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Abstract: The Boltzmann-Gibbs relative entropy provides the difference between the off-
equilibrium and equilibrium free energy terms associated with Boltzmann-Gibbs entropy.
In this work, we studied whether this physical meaning can be given to Rényi relative
entropy definition. We find that this is possible only in the limit as q approaches to 1.
This shows that Rényi relative entropy has a physical meaning only when the system can
already be explained by ordinary Boltzmann-Gibbs entropy. We also note that this result
is independent of the internal energy constraint employed.

Rényi Göreceli Entropisinin Fiziksel Anlamı

Anahtar Kelimeler
Rényi göreceli entropisi,
Serbest enerji,
Entropi maksimizasyonu

Özet: Boltzmann-Gibbs göreceli entropisi, Boltzmann-Gibbs entropisine ilişkin denge
dışı ve denge durumları arasındaki serbest enerji farkını vermektedir. Bu çalışmada, böyle
bir fiziksel anlamın Rényi göreceli entropi tanımına verilip verilemeyeceğini araştırdık.
Bu türden bir fiziksel anlamın sadece q değeri 1’e yaklaştığında mümkün olduğunu bulduk.
Bu sonuç göstermektedir ki, Rényi göreceli entropisi sadece sistem zaten Boltzmann-
Gibbs entropisi tarafından açıklanabildiğinde bir fiziksel anlama sahip olmaktadır. Ayrıca
bulunan bu sonucun kullanılan iç enerji kısıtından da bağımsız olduğu gösterilmiştir.

1. Introduction

Although Rényi entropy has been introduced by A. Rényi
as early as 1961 [1], only recently some authors have
studied Rényi entropy in the framework of a generalized
thermostatistics [2, 3]. Lenzi et al. [2] and Bashkirov [3]
for example showed that it results in a power-law equilib-
rium distribution by maximization. In this work, we will
focus on the physical meaning of Rényi relative entropy
(also called divergence or cross-entropy) in the framework
of a generalized thermostatistics. Rényi relative entropy
has been used to study Hadamard channels [4], squashed
entanglement [5], conformal field theories [6], entropic un-
certainty relations [7] and quantum coherence [8]. Before
proceeding further, it is important to assess the importance
of relative entropy in entropy maximization related issues
and in thermostatistics in general.For this purpose, let us
write Boltzmann-Gibbs (BG) entropy which reads

SBG(p) =−
W

∑
i

pi ln pi, (1)

where pi is the probability of the system in the ith mi-
crostate, W is the total number of the configurations of
the system. Note that Boltzmann constant k is set to unity
throughout the paper. The corresponding relative entropy is
called Kullback-Leibler entropy (K-L) [9] and it is given by
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K[p‖q]≡∑
i

pi ln(pi/qi). (2)

Note that it is a convex function of pi, always non-negative
and equal to zero if and only if p= q. The probabilities qi’s
are called prior or reference distributions. K-L entropy can
be thought as a generalization of BG entropy in the sense
that both are equal to one another, apart from a multiplica-
tive constant, when the prior distribution in relative entropy
definition is known with certainty i.e., a probability of one
is assigned to it. Therefore, it is always possible to obtain
BG entropy as a particular case of corresponding relative
entropy expression, so called K-L entropy. The converse
is not true since K-L relative entropy is a two-probability
distribution generalization of BG entropy. This situation
can be compared to the case of Rényi and BG entropies:
Rényi entropy is considered to be a generalization of BG
entropy simply due to the fact that its parameter can be
adjusted in such a way that it results in BG entropy as a
particular case. Whenever the Rényi index q becomes 1,
we obtain BG entropy as a particular case. In this sense,
any relative entropy definition associated with a particular
entropy, be it Rényi or Tsallis entropies, is a generalization
of that particular entropy in terms of probabilities whereas
generalized entropies such as Rényi or Tsallis entropies
are seen to be generalization in terms of some parameter
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q although the nature of this parameter is not the same
in these aforementioned cases. Second issue regarding
the importance of the concept of relative entropy is that
ordinary BG entropy cannot be generalized to continuum
rigorously just by changing summation to integration since
it fails to be invariant under different parametrizations.
Moreover, it will not be bounded neither from below nor
above (see Ref.[10] and references therein). Contrary to
these problems with ordinary BG entropy in its generaliza-
tion to the continuum case, the relative entropy definition
does not face any of these problems. Therefore, relative
entropy is more general in its domain of applicability since
it can be used in the continuum case unlike ordinary BG
entropy. All of the remarks above can be summarized by
the statement that the concept of relative entropy is a gen-
eralization of the corresponding entropy definition both in
terms of probability distributions and continuum case. It is
our aim in this paper to present some results related to the
definition of Rényi relative entropy concerning its physical
meaning and relation to internal energy constraints. But
since Rényi relative entropy is understood to be a gener-
alization of Rényi entropy, what can be said about Rényi
relative entropy has important bearings on Rényi entropy
itself. The outline of the paper is as follows: In the next
Section, we revisit the physical meaning of the ordinary
relative entropy in the case of BG entropy. We then study
Rényi relative entropy in a thermostatistical framework in
Section 3. The discussion and conclusion will be discussed
in Section 4.

2. Physical Meaning of Kullback-Leibler Relative En-
tropy

In order to study the physical meaning of any relative en-
tropy in a thermostatistical framework, one has first to
obtain the equilibrium distribution associated with the en-
tropy of that particular thermostatistics. In this Section,
we will maximize BG entropy subject to some constraints
following the well known recipe of entropy maximiza-
tion. Let us assume that the internal energy function is
given by U = ∑

i
εi pi, where εi denotes the energy of the

ith microstate. In order to get the equilibrium distribution
associated with BG entropy, we maximize the following
functional

Φ(p) =−
W

∑
i

pi ln pi−α

W

∑
i

pi−β

W

∑
i

εi pi, (3)

where α and β are Lagrange multipliers related to normal-
ization and internal energy constraints respectively. Equat-
ing the derivative of the functional to zero, we obtain

δΦ(p)
δ pi

=− ln p̃i−1−α−βεi = 0. (4)

Tilde denotes the equilibrium distribution obtained by the
maximization of BG entropy. By multiplying Eq. (4) by p̃i
and summing over i, using the normalization and internal
energy constraints, we have

α +1 = S̃BG−βŨ . (5)

Substitution of Eq. (5) into Eq. (4) results in the following
equilibrium distribution

p̃i = e−S̃BG eβŨ e−βεi . (6)

If we now use the equilibrium distribution p̃ as the refer-
ence distribution in K-L entropy, we can write

K[p‖ p̃] = ∑
i

pi ln(pi/p̃i). (7)

The equation above can be rewritten as

K[p‖p̃] =−SBG−∑
i

pi ln p̃i. (8)

We then insert the equilibrium distribution given by Eq.
(6) in the equation above to find

K[p‖p̃] =−SBG−∑
i

pi(−S̃BG +βŨ−βεi). (9)

Carrying out the summation, we have

K[p‖ p̃] =−SBG + S̃BG−βŨ +βU, (10)

which can be cast into the form

K[p‖ p̃] = β (FBG− F̃BG). (11)

The free energy term is given as usual by F =U−SBG/β .
The result above shows us that the physical meaning of
the K-L entropy is nothing but the difference of the off-
equilibrium and equilibrium free energies when the refer-
ence distribution is taken to be the equilibrium distribution
given by Eq. (6) above. This result can be used, for exam-
ple, to study equilibrium fluctuations or non-equilibrium
relaxation of polymer chains [11].

3. Rényi Relative Entropy as a Generalized Free En-
ergy

After studying the physical meaning of K-L entropy in the
previous Section, we are now ready to study the meaning
of Rényi relative entropy in generalized thermostatistical
framework. In order to do this, we begin by writing Rényi
entropy [1]

SR(p) =
1

1−q
ln(∑

i
pq

i ), (12)

where the parameter q is an arbitrary real number. Rényi
entropy is equal to or greater than zero for all values of
the parameter q and concave for q≤ 1. It reduces to BG
entropy given by Eq. (1) as the parameter q approaches 1.
Using internal energy constraint in terms of escort prob-

abilities i.e., Uq =
∑
i

εi pq
i

∑
j

pq
j

, the functional to be maximized

reads

ΦR(p) =
1

1−q
ln(

W

∑
i

pq
i )−α

W

∑
i

pi−β

W
∑
i

εi p
q
i

W
∑
i

pq
j

. (13)
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We take the derivative of this functional and equate it to
zero in order to obtain the following

δΦR(p)
δ pi

=
q

1−q
p̃q−1

i

∑
j

p̃q
j
−α−β

∗qp̃q−1(εi−Ũq) = 0,

(14)
where β ∗ is given by

β
∗ =

β

∑
j

p̃q
j
. (15)

Multiplying the equation above by p̃i and summing over
the index i, we find

α =
q

1−q
. (16)

Note that tilde denotes that the distribution is calculated
at equilibrium. Substituting this explicit expression of α

into Eq. (14), we calculate the explicit form of equilibrium
distribution . It reads

p̃i = (
1

e(1−q)S̃R
− (1−q)β ∗(εi−Ũq))

1/(1−q). (17)

The Rényi relative entropy [19] reads

Iq[p‖r] =
1

q−1
ln(∑

i
pq

i r1−q
i ). (18)

This definition of Rényi relative entropy too is always non-
negative and equal to zero if and only if p = r. It also
reduces to K-L entropy as the parameter q approaches 1.
We then substitute equilibrium distribution in Eq. (17) into
the relative entropy definition above and obtain

Iq[p‖p̃] =
1

q−1
ln(∑

i
pq

i ((
1

e(1−q)S̃R
−(1−q)β ∗(εi−Ũq)))).

(19)
Having summed up over indices, we obtain

Iq[p‖p̃] =
1

q−1
ln(e(1−q)(SR−S̃R)− (1−q)β ∗∗(Uq−Ũq)),

(20)
where β ∗∗ is given by

β
∗∗ =

β

∑
j

p̃q
j
∑

i
pq

i . (21)

Inspection of Eq. (20) shows that one cannot cast it into
the form of free energy differences associated with Rényi-
related quantities due to the logarithmic term involved.
Indeed, one needs to apply Taylor expansion two times,
first to the exponential term in the parentheses and second
to the logarithmic term itself. Having made these two
Taylor series expansions about q = 1, we finally arrive a
familiar result i.e.,

Iq[p‖ p̃] = β (FBG− F̃BG), (22)

where free energy expressions are exactly the same as
in the BG case. This result is trivial and equal to the
expression obtained in Section 2 by using BG entropy

and K-L entropy. It should be noted that the first Taylor
expansion turned the Rényi entropy into BG entropy while
second Taylor expansion turned the Lagrange multiplier
and internal energy functions into their corresponding BG
values.
It is important to underline one crucial point: we have
maximized Rényi entropy with escort distribution and used
this equilibrium distribution as the reference distribution
for the associated relative entropy expression. However,
if we try to maximize it with ordinary constraint, then we
obtain

p̃i = [(1−β
q−1

q
(εi−Ũq))∑

j
p̃q

j ]
1/(q−1). (23)

for the equilibrium distribution. It is obvious that the
substitution of Eq. (23) into relative entropy expression
given by Eq. (18) does not yield to a result which can
be written as difference of free energies for all q values.
Again, the relative entropy will be a generalized free energy
only in the limit as q approaches 1. This shows that the
choice of internal energy constraint does not matter at all in
assessing the physical meaning of Rényi relative entropy.

4. Discussion and Conclusion

The relative entropy acts as a generalized free energy in the
ordinary thermostatistical framework when one makes use
of the associated equilibrium distribution as the reference
distribution. In this Letter, we investigated whether Rényi
relative entropy can play the role of a generalized free
energy in a thermostatistical framework. We found that
this is possible only in the limit as q approaches to 1. This
shows that Rényi relative entropy has a thermostatistical
meaning only when the system is in a state of ordinary
BG thermostatistics. This can be taken as an indication
of Rényi entropy being an equilibrium entropy and noth-
ing but an approximation to ordinary BG thermostatistics
since any relative entropy definition is a two-probability
generalization of the associated entropy definition. The
choice of internal energy constraint too does not solve the
problem. Still, relative entropy acts as a generalized free
energy only in the q=1 limit. In other words, it is redundant
to use Rényi relative entropy in calculating nonequilibrium
fluctuations of polymer chains, since we already have K-L
entropy for this purpose [11]. It can also be noted that the
results presented in this paper are also supported by the
original methodology of orthodes devised by Boltzmann
when applied to Rényi entropy since it leads one to deduce
that Rényi entropy is an equilibrium entropy [13]. It is
interesting to note that this result has also been reached
independently in Ref. [14] by using a different method
than the method of orthodes employed in Ref. [13] thereby
making this view even stronger. Our approach to this issue
explains one more difficulty arising from the comparison
of the works of Refs. [13] and [14], since in the former
escort distribution has been employed whereas ordinary
constraint has been used in the latter. In our view, it is not
surprising that the same conclusion has been reached con-
cerning Rényi entropy being an equilibrium entropy since
associated relative entropy possesses a physical meaning
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G. B. Bağcı / The Physical Meaning of the Rényi Relative Entropy

in both cases only when the parameter q approaches 1,
thereby making the difference in employed constraints re-
dundant. Apart from the verification of this result, it can
be noted that the novelty here is the understanding of this
entropy to be an approximation to the ordinary BG entropy
in the thermostatistical framework in a generalized setting
of the definition of corresponding relative entropy. Lastly,
Misra et al. recently showed that the relation between the
free energy difference and the Rényi relative entropy can
be restored at the expense of introducing an ad-hoc term
∆
′
α (see Eq. (7) in [15]). This result is consistent with ours,

since we have shown that the free energy difference cannot
be equal to the Rényi relative entropy per se. However,
Misra et al. does not notice that they break a fundamen-
tal connection with the statistical mechanics by doing so:
these authors always use the internal energy definition as

Uq =
∑
i

εi pq
i

∑
j

pq
j

, which yields Uq =
∑
i

εi pi

∑
j

p j
in the limit q→ 1. In

other words, their maximizing functional (i.e. just before
the maximization is carried out) includes an internal energy

definition Uq =
∑
i

εi pi

∑
j

p j
which does not correspond to the or-

dinary functional of the Boltzmann-Gibbs case, since the
normalization is not assumed in this functional but more
so right after the maximization process. Therefore, these
authors recover the link between Boltzmann-Gibbs and the

Rényi entropy by assuming
∑
i

εi pi

∑
j

p j
= ∑

i
εi pi even before the

normalization is carried out. This of course does not make
any sense for a consistent thermodynamics. Our result,
however, is independent of the internal energy constraints
used.
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