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Keywords Abstract: The wave properties in a dusty space plasma consisting dfiyebs and neg-
Schamel-KdV equation, atively charged dust as well as distributed nonisotherret®ns are investigated by
Dusty space plasma, using the exact traveling wave solutions of the Schamel-kdjdation. The analytic
Shock wave,

solutions are obtained by the different tyd€&/G)-expansion methods and direct inte-
gration. The nonlinear dynamics of ion-acoustic waves liervarious values of phase
speedvp, plasma parameters, g, anday, and the source term are studied. We have
observed different types of waves from the different amalgblutions obtained from
the different methods. Consequently, we have found theodiswity, shock or solitary
waves. It is also concluded that these parameters play aoriam role in the presence
of solitary waves inside the plasma. Depending on plasmanpeters, the discontinu-
ity wave turns into solitary wave solution for the certainues of the phase speed and
plasma parameters. Additionally, exact solutions of theeBwel-KdV equation may also
be used to understand the wave types and properties in feeedif plasma systems.

Soliton

Farkli Metodlar ile Schamel-KdV denkleminin Analitik C6zim leri: Tozlu Uzay Plazmasina
Uygulanmasi

Anahtar Kelimeler Ozet: igerisinde negatif ve pozitif yukli tozlarin yanindagdanis izotermal olmayan

Schamel-KdV denklemi, elektronlar barindiran tozlu uzay plazmasindaki dalgaaailikleri, Schamel-KdV den-

Tozlu uzay plazmasl, klemlerinin tam ilerleyen dalga ¢ozumleri kullanilarakéenmistir. Analitik gozimler,

Sok dalgasi, (G'/G)-genisleme methodunun farkli tipleri ve direk integrasyallanilarak bulunmus-

Soliton tur. lon-akustik dalgasinin lineer olmayan dind@infaz hizininVvy, plazma parametreleri
a, o, ve gy, ve kaynak terimig’'nun farkli dejerleri icin ¢alisiimistir. Bunun sonu-
cunda, farkl methodlardan elde edilen farkl analitik @@der ile farkl tirden dalgalar
gozlemledik ve sireksiz, sok veya soliton dalgasi bulddkal zamanda, yukarida ver-
ilen parametrelerin plazma icerisinde soliton tipi dadgai olusmasinda énemli bir rol
oynad@! sonucuna ulasiimistir. Bu parametreler@lbalarak sureksiz dalga plazma
parametrelerinin ve faz hizinin belli glerleri igin soliton tipi bir dalgaya donisir. Bun-
lara ek olarak, Schamel-KdV denkleminin tam analitik co#nmverilen bir plazmanin
Ozelliklerinin ve dalga tiplerinin anlasiimasi icin fdrlplazma sistemlerine de uygulan-
abilir.

1. Introduction wherea, b, and p are arbitrary coefficients. Note that we

, o ) reach to the Schamel equation whe#a- 0 [7, 8] and the
lon-acoustic wave consisting of nonlinear phenomena and i 4/ equation whera = 0 [9, 10]. Due to the various ap-

appearing in the different plasma systenif gnd fluid plications of Eqsl in the literature, many exact solutions

mechanics 7] is one of the fundamental problems. A ¢ ihe Schamel-KdV equation have been obtair@d7L
system which consists of the negatively and positively g 11-17).

charged dusts and nonisothermally distributed electrons
has a highly nonlinear behavior and it is represented with In this paper, we use three different types (&'/G)-
the Schamel-KdV equation which can be written in the expansion methods and direct integration to obtain the

following form [3-6] exact solutions of the Schamel-KdV equation. The
first method is so-called the originaG’' /G)-expansion
th‘f'aq)%(Dx"‘b(Dqu‘f' DDy = O, ) method described bylB]. Some applications of this
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method can be seen i1§-20]. Ref.[2]1] used different whereu = g—“. In order to obtain the exact solutions of the
form of the (G’ /G)-expansion method. Some application SchameI-KgV equation given by Eg.we will use four

of this method to the different nonlinear differential equa different methods which aréG/’G)-expansion method
tions can be found in19, 21]. The third type of the [18], different form of the(G' /G)-expansion metho®[l],
expansion method is called tH&'/G,1/G)-expansion (G'/G,1/G)-expansion method2p], and direct integra-
method which considers the generalization of the origi- tion. The general forms of the solutions will be obtained
nal (G'/G)-expansion method. As a pioneer work, two- from these methods directly without making any approx-
variable (G'/G,1/G)-expansion method was explained imation and we will apply them to dusty space plasma to
and applied to Zakharov equation i22]. There are sev-  understand the properties of shock waves and solitons.
eral studies related to this generalized method to obtain

the traveling wave solutions of the some nonlinear dif- 3. Exact Solutions of the Schamel-KdV Equation
ferential equations10, 20, 23-26]. Hence it would be
interesting to obtain the different forms of the traveling
wave solutions of the Schamel-KdV equation. These ex-
act solutions may be used to explain the properties of the
ion-acoustic waves arised in laboratory and astrophysical

The Schamel-KdV equation Egcan be converted into
following ordinary differential equation by using the tean
formationn = x—Vpt, ® = d(n),

plasmas. PP —Vp®' +adz @ 4 bdP' =0, 4
Higher order nonlinear solution of four-component dusty hered’ — 9@ |nt ting E .
plasma with nonisothermal electron had been studied in WNEre® = gy . integrating ¢ once gives

[27]. The authors of27] used the reductive perturbation o2\ s b

method to derive the Schamel-KdV equation and inves-  p®” —V,® + <> P2 4 () P2 +c=0, (5)
tigated the effects of plasma parameters, ratio of ion to 3 2

electron temperatures, mass and charge ratio, and the rgynerec is an arbitrary integration constant. If we change

tio of dust fo ion temper_atures, on sohtz_iry wave. They the variable using the definitiod = ®3 in Eq5, we get
had found the compressive and rarefactive solitons. The

effect of electron trapping on the traveling wave solution . - Vo ) a 3

was examined inJg] solving the Schamel-KdV equation W7+ — (2p> W+ <3p> Wi+

with time-dependent coefficients and they found the trav- b c

eling wave soliton solutions. The nonlinear behavior of <> Wiy~ =0 (6)
ion-acoustic wave contains lots of detail about the soli- 4p 2p

tary wave solutions in an unmagnetized plasma that is Now we will present some exact solutions of the Schamel-
the plasma consisting nonrelativistic drifting ions and re gy equation.

ativistic drifting electrons. The Schamel-KdV equation
was also derived for this kind of plasma by reductive per- 3.1. Exact solutions of the Schamel-KdV Equation by
turbation methodZ9]. Analytic solutions of the equation using (G'/G)-expansion method

were obtained by using a linearized principle and the slow

ion-acoustic monotonic double layers were suggested inEql can be solved by using théG'/G)-expansion
[29]. method with different transformationd]. To have a
The body of our paper is structured in the following order: self consistent paper, we also give the solution oflEq.
Methods and their detailed structures are given in Section by using(G'/G)-expansion method with a transformation
2. In Section3, we apply the different methods, intro- N = X— Vpt. Balancing the term&4¥” and W* in Eqs,
duced in Sectior2, to the Schamel-KdV equation to find we get the positive balancing parametes 1. Thus, we
the exact solutions. Different forms of the exact solutions get the following form of the solution:

are derived from these methods. The analytic solutions o

obtained here are used in dusty space plasma in Settion win)=a () + . (7)
The parameter dependencies of the discontinuity, shock G

waves, and solitons are explained in detail. Finally, we

. " Substituting Ed/ and its derivatives into Ef, we get a set
conclude our results in Sectién 9Ed 4 9

of algebraic equations. From these algebraic equations,
we finday, ag, A, U, b, andc as

2. Methods
Let oy — £ 2V PV
2a
_ 15
P(u7ut7uX;u[tauXt?uXX7"')_Oa (2) aozs—a(vpj:Z/\ﬁ/pr), (8)
be a partial differential equation (PDE) where= u(x,t) A2 4y — Vo b 1622 0
is an unknown function. By using the transformation —Ap= ﬂ)’ - _75\/p’ =0

u(x,t) =u(n) wheren = x—V,t in Eq2, we obtain an or-
dinary differential equation (ODE) in the following form: ~ Substituting these expressions in Ecand the corre-
sponding solution of ODE, then using the transformation
P(u,—VpU, u’,szu”, —Vpu',u",..) =0, (3) W2 = ®, we will have the following types of solutions of
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the Schamel-KdV equation: ¢ e cisinhy/—un +cpcoshy/—pn
G cicoshy/—un +czsinhy/—pn
Case I:WhenA? —4u >0 _
Group I:
15 Vp / 2
o) = |40 (F (vpiz/\m) 15,/ (G | 15V,
G o(n)= |+ ) +=2 . (14)
2a G 8a
where Group II:
&\ _ VA2-4u [ cisinh}\/A2—4un+cycoshi/A2—4un | ) .
<G) o 2 (clcosh%\/A2—4un+czsinh%\/)\2—4ur7 2: ®(n) = (125)
-1
Case Il: WhenA2 —4pu <0 i15v Ve (G + Vo Vo (G + 15|
2a G 64ap G 8a
15,/pVp /G
d)(n)_[ VP <G> (Vp:i:Z)u/pV) ,(10) Case Il: When—p < 0
2a In this case
where
G —C1Siny/HnN +c2cos, /[N
¢\ _ —clsinzx/4u /\2n+c20052 4u—A2n A (G) :\/Ij( -
(G) = ( S Ry /S ERRYSPOR Sy ) 5. C1Cos,/in +¢czsin,/in
Group I:
3.2. Exact solutions of the Schamel-KdV Equation 2
by using different form of the (G'/G)-expansion () = L5V (G’) L1V (16)
method 2a G 8a
In order to have an analytic solution of ODE, first of all, Group Il
we balance the terms and get the following form of the
solution ®(n) = (17)
2
G G\ -1 L 15, /Vp (G L 1% (G *1+ 15V,
Yin)=a <G> +ap+0a_1 (G) . (11) 2a G 6dap '\ G 8a :

Substituting EdL1 and its derivatives into E, we find a 3.3. Exact solutions of the Schamel-KdV Equation by
set of of algebraic equations. The parametarg, a_1, using (G'/G,1/G)-expansion method
U, b, andc can be found from the algebraic equations:

The following form of the solution is reached using the
Group I balancing result

15\/ IOV 15V, W(n)=a1p+ao+ b (18)
01— 00: Q,

Substituting EdL8 and its derivatives into Ef, we have

=0 5 (12) a set of algebraic equations. By solving the algebraic
H= ~ Yo b= 16 c=0. equations, we getdi, &, b1, A, b, andc.
16p’ 75V
Group II: Casel:A <0
15,/pV, 15V
o 15\/pr o 15\/p a]_:i \/ﬂ7 a0:7p7
oy == oA a0778a , 4a 8a
15,/16u2p? + w2
150 NiCTr:
3 V, 2
ue Vo o le® 225 AoV o 1y
32p’ 75V, 51222 4p 75V,

Substituting these results into Ed. and the corre- ~ Substituting Edl9into Eq18we have the solution of E6.
sponding solution of ODE, then using thHé? = ®, and then by using the transformatidh= ®2, we get the
the following types of solutions for the Schamel-Kdv solution of Eql

Equation will be found:

d(n) = (20)
2
Case I: When—u >0 15, /16u2p2 + w2
In this case ilsgqﬂr 12\;‘3 + % e
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whereg andy are defined and given ir2g)].

Similarly, substituting Ed.8 and its derivatives into E,

it yields a set of algebraic equations. By solving the
algebraic equations we firad, ap, b1, A, b, andc.

Casell: A >0
_15v%

15,/pV,
a1::|: i pa - )
da 8a

15,/16u2p? — w3

=+ 21
bl sa ) ( )
\V/ 2
:_i, :_&’ C—O_
4p 75V,

Substituting EQR1into Eq18we have the solution of EG.

and then by using the transformatidh= tD%, we obtain
the solution of Edl as

®(n) = (22)
2
15./0V 15, /16u2p? — w2
VP, V| T e
4a 8a 8a

whereg andy are defined inZ2].

At last, substituting E4.8 and its derivatives into E§,

we get the algebraic equations and by solving them we

find ag, ag, b1, A, &, Vp andc.

Caselll: A =0

I & _
al*:l: b ) 30—07

6copp—3cip
b )
a= O7 Vp: O,

by =+ (23)

A=0, c=0.

Substituting EqR3into Eq18we have the solution of E§.

and then by using the transformatigh= ®3 , the solution
of Eqlis given as

2
[-3 /6 —3¢?
¢(n)={i Tp(pj: Czuprlpw] , (24)

where@ andy are defined inZ2).

3.4. Exact solutions of the Schamel-KdV Equation by
using direct integration

equation [LQ]. Starting from Ecp and recallingc ascy,
we get

pd” —Vpd + (2,;‘> P74 (2) P>+ =0, (25)

wherec; is an arbitrary integration constant. Let us multi-
ply Eq25 by @’ and then integrate it once with respect to
n. We find [L0].

N2 (PN (825, (Vo) g2
(@)= <3p>¢ (15p>¢ +( p)®
(2)e- (%)
p p
wherec; is an integration constant. Using the new defini-
tion of potential = tb%, Eq26 becomes

W=t (27)

\/(12,0)”’4 (%)w%(z—pp)wt (;—;) = (%)w

Eq27is now an integrable equation if we set all the inte-
gration constants to be zero. After the integration of the
equation, we have reached the following exact solution of
the Schamel-KdV equatiori(]

2
2A

= V Vi ’
AeTV BN BtV | C

where A = 225/Z,B = 16a® + 75bV),C = 1208V, and
n = x—Vpt [10].

®(n)

(28)

After doing some straightforward calculations, Egjcan
be written in terms of the hyperbolic and trigonometric

functions in case oﬁ’) >0 andX—g < 0, respectively

®1(n) = (29)

2
2A
(A+B)coshy/%2n = (B—A)sinhy /e +C|
and

D,(n) =

2
2A
(A+B)cos\/ 30 £i(B—A)sin/ &0 +C

4. Numerical Investigation of the Wave Type and Ex-
posing the Effect of Plasma Parameters on the
Wave Type in the Four-Component Dusty Plasma

(30)

There are many different methods defined in literature to

solve the nonlinear differential equation, analyticallye Investigating the physical properties and dynamical struc
can use these methods to solve the analytic solution of theture of the dust acoustic wave and dust-ion acoustic wave
differential equation but there is also possibility to have observed in the physical and astrophysical plasma can be
the analytic solution of the nonlinear differential eqoati handled by considering the higher order nonlinear terms
with direct integration. Here we will use the direct inte- in plasma equations. The presence of nonisothermally dis-
gration to obtain the exact solution of the Schamel-KdV tributed electrons, the positively charge warm dust, and
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negatively charged cold dust introduce the Schamel-Kd\
equation in a four-component dusty plasn2x]] The 4e+05 ‘ ‘ V02
Schamel-KdV equation is derived by using the reductive
perturbation techniqu&[] and it is generalized by adding
higher order terms, given by Elq.The coefficients of this

equation can be given as
3 g 2e+05— -
a = =X
2 1 [ V=026 |
b = XZ)% (31) 1e+05— [ -
p — XZ; | Vp=_0,32 |
| | N
whereXi, Xo, andXs are expressed in terms of the plasma ° =T : o, ‘ 10 ‘ 20
parameters and some constants. They are giveizas | Figure 1. The variation of potentiab is plotted as a
3 function ofn for the different values of phase speed. The
XL = 2YHe02X; other parameters agg = 0.8, le = 0.2, 0 = 0.5, g4 =
o3Vv3 0.001,a =1,y = 2.1, integration constantg = 1, ¢ =
X, = —=2 8% (32) _
2(02 + 120) 0, and source: = 1.
3 a’us 4a0y4
2
= U—Ho?P— - |1- 1 , . .
%3 Hi—He Vi ( o2 Vjaq left part of Fig2 shows that the strength of shock wave in-

creases with increasing but it decreases with increasing
where aq, 0, Vp, a, andy are the ratio of dust to ion g seen in the upper right part of the same plot. We also
temperature, the ratio of ion to electron temperature, the analyze the shock properties using the appropriate values
phase velocity, mass and charge ratio, and constant reof the ratio of dust to ion temperatugg and constany.
spectively. gy =1— 3024, pij = S0, fie = 0 and  |tis seen in the lower panels of Fithat the strength of
Uz = 1+ Le — i [27)]. Z1 is the number of electrons stay- shock increases with increasiiag but it decreases with
ing on negative dust andhg is the negative dust number increasing constart
in an equilibrium condition.

In this section, we use the analytic solutions of the

Schamel-KdV equation, found in Sectidnto have a deep T s e T T ]
understanding of the properties of shock waves and sol 0000 52 e N R o=05 ]
tons produced in the plasmas. The effects of mass an om0 (0o " 15 1500q 200 o=056]
charge ratio, ratio of dust to ion temperature, phase ve I ) Jaooog- cioeg{
locity, ratio of ion to electron temperatures, and constant S R e
in the analytic solutions are studied. Examination of the T o0 w2 a0 o0 w1 =@
nonlinear properties of the wave in a dusty plasma is ar 222227 T ohold izzzo vios | — n-is
important contribution to the literature for understardin 20000 o000 Lol b=17
of the propagation of wave inside the plasma and wave E iso0- 700 o, 0001 eyl
type observed in plasma. In order to find out the effect of o000 1°°F o723 ]
the phase velocity of the wave on the wave properties, we % | " ;100055 T
plot the potentiakb vs. the variable) for various values w00 02 00 0
of the phase speeds seen in Fig. Figure 2. Same as Fid.but it is for different values of

. . . plasma parameters such as mass and chargeoratie
4.1. Numerical analysis of the wave in the plasma us-  ratio of ion to electron temperaturg the ratio of dust to

ing the analytic solution obtained by the(G’/G)- ion temperatur@y, and constany.
expansion method

The shock wave is observed from the analytic solu,tion of 4.2, Numerical analysis of the wave in the plasma
the Schamel-KdV equation obtained by using tH&)- using the analytic solution obtained by the
expansion method in a four-component dusty plasma. The (G'/G,1/G)-expansion method

phase speed gives the rate of wave which is propagating

in plasma. As it is seen in Fit}. the strength of shock in-  In this subsection, we investigate the physical properties
creases with decreasing in the phase speed. The decreasend parameter dependencies of the dusty space plasma by
in the phase speed causes the abundance of the electronsing the analytic solution obtained by th@&'/G,1/G)-
density in the plasma. Therefore the electron Deby radius expansion method in Sectidh3. Here we only focus
gets smaller and the weaker electric field due to the spaceon the solution EQO which may define solitons in space
electron is observed in a dusty space plasBih [ plasma.

In Fig.2, we study the strength of shock wave in the dusty To examine the type of soliton and effect of the phase
space plasma taking into account the effects of different velocity on it, we plot the potential as a function pf
plasma parameters such as o, gy, andy. The upper for the various values of phase spe&fs seen in Fig.
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The phase speed varies fromi@o 046. It is found that type solutions are obtained from the analytic solution and
we do not observe any soliton or shock wave but we find they are given in Fid for the various values of phase
strong discontinuity wave. The discontinuity locations speeds with the fixed parameters = 0.8, pe = 0.2,
move toward to lower values of with increasing phase o0 = 0.5, g4 = 0.001,a = 1, andy = 2.1. We illustrate
speed. On the other hand, the location for discontinuity the effect of the phase speed on the soliton amplitude
moves to the right (toward to the bigger value 1pf and width and it is found that increasing the phase speed
when the source term gets bigger. It is also noted that cause to decrease in the amplitude of soliton and it also
all plasma parameters and integration constants have aaffects the location of maximum amplitude of the soliton.
strong influence on the location of discontinuity but the It slightly shifts to the left with the increasing phase sphee
type of analytic solution has never changed.

T Vp=2.0

le+12 T T T T T T T -
Vp=0.26
V=042 155 -

V =0.22 _
V_=0.46 i V=0.18 V225
¥ L

le+06E -
1+ Vp—Z,S —

@(n)

®(n)

Vp=0414 L Vp:2.75

V =3.0
0.5— —

‘ ! ‘
0
! ! ! ! ! ‘ -10 0 10

2 4 6 8 10 12 . . n . .
. . . _ Figure 5. The ion-acoustic solitary potentid versus
Figure 3. The variation of solution with the phase speec n is plotted for the various values of the phase speeds

is given for the paramete;s. =0.38, He = 0.2,0 =0.5, (Vp > 2) with the fixed plasma parametgus= 0.8, i =
gg = 0.001,0 =1,y = 2.1, integration constantg = 1, 0.2,0 = 0.5, 04 = 0.001,a = 1, andy = 2.1.
¢, =0,c=0, and sources = 1. ’ ’ ' '

Based upon the solitons represented by the analytic solu-
tion of the Schamel-KdV equation obtained by using the
direct integration, we investigate the effects of the phase
I ] speed (whel, < 2) and plasma parameters which are the
Le+06 E ratio of dust to ion temperaturgy, the mass and charge ra-
tio a, and the ratio of ion to electron temperatareFig .6
depicts the variation of electrostatic potential as a func-
13 w00 tion of n for cold, adiabatic, and isothermal dusty space
plasma. It is clear from the figure that the plasma with su-
personic phase speéd, > 1.235) has solitary wave solu-
tion but it creates some discontinuities whgn< 1.235.

Hzi uzlb

(n)

1e-06F- E

\ ‘ I ‘ !
10 0 10 ‘ VrL229y -y a7

Figure 4. Same as Fi@. butn it is for different values of rerod
source terms which appear in the analytic solution of
the Schamel-KdV equation with the fixed phase speed
Vp = 0.46.

4.3. Numerical analysis of the wave in the plasma us-
ing the analytic solution obtained by the direct in- 1
tegration

Considering the negatively charged cold dust and warme: -10 | 5 ‘ s

adiabatic positively charged dust in the space plasm: Figure 6. The variation of electrostat|c potenti@l with

gives more nonlinear behavior of system. Here the phase velocities is given for the fixed values of plasma
nonlinear variation of the dusty space plasma is analyzed parameters and integration constant. Hare- 0.8, [l =

to have a deep understanding of the dust-acoustic solitary0.2, 0 = 0.5, 04 =0.001,a0 =1,y=2.1,andc=1

wave by using the analytic solution of the Schamel-KdV

equation obtained from the direct integration. The saglitar Following the different plasma parameters, we seek a soli-
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tary wave in dusty space plasma. The different values tons and their dynamical responds to the different plasma
of the ratio of dust to ion temperatumg, the mass and  parameters and integration constants. It is found that the
charge ratiax, and the ratio of ion to electron temperature solitary wave is only observed from the analytic solu-
o play an important role to introduce soliton in plasma, tion obtained by the direct integration. While the shock
seen in Fig¥ and 8. It is important to notice that we  waves (rarefactive solitons) are detected from the ana-
have the critical values for these plasma parameters to obiytic solutions obtained by theéG'/G)-expansion method
serve the soliton in dusty plasma. These critical values areand different form of G'/G)-expansion method, we have
g4 > 0.51,0 > 1.2, ando > 2.0. Under these parameters also found some discontinuity waves from the analytic
it seems plausible that one can produce the soliton in the solution of the Schamel-KdV obtained B%'/G,1/G)-
space plasma using the analytic solution of the Schamel-expansion method(G'/G, 1/G)-expansion method does

KdV equation obtained from the direct integration. not give any solitary wave solution for the Schamel-KdV
equation.
In addition to the above findings, we have also studied the
[ oo 0708t ] properties of shock waves, solitary waves, and discontinu-
levog E ity waves in the presence of variation of plasma parame-

ters and integration constants. It is seen that the plasma
parametersr, o, dq, andy, and integration constants,

C2, ¢, andu not only modify the strength of shock wave
(rarefactive soliton) and discontinuity but they also have

na N5z huge impact on the amplitudes of solitons observed in the
0,058 dusty space plasma.

Finally, it is interesting to point out that the solitary veav
solutions can only be found from the analytic solution ob-

: ‘ | ‘ | tained by the direct integration. These solitons arise un-

10000F 3

(n)

0.0001F 3

_ 10 o v der some critical conditions of the plasma parameters and
Figure 7. The same as Fi§.but it is for the different phase speed. The effects of plasma parameters and phase
values ofag andVp = 1.1. speed are shown to significantly change the type of solu-

tion. The discontinuity wave turns into the solitary wave
solution when the phase speed/js> 1.235, the ratio of
dust to ion temperature & > 0.51, the mass and charge
ratio isa > 1.2, and the ratio of ion to electron tempera-
ture iso > 2.0 with the fixed values of the other plasma
parameters and integration constants.

In conclusion, it is important to know the different types
of analytic solutions of the Schamel-KdV equation, which
includes higher order nonlinear terms. The analytic solu-
tions can be applied to discover the properties of the shock
and solitary waves observed in laboratory and astrophysi-
cal dusty plasmas.

1e+08 T 1e+060

10000F 3 1000F

»(n)

E 2 0.001F
0.0001F =

L J 1e-06F
leogrl 1 L3 [ B !

10 o 10 10 o 10 References
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