtn
jt

jt

11111 )()(=)(    

),1)()((= 



 jnjn

h 																																							(17)	

	
substituting	(17)	in	(16)	we	obtain		
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On	defining		
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we	can	rewrite	(18)	as	follow		
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Now,	 the	 application	 of	 this	 scheme	 for	 ACR	model	
(1)	results	as	follow		
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Similarly,	 the	 application	 of	 the	 implicit	 product	
integration	for	(1)	reduces	to	the	following	equations		
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where	the	coefficients	 ,0nd 	and	 na 	are		
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3.3.	Explicit	and	implicit	nonstandard	finite	
difference	methods	
	
Now,	 we	 develop	 the	 implicit	 and	 explicit	
nonstandard	finite	difference	schemes.		
	
Following	 [33],	 we	 resolve	 the	 nonlinear	 terms	 of	
ACR	model	(1)	in	the	following	sort		
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Taking	into	account	these	sunstitutions	and	applying	
the	truncated	GL	operator,	we	find	the	following	fully	
discrete	equations		
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this	 means	 that,	 we	 can	 explicitly	 evaluate	 nx 	and	

ny 	as	follow		
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The	 implicit	 discretization	 is	 accomplished	with	 the	
following	modifications		
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inserting	 these	 substitutions	 in	 the	 ACR	 model	 (1)	
and	using	the	truncated	GL	operator	we	obtain	
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In	 this	 case,	 (23)	 is	 a	 nonlinear	 systems	 in	 terms	 of

nx ,	 therefore,	 we	 have	 to	 invoke	 an	 appropriate	

nonlinear	systems	solver	to	obtain	the	unknowns.	To	
accomplish	 this	 we	 use	 Newton‐Raphson	 method	
with	the	following	iteration	function		
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The	Newton‐Raphson	iterations	
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with	 initial	guess	 10 = nxz .	 In	 the	test	problems	we	

use	 the	 following	 denominator	 function	
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,	 which	 is	 proposed	 by	 some	

authors	[26,	27,	28,	33].		
	
4.	Results	
	
In	this	section	we	demonstrate	the	numerical	results	
for	 ACR	 model	 problem	 (1)	 with	 using	 specific	
parameters	 and	 grid	 spacing.	 The	 computations	 are	
carried	 out	 at	 prescribed	 parameters	 ܽ ൌ 1, ߤ ൌ
2, ݌ ൌ 0.8 ,	 in	 the	 time	 interval	 ሾ0,50ሿ 	with	 grid	
spacing	 ݄ ൌ 0.05 	and	 the	 initial	 data	 ሺݔ଴, ଴ሻݕ ൌ
ሺ0.9,2.1ሻ.	

	

	
Figure	1:	Numerical	results	with	explicit	multistep	method	
(12).		
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Figure	2:	Numerical	results	with	implicit	multistep	method	
(13).	

	
Figure	3:	Numerical	results	with	explicit	PI	method	(20).	

	

	

	
Figure	4:	Numerical	results	with	implicit	PI	method	(21).	

	
The	numerical	results	are	illustrated	in	ሺݐ, 	plane	ሻሻݐሺݔ
for	 both	ݔሺݐሻ	and	ݕሺݐሻ,	 and	 the	 solution	 in	 the	phase	
plane	is	also	provided	in	the	figures.		

	
In	Figure	1	the	numerical	results	of	explicit	multistep	
method	 (12)	 are	 shown	 for	 problem	 (1).	 In	 the	 left	
portion	 the	 graphs	ݔሺݐሻ	and	ݕሺݐሻ	are	 demonstrated	
versus	 the	 time	 variable	 t 	and	 the	 right	 portion	
shows	 the	corresponding	numerical	 results	 in	phase	
plane.	Recalling	the	theoretical	behavior	of	the	model	
problem	(1)	we	find	that	the	numerical	results	of	the	
explicit	 scheme	 (12)	 are	 stable.	 Figure	 2	 illustrates	
the	 same	 results	 for	 implicit	multistep	method	 (13).	
Figure	 3,	 similarly,	 demonstrates	 the	 results	 for	
explicit	PI	method	(20).	Figure	4	shows	the	results	for	
implicit	 PI	 method	 (21).	 Figure	 5	 represents	 the	
numerical	 results	 for	 explicit	 NSFD	 method	 (22).	
Figure	6,	finally,	is	the	graph	of	the	numerical	results	
in	 the	 case	 of	 implicit	 NSFD	 method	 (23).	 All	 the	
simulations	 with	 the	 derived	 schemes	 illustrate	 the	
stable	behavior	of	the	general	solution.	

	
5.	Discussion	and	Conclusion		
	
We	 have	 developed	 three	 different	 explicit	 and	
implicit	 schemes	 for	 solving	 ACR	 problem	 (1).	 The	
multistep,	nonstandard	 finite	difference	and	product	
integration	 methods.	 These	 methods	 introduced	 in	
explicit	 and	 implicit	 modes.	 According	 to	 the	
numerical	 results	 and	 their	 comparison,	 the	
presented	 schemes	 are	 accurate	 and	 also	 they	 have	
stable	behavior	in	simulating	the	true	solution.	
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Figure	 5:	 Numerical	 results	 with	 explicit	 NSFD	 method	
(22).	
	

	

	
Figure	 6:	 Numerical	 results	 with	 implicit	 NSFD	 method	
(23).	
	
Acknowledgment	
	
The	 authors	 (first	 and	 second	 author)	 gratefully	
acknowledge	 the	 financial	 support	 provided	 by	 the	
SDU,	 Scientific	 Research	 Project	 Commission,	 of	
Turkey	(Grant	No.	2695‐YL‐11).	

References		
	
[1]		 Arikoglu,	A.,	Ozkoli	I.,	2007.	Solution	of	fractional	

differential	 equation	 by	 using	 differential	
transforms	 method	 Chaos	 Solitions	 Fractals;	
34(5)	(2007),1473‐1481.	

[2]		 Arslan	 D.,2013.	 Numerical	 Solutions	 of	
Fractional	Order	Differential	Equations	Systems,	
Thesis,	 SDU	 Graduate	 School	 of	 Natural	 and	
Applied	Sciene,	Isparta,	Turkey,	57p.	

[3]		 Baleanu,	D.,	Mohammadi,	H.,	Rezapour,	S.,	2012.	
Positive	solutions	of	an	initial	value	problem	for	
nonlinear	 fractional	 differential	 equations.	
Abstract	and	Applied	Analalysis,	Art.	ID	837437,	
(2012),7p.	

[4]		 Bueno‐Orovio,	A.,	Kay,	D.,	Grau,	V.,	Rodriguez,	B.,	
Burrage,K.,2013.	 Fractional	 diffusion	 models	 of	
cardiac	electrical	propagation:	role	of	structural	
heterogeneity	 in	 dispersion	 of	 repolarisation,	
Tech.	 Rep.	 OCCAM	 13/35,	 Oxford	 Centre	 for	
Collaborative	 Applied	Mathematics,	 Oxford	 464	
(UK),		

[5]		 Cafagna,	 D.,	 Grassi,	 G.,2012.	 Observer‐based	
projective	synchronization	of	fractional	systems	
via	 a	 scalar	 signal:	 Application	 to	 hyperchaotic	
Rossler	 systems,	 Nonlinear	 Dynam.,	 68	 (1‐2)	
(2012)	117–128.		

[6]		 Caponetto,	 R.,	Maione,	 G.,	 Pisano,	 A.,	 Rapaic,	M.	
M.	R.,	Usai,	E.,	2013.	Analysis	and	shaping	of	the	
self‐sustained	 oscillations	 in	 relay	 controlled	
fractional‐order	 systems,	 Fractional	 Calculus	
and	Applied	Analysis	16	(1)	(2013)	93‐108.		

[7]		 Deng,	 W.H.,	 Li,	 W.H.,	 2005.	 Chaos	
synchronization	 of	 the	 fractional	 Lü	 System,	
Physica	A,	353,	(2005)	61‐72.		

[8]		 Diethelm,	 K.,	 Freed,	 A.	 D.,1998.	 The	 FracPECE	
subroutine	 for	 the	 numerical	 solution	 of	
differantial	 equations	 of	 fractional	 order,	 in	
Forschung	 und	 Wissenschaftliches	 Rechmen,	
1999,	57‐71.	

[9]		 Diethelm	 K.,	 Ford,	 N.J.,	 Freed,	 A.D.,	 2002.	 A	
predictor‐corrector	 approach	 for	 the	 numerical	
solution	 of	 fractional	 differential	 equations.	
Nonlinear	Dynamics.,	29(1‐4)	(2002)	3‐22.		

[10]	Diethelm	 K.,	 Ford,	 N.J.,	 Freed,	 A.D.,	 Luchko,	
Y.,2005.	Algorithms	for	the	fractional	calculus:	a	
selection	 of	 numerical	 methods.	 Computer	
methods	 in	applied	mechanics	and	engineering,	
194	(6)	(2005)	743‐773.		

[11]		Lubich,	 C.,	 1986.	Discretized	 fractional	 calculus.	
SIAM	J.	Math.	Anal.,	17(3)	(1986)	704‐719.		

[12]		Matignon,	D.,	D’andrea‐Novel,	B.,1997,	Observer‐
based	 controllers	 for	 fractional	 differential	
equations	 systems,	 in	 Conference	 on	 Decision	
and	 Control	 San	 Diego,	 CA,	 December,	 SIAM,	
IEEE‐CSS,	4967‐4972.		



M.	Yakıt	Ongun	et	al.	/	Numerical	Solutions	of	Fractional	Order	Autocatalytic	Chemical	Reaction	Model 

172 

[13]	Erturk,	 V.S.,	 Momani,	 S.,	 Odibat,	 Z.,	 2008.	
Application	of	generalized	differential	transform	
method	 to	 multi‐order	 fractional	 diffrential	
equations.	 Commun.	 Nonlinear	 Sci.	 Numer.	
Simul.	13(8)	(2008)1642‐1654.		

[14]		V.S.	 Erturk,	 S.	 Momani,	 Z.	 Odibat.	 (2008).	
Application	of	generalized	differential	transform	
method	 to	 multi‐order	 fractional	 diffrential	
equations.	 Commun.	 Nonlinear	 Sci.	 Numer.	
Simul.	13(8)(2008)	1642‐1654.		

[15]		Galeone,	 L.,	 Garrappa,	 R.,	 2006.	 On	 multisep	
methods	 for	 differential	 equations	 of	 fractional	
order,	Mediterr.	J.	Math,	3(2006)565‐580.		

[16]		Galeone,	 L.,	 Garrappa,	 R.,	 2008.	 Fractional	
Adams‐Moulton	 methods,	 Math.	 Comput.	
Simulation,79	(2008)1358‐1367.		

[17]		Galeone,	L.,	Garrappa,	R.,	2009.	Explicit	methods	
for	 fractional	 differential	 equations	 and	 their	
stability	 properties,	 J.	 Comput.	 Appl.	 Math.,	
228(2009)548‐560.		

[18]		Garrappa,	 R.,	 2009.	 On	 some	 explicit	 Adams	
multistep	 methods	 for	 fractional	 differential	
equations	 J.	 Comput.	 Appl.	 Math.,	
229(2009)392‐399.		

[19]		Garrappa	 R.,	 2010.	 On	 linear	 stability	 of	
predictor–corrector	 algorithms	 for	 fractional	
differential	 equations,	 Int.	 J.	 Comput.	 Math.	
87(2010)	2281‐2290.		

[20]		Garrappa	 R.,	 Popolizio,	 M.,	 2011.	 On	 accurate	
product	 integration	 rules	 for	 linear	 fractional	
differential	 equations,	 J.	 Comput.	 Appl.	 Math.,	
235(2011)1085‐1097.		

[21]		Kilbas,A.A.,	 Srivastava,H.M.,	 Trujillo,J.	 J.,2006.	
Theory	and	applications	of	fractional	differential	
equations,North‐Holland	 Mathematics	 Studies,	
204(2006)135‐209.		

[22]		C.	 Li,	 C.	 Ye.,	 2011.	 Numerical	 approaches	 to	
fractional	 calculus	 and	 fractional	 ordinary	
differential	equation,	J.	Comput.	Phys.	230(2011)	
3352‐3368.		

[23]		Luchko,	 Y.,	 Gorenflo,	 R.,	 1999.	 An	 operational	
method	 for	 solving	 fractional	 differential	
equations	 with	 the	 Caputo	 derivatives,	 Acta	
Math.	Vietnam	.24(2)	(1999)	207‐233.		

[24]		Lubich,	 C.,	 1986.	Discretized	 fractional	 calculus,	
SIAM	J.	Math.	Anal.	17	(1986)	704‐719.		

[25]		Magin,	R.	L.,2010.	 Fractional	 calculus	models	of	
complex	dynamics	in	biological	tissues,	Comput.	
Math.	Appl.	59	(5)	(2010)1586‐1593.		

[26]		Mickens,	 R.E.,	 Smith,	 A.,	 1990.	 Finite‐difference	
models	 of	 ordinary	 differential	 equations:	
influence	 of	 denominator	 functions.	 J.	 Franklin	
Inst.,327,	(1990)143‐149.		

[27]		Mickens,	R.E..,	2007.	Calculation	of	denominator	
functions	 for	 nonstandard	 finite	 difference	
schemes	 for	 differential	 equations	 satisfying	 a	

positivity	 condition,	 Numer.	 Methods	 Partial	
Differential	Equations	23(3)	(2007)	672‐691.		

[28]		Mickens,	 R.E.,	 1993.	 Nonstandard	 finite	
difference	 models	 of	 differential	 equations.	
River	 Edge,	 NJ:	 World	 Scientific	 Publishing	 Co.	
Inc..		

	

[29]		Miller,	K.S.,	Ross,	B.,1993.	An	Introduction	to	the	
Fractional	 Calculus	 and	 Fractional	 Differential	
Equations,	John	Willey	&	Sons,	New	York.	

	

[30]		Momani,S.,	 Odibat,	 Z.,	 2007.	 Comparison	
between	 homotopy	 perturbation	 method	 and	
the	 variational	 iteration	 method	 for	 linear	
fractional	 partial	 differential	 equations,	
Computers	 and	 Math.	 Appl.,	 54(7)(2007)910‐
919.		

	

[31]		Momani,S.,	 Odibat,Z.,	 2006.	 Analytical	 approach	
to	 linear	fractional	partial	differential	equations	
arising	 in	 fluid	 mechanics,	 Phys.	 Lett.	 A,	 355	
(2006)	271‐279.		

	

[32]		Oldham,	 K.B.,	 Spanier,	 J.,1974.	 The	 Fractional	
Calculus,	 Mathematics	 in	 Science	 and	
Engineering,	Academic	Press,New	York.	

[33]		Ongun,	 M.Y.,	 Arslan,	 D.,	 Garrappa,	 R.,	 2013.	
Nonstandard	 Finite	 Difference	 Scemes	 for	
fractional	 order	 Brusselator	 system,	 Adv.	
Difference	Equ.,	doi:	10.1186/1687‐1847	(2013)	
102.		

[34]		Podlubny,	 I.,1999.	 Fractional	 Differential	
Equations.	 An	 Introduction	 to	 Fractional	
Derivatives,	 Fractional	 Differential	 Equations,	
Some	 Methods	 of	 Their	 Solution	 and	 Some	 of	
Their	 Applications.	 Academic	 Press,	 San	Diego‐
Boston‐New	York‐London‐Tokyo‐Toronto,	368p.	

[35]		Tenreiro	Machado	 J.,	 Stefanescu,	 P.,	 Tintareanu,	
O.,	Baleanu,	D.,2013.	Fractional	calculus	analysis	
of	 cosmic	 microwave	 backgrounds,	 Romanian	
Reports	 in	 Physics,	 Academic	 Press,	 San	Diego‐
Boston‐New	 York‐London‐Tokyo‐Toronto,	 65	
(1)(2013)	316‐323.			

[36]		Samko,	 S.	 G.,	 Kilbas,	 A.	 A.,	 Marichev,	 O.	 I.,1993.	
Fractional	Integrals	and	Derivatives:	Theory	and	
Applications,	 Gordon	 and	 Breach	 Science	
Publishers.		

	

[37]		Ünlü,	 C.,	 Jafari,	 H.,	 Baleanu,	 D.,	 2013.	 Revised	
Variational	Iteration	Method	for	Solving	Systems	
of	 Nonlinear	 Fractional‐Order	 Differential	
Equations,	 Abstract	 and	 Applied	 Analysis,	
(2013),Article	ID	461837,	7	p.	

	

[38]		Young,	 A.,1954.	 Approximate	 product‐
integration,	Proceedings	of	 the	Royal	 Society	of	
London	Series	A	224(1954)	552‐561.		

	

[39]		Zhou,	 T.S.,	 Li,	 C.P.,	 2005.	 Synchronization	 in	
fractional‐order	 differential	 systems,	 Phys.	 D,	
212	(2005)111‐125.	

[40]		Wheatcraft,	S.,	Meerschaert,	M.,	2008.	Fractional	
Conservation	 of	 Mass,	 Advances	 in	 Water	
Resources	31	(2008)	1377‐1381.	


