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Abstract
Feature selection, a common and crucial problem in current scientific research, is a crucial
data preprocessing technique and a combinatorial optimization task. Feature selection
aims to select a subset of informative and appropriate features from the original feature
dataset. Therefore, improving performance on the classification task requires processing
the original data using a feature selection strategy before the learning process. Particle
swarm optimization, one of the metaheuristic algorithms that prevents the growth of com-
puting complexity, can solve the feature selection problem satisfactorily and quickly with
appropriate classification accuracy since it has local optimum escape strategies. There are
arbitrary trial and error approaches described separately in the literature to determine
the critical binary particle swarm optimization parameters, which are the inertial weight,
the transfer function, the threshold value, and the swarm size, that directly affect the per-
formance of the binary particle swarm optimization algorithm parameters used in feature
selection. Unlike these approaches, this paper enables us to obtain scientific findings by
evaluating all binary particle swarm optimization parameters together with the help of a
statistically based factorial design approach. The results show how well the threshold and
the transfer function have statistically affected the binary particle swarm optimization
algorithm performance.
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1. Introduction
Prediction using train data and useful features is one of the fundamental goals of data

modeling and classification. Large datasets with high dimensionality and a comparatively
small number of samples constitute a severe problem for machine learning applications.
Recent advances in science and technology have resulted in a rapid increase in the amount
of data. As a result, these application methods typically deal with cases with thousands
of features. In the literature, the term used for this problem is the curse of dimensionality
[5,6]. Reducing the dimensionality of datasets is crucial for machine learning methods such
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as classification [7, 43]. Under the topic of feature extraction and feature selection, two
main techniques for dimensionality reduction have been recommended to improve classifi-
cation accuracy (ACC) performance and reduce computational complexity [54,62]. In the
feature extraction process, fewer features are produced by combining existing features,
and as a result, these features include the majority of the data present in the original
features. However, a subset of the original features is selected by removing meaningless
and unnecessary features in feature selection.

The best feature sets are usually chosen using filter, wrapper, embedding, and hybrid
approaches. The filter approach assesses feature importance without utilizing any learning
method. As a result, this approach produces models that are frequently quick. Accord-
ing to information criteria, the features are assessed and ordered in this approach, and
the features with the highest value are selected [30]. There are two types of filter-based
approaches: univariate and multivariate. According to a particular criterion, information
gain [42], mutual information [64], Laplacian score [21], and Fisher score [19], the univari-
ate filter approach considers the suitability of features to the target class. On the other
hand, a multivariate filter approach has been proposed that addresses both unrelated and
unnecessary features in sorting techniques and aims to evaluate feature dependencies to
some extent, such as minimal redundancy maximal relevance [38], relevance redundancy
feature selection [17], normalized mutual information feature selection [15], and Hilbert-
Schmidt independence criterion [70].

In search processes, a specific learning model is utilized to assess a subset of features to
select a feature set with the highest ACC in the wrapper approach, where a classifier such
as the Support Vector Machine (SVM) is utilized and trained to assess several significant
features. Most wrapper approaches use iterative search processes, in which each iteration
of the learning model is used to direct the population of solutions in the direction of
the best solution. However, these models often incur high computational costs since the
wrapper approach is a learning model in the search process [45].

The hybrid approach is a compound of models that tries to take advantage of the filter
and wrapper approaches. This approach primarily concentrates on attaining the best
possible performance with a particular learning algorithm and time complexity, like a
filter-based approach. The embedded approach considers the feature selection issue as a
part of the machine learning method. In this approach, the final feature subset is searched
using a machine learning method.

The selection of a feature subset is an NP-hard problem. The total search space to find
the most related and non-redundant features, including all possible subsets, is 2n, where
n is the number of original features. The most suitable features are determined through
search; however, this is typically not computationally possible. Searching for a solution is
both computationally feasible and high-quality, as evaluating every possible subset would
be highly costly.

The simplest method is finding the best subset by evaluating each feasible subset using
a thorough search approach. This approach ensures an optimal feature subset, but it takes
much work to identify the optimal. The metaheuristic approaches, which include different
nature-inspired algorithms such as Particle Swarm Optimization (PSO), are methods for
solving NP-hard and complex optimization problems. These algorithms are frequently
used in feature selection problems to prevent the growth of computing complexity [3,52,63].
In addition, these algorithms can satisfactorily and quickly resolve the issue of feature
selection with the convenient ACC since these algorithms have strategies to escape from
the local optimum [45].

We acknowledged a wrapper approach by using PSO for the feature selection prob-
lems. The PSO algorithm discussed in this paper is a powerful optimization method. The
selection of the final feature subset has recently been optimized by using this optimiza-
tion method by several researchers. Huang and Dun [23] proposed a hybrid approach for
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parameter optimization and performance improvement of feature selection using a combi-
nation of PSO and SVM. Unler et al. [58] presented a novel search method that merged
the filter approach with the PSO-based wrapper approach to select the final feature sub-
set. Xue et al. [67] introduced unique starting approaches and the best particle update
techniques to reduce computing complexity. Moradi and Gholampour [36] aimed to de-
velop a new local search method that includes the PSO algorithm to select a subset of
related and non-redundant features by integrating filter and wrapper approaches. Jain et
al. [25] eliminated unnecessary and unrelated features by combining the correlation fea-
ture selection method with a modified binary PSO algorithm to choose a highly relevant
feature subset. Qasim and Algoma [40] suggested a novel PSO-based feature selection
approach combining the regression model with Bayesian information criteria. Prasad et
al. [39] combined the advanced wrapper-based approach recursive PSO algorithm with
the various feature selection strategies based on a filter-based approach. A PSO-based
feature selection approach using several classifiers was suggested by [69] to increase ACC
while lowering computing costs. A novel graph-based feature selection technique to in-
crease ACC has been created by [44]. This approach suggests a novel methodology for
initializing particles in the PSO algorithm based on the node centrality requirement. A
new particle ordering based on particle distance from dominant and non-dominant PSO
particles was proposed and then used for feature order calculation by [50].

The selection of algorithm parameters determines the computational performance of
the metaheuristic algorithms. Like most metaheuristic techniques, the PSO algorithm is
applied in various fields, but unlike other algorithms, it does not have precise guidelines
for determining algorithm parameters. The algorithm’s performance can be significantly
impacted by varying the parameter settings in PSO. In this regard, it is essential to ascer-
tain the appropriate values for these parameters [14]. In studies on PSO, its parameters
are usually defined using a trial-and-error approach or specified intuitively. To the best of
our knowledge, there needs to be a study where the statistical effects of the parameters
that influence the choice of the PSO algorithm for the final feature subset are evaluated
together, although there are separately well-studied PSO studies for arbitrary problems
in the literature.

This paper aims to discover a statistical answer to the problem mentioned above through
the factorial design approach. The factorial design, one of the most popular and frequently
applied statistical techniques in experimental studies, determines the most crucial PSO
parameters for any optimization problem. In the selection of the final feature subset,
the use of statistical techniques provides a significant contribution to determining the key
PSO parameters, which are the inertial weight, the transfer function, the threshold value,
and the swarm size. For this purpose, factorial analysis of variance (ANOVA) is used
to identify important PSO parameters that have a high efficiency on PSO performance.
In addition, the performance of the metaheuristic can be improved since this method
enables statistical interpretation of the parameters’ importance. In this article, where an
experiment with 44 factors is discussed, the factors, each with four levels, are the key PSO
parameters mentioned above.

The balance between the ability to search locally and globally is controlled by the inertia
weight, as proposed by [51]. The global search is made easier with a large inertia weight,
and the local search is made easier with a small one. It is crucial to adjust the inertia
weight value correctly. The primary determinant of convergence, the inertia weight, will
significantly impact the PSO search procedure. The above-mentioned early convergence
of the PSO process is frequently caused by particle entrapment in a local optimum [11,65].

Kennedy and Eberhart first developed the idea of a transfer function, which enables
the PSO algorithm to operate in the binary searching space [28]. Transfer functions are
required to map a continuous search space to a discrete space. Because the transfer func-
tion does not affect the algorithm’s computational cost, it is independent of the algorithm,
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and can facilitate its discovery and use, and determining it is a crucial step in optimizing
the BPSO algorithm’s performance [4, 24, 33]. For these reasons, various functions have
been proposed in the literature to examine the effects of these functions on the BPSO
algorithm. Additionally, the advantages and disadvantages of these proposed functions
against each other have been examined.

Since the transfer function aims to express the probability that a position vector element
will go from 0 to 1, it must be limited to the interval [0, 1]. The Sigmoid function given
in Equation (2.3) is utilized in the original BPSO algorithm to convert the continuous
variable into binary. As a result, the sigmoid function’s ability to work is crucial to the
BPSO’s performance. Values in the interval [0, 1] obtained with the sigmoid function take
0 or 1 according to a particular threshold value. If the value in the interval [0, 1] is less
than the threshold value, it is converted to 0; if it is greater than the threshold value, it is
converted to 1. In the original BPSO, this threshold value is a random number distributed
equally over [0, 1] and is expressed with rand(), as seen in Equation (2.3).

Swarm size is the number of members in the population. The swarm size indicates
the number of solutions analyzed at each iteration. It is common knowledge that the
number of particles should be chosen based on the specifics of the problem [26]. Higher
swarm size numbers can provide higher-quality outcomes. However, there is a trade-off
between swarm size, computational time, and solution quality [2]. According to [59], the
computation time of the algorithm can occur for large swarm sizes. However, the PSO
algorithm might conclude with a local minimum if few particles are used. But at the same
time, empirical evidence has demonstrated that the PSO can identify the best solutions
at even small swarm sizes [8].

In Section 2, the PSO, the BPSO, and its parameters will be discussed in detail. Section
3 is devoted to the 44 factorial design. Section 4 presents the experimental results. The
conclusion is reported in Section 5.

2. Methods
The performance of the PSO algorithm used in selecting the final feature subset is

affected by many factors. In addition to the BPSO algorithm, the chaotic maps used
instead of the inertial weight in previous studies to improve the performance of this algo-
rithm and transfer functions that significantly affect feature selection will be discussed in
detail below.

2.1. Particle swarm optimization (PSO)
The PSO algorithm, introduced by [27], is a population-based stochastic algorithm and

mighty swarm intelligence-based optimization method. The fundamental concept of the
PSO is that knowledge is best optimized by social interaction among the population as
well as personal experience [66].

In a d-dimensional search space, the position and velocity of particle i are represented as
the vectors Xi = (xi1, xi2, ..., xid) demonstrate particles position and Vi = (vi1, vi2, ..., vid)
demonstrate the particles flight velocity over a solution space in the PSO algorithm. Each
particle in the swarm is given a score using a function to determine its fitness value,
which indicates how well it solves the problem. Each particle keeps track of its own pbest
and gbest. Then, updated rules for new positions are applied to all particles in the d-
dimensional search space until the global optimal position is discovered. The modified
velocity and position of each particle can be calculated in Equation (2.1) and Equation
(2.2), respectively [13]:

V t+1
i = ωV t

i + c1Rrand1(pbestt
i − Xt

i ) + c2Rrand2(gbestt − Xt
i ) (2.1)



Particle swarm optimization based feature selection using factorial design 883

Xt+1
i = Xt

i + V t+1
i (2.2)

where V t
i velocity of particle i at iteration t, ω inertia weight, c1, c2 acceleration coefficients,

Rrand1 , Rrand2 are random numbers uniformly distributed (0, 1), Xt
i position of particle i

at iteration t, pbestt
i best position of particle i until iteration t, gbestt best position of the

group until iteration t.
A predetermined maximum velocity (Vmax) and the new velocity V t

i ∈ [−Vmax, Vmax]
both provide restrictions on the velocity. In this paper, Vmax = 6 is considered. Therefore,
V t

i is limited to [−6, 6] values. The algorithm is completed when a predefined good fitness
value or a maximum number of iterations is reached [66].

2.2. Binary PSO
Initially, the PSO algorithm was used to solve problems in the continuous search space.

Like many other optimization issues, feature selection occurs in discrete search space.
Kennedy and Eberhart [28] improved the binary PSO (BPSO) algorithm to address opti-
mization issues in discrete domains. The velocity is still updated in BPSO as it is in the
conventional PSO algorithm. However, the values of Xi, pbesti, and gbest can only be 0 or
1. Hence the velocity indicates the probability of a particle in the position vector getting
the value 1 [68].

Based on the probability value S(V t
i ) acquired from Equation (2.4), the position of the

current particle is updated in BPSO as in Equation (2.3).

Xt+1
i =

1, rand() ≤ S
(
V t+1

i

)
0, otherwise

(2.3)

S
(
V t+1

i

)
= 1

1 + e−V t+1
i

(2.4)

where S(V t
i ) is the Sigmoid function and rand() is random numbers uniformly distributed

(0,1).

2.3. Chaotic maps
The search process of the PSO algorithm will be significantly impacted by the inertia

weight ω, which is the main factor driving convergence. Throughout the algorithm process,
the inertia weight is dynamically changed based on feedback regarding the optimal place-
ments of the particles for exploration and exploitation. This dynamic adjustment of the
search capability is achieved by dynamically modifying the inertia weight [37]. There are
certain proposed PSO models that cannot effectively use the conventional inertia weight
adaption process. The search process of the PSO algorithm frequently experiences particle
entrapment in a local optimum, which results in the above-mentioned premature conver-
gence [12]. A large inertia weight helps with the global search, whereas a small one helps
with the local search. Therefore, the inertia weight value must be defined correctly for
the algorithm to perform appropriately. Various processes have been proposed over time,
including chaotic maps, time-varying inertia weights, and constant and random inertia
weights. In this paper, chaotic maps are utilized to avoid early convergence.

Chaos, generally a dynamic, nonconvergent, and deterministic method, can be described
as a fact in which any small change in the initial condition can give rise to a nonlinear
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change in future behavior. Additionally, it is described as a semi-random behavior gen-
erated by nonlinear deterministic systems [55]. Although chaos appears random and un-
predictable, it also has a particular element of regularity [1]. The chaotic variables must
have these properties to cycle through all possible states within a specific range without
repeating any of them. Consequently, instead of traditional stochastic search, chaos search
can avoid a local optimal solution and increase the convergence rate.

Four different chaotic maps commonly utilized in numerous studies on feature selection
to create chaotic clusters are discussed in this paper [11, 16, 22, 41, 47, 53, 57]. The four
applied chaotic maps are listed in Table 1, along with their mathematical definitions.

Table 1 demonstrates these maps, where wt denotes the t-th number in the chaotic set
and t is defined as the index of the chaotic set w. The other parameters including c, d,
and µ are the control parameters. The chaotic behavior of the dynamic system is assessed
using these parameters. According to [46, 48, 49], we adjust the beginning value w0 to
0.7 for all chaotic maps. Four chaotic maps that were applied and visualized across 100
iterations are shown in Figure 1.

Table 1. Types of chaotic map

Chaotic map Mathematical formula Value range

Circle wt+1 = mod
(
wt + d −

(
c

2π

)
sin (2πwt) , 1

)
, c = 0.5 and d = 0.2 (0,1)

Logistic wt+1 = c wt (1 − wt) , c = 4 (0,1)

Piecewise wt+1 =



wt

l , if 0 ≤ wt < l

wt−l
0.5−l , if l ≤ wt < 0.5

1−l−wt

0.5−l , if 0.5 ≤ wt < 1 − l

1−wt

l , if 1 − l ≤ wt < 1

, l = 0.4 (0,1)

Singer wt+1 = µ
(
7.86wt − 23.31w2

t + 28.75w3
t − 13.302875w4

t

)
, µ = 1.07 (0,1)

2.4. Transfer function
A transfer function must map a continuous search space to a discrete space. Many

studies suggest using transfer functions since they are independent of the algorithm, have
no impact on the algorithm’s computational cost, and promote algorithm exploration and
exploitation [4, 24, 33]. In this regard, choosing an appropriate transfer function is an
essential decision to improve the performance of the BPSO algorithm.

In the early stages of the selection process, focusing on exploration is generally more
significant than thoroughly intensifying the examination of promising feature space re-
gions. However, exploitation becomes increasingly crucial in the later phases since we
need to raise the probability of finding better solutions that are similar to those found in
the earlier phases [32]. The continuous search space is converted into the discrete binary
space based on the properties of the BPSO algorithm, as mentioned in Section 2.2. The
transfer function must be restricted to a range of [0, 1] since the purpose is to represent the
probability that the element of the position vector goes from 0 to 1. It has been claimed
that the original BPSO algorithm fails to provide a good balance between exploration
and exploitation due to the limitations of the Sigmoid transfer function [24, 31, 56, 61].
To overcome this, modified BPSO with different transfer functions has been used in the
literature [10,20,24,29,34].
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Figure 1. Visualization of chaotic maps

The mathematical definitions of the four different transfer functions discussed in this
paper is given in Table 2 and the visualization of these functions are given in Figure 2.

Table 2. Types of transfer function

Transfer function Mathematical formula

S-shaped S
(
V t+1

i

)
= 1

1+e
−V t+1

i

V-shaped V
(
V t+1

i

)
=

∣∣∣tanhV t+1
i

∣∣∣
U-shaped U

(
V t+1

i

)
= α

∣∣∣∣(V t+1
i

)β
∣∣∣∣, α = 1, β = 2

Z-shaped Z
(
V t+1

i

)
=

√(
1 − αV t+1

i

)
, α = 2

2.5. Threshold
Since the transfer function aims to express the probability that a position vector element

will go from 0 to 1, it must be limited to the interval [0, 1]. The Sigmoid function given
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Figure 2. Visualization of transfer functions

in Equation (2.3) is utilized in the original BPSO algorithm to convert the continuous
variable into binary. As a result, the sigmoid function’s ability to work is crucial to the
BPSO’s performance. Values in the interval [0, 1] obtained with the sigmoid function take
0 or 1 according to a particular threshold value. If the value in the interval [0, 1] is less
than the threshold value, it is converted to 0; if it is greater than the threshold value, it
is converted to 1. In the original BPSO, this threshold value is a pseudorandom number
distributed equally over [0, 1] and is expressed with rand(), as seen in Equation (2.3).
However, this random value often leads to selecting unfit features and rejecting potential
features. In this case, the convergence of the BPSO algorithm will be delayed, and the
chances of getting an optimal solution will decrease.

Let us explain this situation with an example. Although S
(
V t+1

i

)
is a feature that

has a high value of 0.9, it can be discarded for the next iteration if the generated random
value is greater than 0.9. Although S

(
V t+1

i

)
is a feature with a value as low as 0.05, it

can also be selected for the next iteration if the generated random value is less than 0.05.
Secondly, if generated random value is very small, like 0.001, then features with values
of S

(
V t+1

i

)
as 0.005, 0.4, or 0.99 will have an equal chance to be selected for the next

iteration.
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3. The 44 factorial design
Factorial design was first used by [18] and [71] to simultaneously examine the effects

of numerous factors. It is more efficient and less expensive than dealing with each factor
separately. This feature will bring to the fore factorial designs in choosing the best factors
influencing feature selection. In this paper, we consider an experiment with 44 factors, as
four factors have four levels each due to their widespread use in the literature. The factors
and their levels are given in Table 3.

Table 3. The factors and their levels

Factors Levels
A: Chaotic map Circle Logistic Piecewise Singer
B: Transfer function S-shaped V-shaped U-shaped Z-shaped
C: Threshold 0.5 0.6 0.7 0.8
D: Swarm size 10 25 50 100

3.1. Statistical model
Equation (3.1) provides the statistical model for the 44 factorial experiment.

yijklm = µ + αi + βj + γk + δl + αβij + αγik + αδil + βγjk + βδjl + γδkl

+ αβγijk + αβδijl + αγδikl + βγδjkl + αβγδijkl + εijklm,

i, j, k, l = 1, 2, 3, 4, m = 1, 2, ..., r

(3.1)

Here, yijklm is the response variable, µ is the overall mean, αi is the effect of i-th level of
the inertia weight factor, βj is the effect of j-th level of the transfer function factor, γk is
the effect of k-th level of the threshold factor, δl is the effect of l-th level of the swarm size
factor, and r is the replication number. In addition, αβij , αγik, αδil, βγjk, βδjl, and γδkl

are the 2-factors interaction effects, αβγijk, αβδijl, αγδikl, and βγδjkl are the 3-factors
interaction effects, αβγδijkl is the 4-factors interaction effect among the related factors,
and εijklm is the error term, see [35] for further details.

3.2. Hypotheses
Testing the main effects and their interactions is the goal of factorial design. The gen-

eral form of the null hypothesis can thus be expressed as follows [2]:

H0 : The main effect of the factor (or interaction effect of the factors of interest) is
statistically insignificant.

H0 indicates no significant difference among the levels of a factor (or there is no sig-
nificant interaction between the factors of interest). It is also evident that fifteen null
hypotheses exist for the 44 factorial experiments implemented in this article. These hy-
potheses are respectively: four main effects (A, B, C, and D), six 2-factor interactions (AB,
AC, AD, BC, BD, and CD), four 3-factor interactions (ABC, ABD, ACD, and BCD), and
one 4-factor interactions (ABCD).
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3.3. Test statistics and decision rule
We used the presented factorial design to investigate the main effects and interactions

in this paper. In factorial ANOVA, the error terms are assumed to be independently
and identically distributed normal with mean zero and variance σ2. Under the normality
assumption, F tests are used to test the fifteen null hypotheses in Table 4.

Table 4. Analysis of variance

Source df Sum of Square Mean of Square F-value

A a-1 SSA MSA = SSA
a−1 FA = MSA

MSError

B b-1 SSB MSB = SSB
b−1 FB = MSB

MSError

C c-1 SSC MSC = SSC
c−1 FC = MSC

MSError

D d-1 SSD MSD = SSD
d−1 FD = MSD

MSError

AB (a-1)(b-1) SSAB MSAB = SSAB
(a−1)(b−1) FAB = MSAB

MSError

AC (a-1)(c-1) SSAC MSAC = SSAC
(a−1)(c−1) FAC = MSAC

MSError

AD (a-1)(d-1) SSAD MSAD = SSAD
(a−1)(d−1) FAD = MSAD

MSError

BC (b-1)(c-1) SSBC MSBC = SSBC
(b−1)(c−1) FBC = MSBC

MSError

BD (b-1)(d-1) SSBD MSBD = SSBD
(b−1)(d−1) FBD = MSBD

MSError

CD (c-1)(d-1) SSCD MSCD = SSCD
(c−1)(d−1) FCD = MSCD

MSError

ABC (a-1)(b-1)(c-1) SSABC MSABC = SSABC
(a−1)(b−1)(c−1) FABC = MSABC

MSError

ABD (a-1)(b-1)(d-1) SSABD MSABD = SSABD
(a−1)(b−1)(d−1) FABD = MSABD

MSError

ACD (a-1)(c-1)(d-1) SSACD MSACD = SSACD
(a−1)(c−1)(d−1) FACD = MSACD

MSError

BCD (b-1)(c-1)(d-1) SSBCD MSBCD = SSBCD
(b−1)(c−1)(d−1) FBCD = MSBCD

MSError

ABCD (a-1)(b-1)(c-1)(d-1) SSABCD MSABCD = SSABCD
(a−1)(b−1)(c−1)(d−1) FABCD = MSABCD

MSError

Error N-abcd SSError MSError = SSError
N−abcd

Total N-1 SST otal

Here, df , SS, and MS denote degrees of freedom, sum of squares, and mean squares,
defined as the ratio of the sum of squares to the degree of freedom, respectively. Addition-
ally, each of the expressions a, b, c, and d indicates the number of levels of the relevant
factors, and for 44 factorial experiments, it is a = b = c = d = 4. N is the total number
of observations; for 44 factorial experiments, this number is 44r. Here, r is the number
of repetitions. The F tests in the table have an F distribution with v1 and v2 degrees
of freedom. Here v1 represents the degrees of freedom for the factor (or interaction) of
interest and v2 = N − abcd represents the degrees of freedom of the error. Note that for
brevity, some formulas are not included here; see [35] for further details, such as SS or
MS formulas.

The corresponding null hypothesis is rejected if the calculated value of F statistics
is bigger than the corresponding critical value for the preassigned significance level α.
Similarly, the importance of the effects can be assessed using the p-value. In other words,
the null hypothesis is rejected if the p-value is smaller than the preassigned α [2].

4. Experimental results
This section presents an experiment with 44 factors results to determine the statistically

significant PSO algorithm parameters used in feature selection and ACC. Considering that
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we presume each process will be repeated three times, the total number of the response
variable is equivalent to N = 44x3 = 768 ACC in the 44 factorial experiment. Thirty
different runs are performed, and the average is taken for each ACC. Since the convergence
behavior of the method is observed to be in a rapid convergence tendency, the number of
iterations in each run is taken as 100. The ACC is calculated as in Equation (4.1):

ACC = TP + TN

TP + TN + FP + FN
(4.1)

where TP , TN , FP , and FN represent the number of true positives, true negatives, false
positives, and false negatives, respectively.

In this paper, the Ionosphere dataset, frequently used in the literature, was used for
experiments. This dataset consists of 34 features, two classes, and 351 patterns. In
addition, some of these datasets contain features with a wide range of values. Thus,
features with large values dominate features with small values. To overcome this situation,
the datasets are normalized.

This paper presents a BPSO-based wrapper approach that uses the SVM classifier. The
SVM, proposed by [60], is a supervised learning algorithm with the potential to tackle very
large feature spaces. This is because the training of SVM is realized in such a way that
the dimension of classified vectors does not have as much of an effect on the performance
of SVM as it has on the performance of the conventional classifier. The SVM aims to seek
a hyperplane as the decision surface to maximize the distance between a group of objects
belonging to different classes.

The maximization of ACC and the minimization of the number of features are considered
two opposing objectives in the multi-objective optimization problem of feature selection.
The solution will be more successful if fewer features are selected and the ACC is higher.
The particle’s position determines the selection and rejection of features. If the position
value is within (threshold,1], it indicates that the corresponding feature has been accepted;
if not, it has been rejected [9]. Each position is evaluated using the previously determined
fitness function, which calculates the ACC using the SVM and depends on the number of
selected features. Equation (4.2) explains the fitness function described in this paper.

Fitness Function = min

(
β x (1 − ACC) + γ x

SF

NF

)
(4.2)

where SF and NF denote the number of selected features and the total number of features
in the dataset, respectively. In addition, the significance of the ACC and the length of
the selected feature subset are, respectively, represented by the two parameters β and γ,
where β, γ ∈ [0, 1] and γ = 1 − β. In this paper, β = 0.9 is taken. The ACC and the
number of selected features of the factor levels considered are summarized in Table 5.

Table 6 lists the factors and interactions that are statistically significant and insignifi-
cant, together with their F statistics and corresponding p-value. According to the residual
plots in Figure 3, the assumptions above-mentioned are satisfied, and the ANOVA results
are reliable.

As seen in Table 6, it is evident that the main effects of B and C are statistically
significant at α = 0.01 level. In other words, the transfer function and the threshold are
essential parameters that affect the performance of the BPSO algorithm used in feature
selection and ACC. The threshold is the most significant parameter while the transfer
function is the less significant in terms of p-value since the F value of the threshold has
the highest value among the significant main effects. Additionally, the main effects of
chaotic map (A) and swarm size (D) are not found to be statistically significant BPSO
parameters.
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Table 5. The results of the ACC and the number of selected features for factor
levels

Chaotic maps Transfer function Swarm size

Threshold

0.5 0.6 0.7 0.8

ACC SF ACC SF ACC SF ACC SF

Circle

S-shaped

10 0.9359 18.2556 0.9331 13.4667 0.9159 9.9889 0.9075 5.9889
25 0.9349 17.8667 0.9277 13.5556 0.9174 9.6778 0.9185 6.2778
50 0.9308 17.7667 0.9243 13.8667 0.9192 9.4778 0.9042 6.1667

100 0.9356 18.4667 0.9303 14.0333 0.9149 9.5778 0.9334 5.9444

U-shaped

10 0.9395 17.1222 0.9304 13.7778 0.9266 10.0889 0.9151 6.3889
25 0.9439 16.6444 0.9285 13.5222 0.9265 10.1333 0.9153 6.9000
50 0.9434 16.3667 0.9286 13.3000 0.9280 10.1556 0.9129 6.7556

100 0.9307 16.6778 0.9323 13.8333 0.9329 10.0222 0.9156 6.8444

V-shaped

10 0.9390 17.1000 0.9311 13.8889 0.9230 10.1667 0.9113 6.7222
25 0.9318 16.6000 0.9329 13.9444 0.9253 10.3000 0.9166 6.7444
50 0.9184 16.6889 0.9302 13.7333 0.9227 9.3667 0.9131 7.3000

100 0.9471 17.6778 0.9300 13.6444 0.9254 10.2222 0.9212 6.8667

Z-shaped

10 0.9340 17.4889 0.9229 12.9778 0.9183 10.0889 0.9151 6.7000
25 0.9390 17.7333 0.9291 13.3889 0.9203 10.2667 0.9092 6.2889
50 0.9421 17.9778 0.9245 13.7222 0.9161 9.5111 0.9063 6.5222

100 0.9365 17.6333 0.9259 13.8444 0.9222 9.9889 0.9238 6.2222

Logistic

S-shaped

10 0.9351 18.1333 0.9304 13.4889 0.9171 9.7111 0.9342 6.2000
25 0.9390 17.9444 0.9289 13.5778 0.9183 9.5889 0.9208 6.3778
50 0.9355 18.5889 0.9279 14.1778 0.9171 10.1778 0.9059 6.1444

100 0.9362 18.1111 0.9274 14.1778 0.9184 9.8333 0.9083 6.3556

U-shaped

10 0.9391 17.2889 0.9283 13.1333 0.9282 10.0111 0.9171 6.6111
25 0.9173 16.7444 0.9326 13.9778 0.9301 10.0444 0.9133 6.8556
50 0.9455 16.9889 0.9267 13.5333 0.9252 10.3000 0.9146 6.5778

100 0.9302 16.8222 0.9336 13.3556 0.9251 9.8889 0.9145 6.8889

V-shaped

10 0.9306 17.1111 0.9338 13.5889 0.9181 9.8000 0.9147 7.4333
25 0.9390 16.7667 0.9314 12.9889 0.9212 10.3333 0.9199 6.4778
50 0.9335 16.7556 0.9332 13.2333 0.9225 10.0556 0.9174 7.0667

100 0.9416 16.8556 0.9319 13.4111 0.9286 10.5889 0.9149 6.6556

Z-shaped

10 0.9329 17.2889 0.9230 13.2333 0.9123 10.2889 0.9212 5.9222
25 0.9370 17.6667 0.9234 13.4889 0.9177 10.1444 0.9338 6.3667
50 0.9350 17.0556 0.9274 13.6000 0.9201 9.6778 0.9109 6.3222

100 0.9380 17.8778 0.9222 13.6444 0.9203 10.0889 0.9053 6.4000

Piecewise

S-shaped

10 0.9351 18.2111 0.9329 13.6667 0.9171 9.7778 0.9337 6.4333
25 0.9323 17.6778 0.9236 13.8667 0.9144 9.6222 0.9190 5.8222
50 0.9339 18.2889 0.9313 14.0889 0.9153 9.2333 0.9220 6.0556

100 0.9340 18.1778 0.9287 14.2667 0.9194 9.9667 0.9244 6.2333

U-shaped

10 0.9166 17.2444 0.9355 13.4333 0.9255 10.2778 0.9144 7.0111
25 0.9454 16.3556 0.9309 13.5222 0.9208 9.8556 0.9162 6.7667
50 0.9295 17.2444 0.9308 13.5778 0.9260 10.1111 0.9157 6.7667

100 0.9313 17.2000 0.9284 13.5556 0.9275 10.0000 0.9129 7.1222

V-shaped

10 0.9392 18.0333 0.9350 13.3556 0.9240 10.7667 0.9220 6.6222
25 0.9153 16.2000 0.9310 13.4444 0.9253 10.4111 0.9181 7.0333
50 0.9339 16.5444 0.9329 13.9667 0.9248 10.1556 0.9187 7.3444

100 0.9455 16.6778 0.9323 13.4444 0.9263 9.7778 0.9089 6.6000

Z-shaped

10 0.9309 16.9000 0.9254 13.0111 0.9203 9.6556 0.9057 6.1333
25 0.9368 17.3556 0.9258 13.2889 0.9196 9.3667 0.9014 6.3667
50 0.9387 17.5222 0.9253 13.5444 0.9194 9.3778 0.9204 7.0111

100 0.9400 18.1222 0.9253 13.8111 0.9199 10.0778 0.9091 6.2556

Singer

S-shaped

10 0.9289 18.1667 0.9267 13.8556 0.9159 10.1444 0.9087 6.3000
25 0.9379 17.9111 0.9260 13.7889 0.9181 9.5222 0.9333 6.5000
50 0.9340 18.3444 0.9309 14.0000 0.9151 10.1778 0.9048 6.0667

100 0.9334 18.2889 0.9306 14.2333 0.9172 10.2333 0.9348 5.9000

U-shaped

10 0.9213 16.1889 0.9287 13.6667 0.9267 10.2333 0.9094 6.7000
25 0.9322 16.8889 0.9271 13.6667 0.9257 10.1778 0.9144 7.2333
50 0.9287 16.8222 0.9325 13.2778 0.9226 9.8222 0.9205 6.7667

100 0.9304 17.0111 0.9296 13.2111 0.9262 9.7778 0.9156 7.0111

V-shaped

10 0.9283 17.2556 0.9335 13.0778 0.9222 9.8778 0.9135 6.7222
25 0.9323 16.8222 0.9293 12.9556 0.9268 9.7000 0.9162 7.0889
50 0.9336 16.9222 0.9278 13.4556 0.9248 10.0222 0.9138 6.5000

100 0.9436 17.1778 0.9374 13.7111 0.9259 9.7889 0.9156 6.5333

Z-shaped

10 0.9347 17.7111 0.9264 13.8556 0.9157 10.0222 0.9087 6.5000
25 0.9349 18.1000 0.9249 13.7889 0.9147 9.7556 0.9172 6.0778
50 0.9326 17.7889 0.9285 14.0000 0.9209 9.5778 0.9060 6.2444

100 0.9378 17.8111 0.9244 13.7444 0.9200 10.2111 0.9080 6.1667
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Figure 3. Residual plots for accuracy

Table 6. Results of 44 factorial experiment

Source df SS MS F-value p-value
A 3 0.0001 0.0001 0.5621 0.6402
B 3 0.0014 0.0005 5.2427 0.0014
C 3 0.0394 0.0131 151.2853 0.0000
D 3 0.0005 0.0002 2.1022 0.0990

AB 9 0.0004 0.0001 0.5682 0.8234
AC 9 0.0004 0.0001 0.5179 0.8619
AD 9 0.0013 0.0001 1.7225 0.0811
BC 9 0.0043 0.0005 5.4969 0.0000
BD 9 0.0009 0.0001 1.1609 0.3180
CD 9 0.0008 0.0001 0.9924 0.4452

ABC 27 0.0014 0.0001 0.6149 0.9374
ABD 27 0.0020 0.0001 0.8358 0.7054
ACD 27 0.0029 0.0001 1.2212 0.2062
BCD 27 0.0027 0.0001 1.1620 0.2635

ABCD 81 0.0071 0.0001 1.0102 0.4597
Error 512 0.0444 0.0001
Total 767 0.1101

According to the 2-factor interaction comparison results at α = 0.01 level, only BC in-
teraction effects are statistically significant among all other interactions, as seen in Table
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6. These results agree with the results obtained for the main effects. Namely, the trans-
fer function and the threshold are the most significant BPSO parameters since 2-factors
interactions include these parameters. Additionally, there is no statistically significant
interaction at α = 0.01 level among the 3-factor and 4-factor interactions.

Our research indicates that the threshold and the transfer function are the most sig-
nificant parameters affecting the BPSO algorithm’s performance in feature selection and
ACC. The original BPSO algorithm considers the threshold value a random number.
However, this paper shows the effect of different threshold values on feature selection
and ACC. This situation can also be seen from the results in Table 5. The number of
features decreases as the threshold value increases. In parallel with this, the accuracy
rate decreases. The reason for this is the decrease in the number of features describing
the model or the failure to select appropriate features that will increase the ACC by the
BPSO algorithm. In addition, it is concluded that the transfer function is one of the most
important reasons for not choosing appropriate features. The feature selection is impacted
because different feature values result from using the inappropriate function. Therefore,
focusing on the threshold and the transfer function, which are statistically significant in
the 2-factor interaction, when defining BPSO parameters will significantly affect the algo-
rithm’s performance in feature selection and ACC. Additionally, this paper revealed that
chaotic map and swarm size are not statistically efficient factors in the performance of the
BPSO algorithm. Therefore, the chaotic map and the swarm size factor can be arbitrarily
determined.

5. Conclusion
We recommend a novel approach based on the ANOVA technique with 44 factorial

experiment, which are chaotic map, transfer function, threshold, and swarm size, to de-
termine the critical BPSO parameters directly affecting the performance of the BPSO
algorithm parameters used in feature selection and ACC. Unlike approaches based on ar-
bitrarily defined intuitive selections or a trial-and-error approach, this statistically based
approach enables us to derive scientific findings.

According to the findings, it is concluded that the threshold is the most critical pa-
rameter affecting the performance of the BPSO algorithm. The threshold value in the
original BPSO method is regarded as a random number. However, the impact of various
threshold values on feature selection and ACC was clearly demonstrated in this paper. As
the threshold value increases, the number of features decreases, as seen in Table 5. This
is accompanied by a decline in ACC. The decrease in the number of features describing
the model or the failure to select the appropriate features that would improve the ACC
using the BPSO algorithm are the causes of this. Additionally, it is seen that the transfer
function is statistically significant. Therefore, focusing on the threshold and the transfer
function when defining BPSO parameters will significantly affect the algorithm’s perfor-
mance in feature selection and ACC. The chaotic map and the swarm size, on the other
hand, are not statistically significant.

Determining the parameters of feature selection metaheuristic methods is a very chal-
lenging problem. There are arbitrary trial-and-error approaches described separately in
the literature to determine the critical BPSO parameters, which are the inertial weight,
the transfer function, the threshold value, and the swarm size, that directly affect the
performance of the BPSO algorithm parameters used in feature selection. Unlike these
approaches, this paper allows us to obtain scientific findings by evaluating all BPSO pa-
rameters together with the help of a statistically based factorial design approach. The
approach suggested in this paper can solve the feature selection problem of any other meta-
heuristic method. Considering statistical findings, the performance of the metaheuristic
can thus be improved. Future studies can take this point into account.
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