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ABSTRACT 

 

Applications that employ medical data are directly impacted by the classification of imbalanced data.  

It is vital due to the nature of classification and solutions about medical data. The purpose of this 

article is to identify a machine learning model that may be successfully applied in the medical field to 

reduce the number of mortality and optimize the efficiency of hospital resources. For this reason, it is 

thought that the better the performance of the ML model, the more a different perspective will be 

gained on the problems in today's medicine. Therefore, in the study, Weighted Random Forest (WRF) 

and Balanced Random Forest (BRF) which are ensemble machine learning (ML) methods for 

imbalanced data were implemented to identify the performance of the algorithms for mortality 

determination from open-source MIMIC-III dataset by using vital signs, comorbidities, and laboratory 

variables with demographic characteristic information. To evaluate the performance of WRF and 

BRF, a Random Forest Classifier (RFC) was also implemented to investigate the power of developed 

models for imbalanced data. In addition, the features used in the ML methods were separated into 

three groups to explore the impact of the vital signs, comorbidities, and laboratory variables with 

demographic characteristics separately on mortality identification. In addition to previous applications 

on UCI datasets, the present study revealed that the BRF method for imbalanced medical data 

provides high performance in determining the majority and minority classes of the data by using vital 

signs and laboratory variables with demographic characteristics. 

 

Keywords: MIMIC-III, Random Forest, Weighted Random Forest, Balanced Random Forest, 

Ensemble Learning. 

 

1. INTRODUCTION 

 

Many different data analysis techniques can now be used on massive amounts of data as a result of 

recent technical advancements. Applying these ideas to the critical care unit is a much more crucial 

issue because of the intensive care unit's data-rich nature. Decision support systems have made it 

possible to observe a well-defined set of criteria for rare diseases or unexplained diseases with 

thorough medical imaging data when they are integrated into ordinary clinical functions [1]. Selection, 
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analysis, and diagnostic interpretation of radiological imaging have been done using the knowledge 

acquired in this manner. As a result, healthcare personnel are able to treat more patients securely, 

operate more productively, and make fewer mistakes than ever before because of data-based decision 

support systems, recently [1]. 

 

Also, artificial intelligence and the integration of automated information systems have greatly 

enhanced medical practices. The open-source MIMIC-II, MIMIC-III, and MIMIC-IV dataset has 

recently been the subject of studies examining its performance in forecasting hospital mortality in 

intensive care patients and comparing its performance with that of different algorithms. It is necessary 

to estimate mortality among intensive care unit (ICU) inpatients in order to assess the severity of a 

patient's condition and weigh the advantages of cutting-edge therapies, interventions, and healthcare 

initiatives [2]. In a number of these research, the ability to forecast hospital mortality in intensive care 

patients using nonparametric methods based on artificial neural networks was assessed. [3, 4]. These 

studies came to the conclusion that nonparametric methods may be at least as good at predicting ICU 

mortality as traditional logistic regression [108]. In a related other study, Karun et al. employed the 

sandwich regression method to determine the characteristics that increase the risk of pneumonia in 

patients receiving intensive care. The study found that BMI, kidney disease, hypertension, diabetes, 

and asthma are some of the major risk factors for pneumonia in the elderly. According to the Poisson 

regression findings, he also discovered that the middle-aged group had a larger probability of 

acquiring pneumonia in the elderly [ 5]. Pirracchio's [6] study examined if an ensemble machine 

learning technique called Super Learner would improve hospital mortality prediction for critically ill 

intensive care patients using data from the Medical Information Mart for Intensive Care II (MIMIC-

II). The prediction score generated based on Super Learner was demonstrated to provide better results 

in terms of both discrimination and calibration when compared with mortality scoring outcomes such 

as SAPS II (Simplified Acute Physiology Score), APACHE II (Acute Physiologic Assessment and 

Chronic Health Evaluation), and SOFA (Sequential Organ Failure Assessment) [6, 7]. Support Vector 

Machine (SVM), Logistic Regression (LR), and XGBoost classification algorithms were employed in 

the study by Ergul Aydn & Kamişli Ozturk, [8] one of the comparable studies in this field, to assess 

whether the patients' stays in critical care were longer than 3 days. The study found that, similarly to 

earlier prediction articles, the XGBoost classifier outperformed Support Vector Machine (SVM) and 

Logistic Regression (LR) [9, 10, 11, 12]. Poucke's study was to compare the predictive performance 

of Decision Tree, Naïve Bayes, Logistic and Regression methods, and ensemble learning methods 

(Random Forest, Boosting, and Bagging) when assessing the predictive power of laboratory tests for 

hospital mortality in patients admitted to the intensive care unit. In this study using ensemble methods, 

Random Forests provided the best prediction accuracy for mortality risk prediction, consistent with 

previous research [13, 14]. According to a study by Yang et al., c-med GAN (conditional medical 

generative adversarial network) offers a strong classification for predicting mortality in critical care 

patients when compared to the SAPS II score, SVM (support vector machine), and MLP (multilayer 

perceptron). When the dataset size was reduced, C-med GAN outperformed MLP in terms of death 

prediction [2]. Xia et al.'s study, which discovered that over 40% of elderly patients were hospitalized 

to the intensive care unit, observed that longer hospital stays were associated with higher short- and 

long-term risks of death [15]. In order to predict ICU mortality, Dybowski et al. and Kim et al. [16, 

17] show that nonparametric methods may operate better than conventional logistic regression 

models. 
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An important alternative for diagnosing and beginning treatments in the healthcare sector is based on 

supervised machine learning, recently [18]. Ensemble learning, which takes into consideration themes 

and attributes, is one of the finest supervised machine learning (ML) approaches to categorizing data. 

The categorization can be difficult by using basic classification algorithms for the complex data 

structure including many features [18]. At this point, implementation of innovative techniques such as 

Balanced Random Forest (BRF) [19] and Weighted Random Forest (WRF) [19] can be a solution 

since these advanced ensemble learning methods has specific strategies for the datasets that are 

unbalanced ensuring that each class is given the appropriate level of consideration during model 

training. Unbalanced data, also known as imbalanced data, means the situation in which the number of 

instances for each class in the dataset is unequal. In other words, a class has significantly more 

samples than another class or classes. 

 

In this study, BRF and WRF models, which are the improved versions of one of the successful 

ensemble model Random Forest Classifier (RFC), were implemented to investigate the feature 

importance for mortality prediction by using MIMIC-III dataset [20] that can be considered a new 

approach for identification of the mortality by random forest-based algorithms for imbalanced 

medicine data. With the presented study authorities can plan preparedness, and allocation of financial 

resources based on how long patients remain in intensive care units with the help of random forest-

based machine learning models. Additionally, it offers suggestions for how to allocate resources 

effectively, enhance the caliber of healthcare services, and prioritize macro policies in the health 

sectors of nations by using machine learning methods. Since in medical science, the datasets may have 

imbalanced structure and limited size, the presented work can be an indicator for the usage of an 

improved version of random forest-based algorithms for unbalanced data by also considering the 

feature selection effect on model performances. For this purpose, the features in the data were 

separated into three groups such as comorbidities, laboratory variables with vital signs, and both to 

understand the impact of the corresponding properties on mortality of the patients with demographic 

characteristics. To compare the model performances RFC was also applied to the dataset in the similar 

way.  

 

2. LİTERATURE REVİEW 

 

In today's evolving technology, the significance of artificial intelligence-based machine learning (ML) 

approaches is on the rise across diverse domains, including natural sciences [19,21], anomaly 

detection [22,23], healthcare [24,25], object recognition [26,27], and business [18] since it has a huge 

impact by radically changing the way of solving sophisticated problems. As a result of the 

advancement of machine learning algorithms in the field of health, modeling methodologies have 

increased in variety [24,25]. Predictive models are useful tools to comprehend the underlying causes 

of diseases and to expand clinical knowledge, the collection and analysis of massive amounts of 

critical care data is crucial. Large-scale Critical Care databases are valuable tools for learning about 

individuals' risk factors, regular critical illness history, and the efficacy of various treatment 

approaches. Because, patients in the critical care unit are more likely than other patients to experience 

many problems today, and mortality is also higher [28]. Innovations in disease therapeutics and 

survival rates are essential in this setting because cancer and comorbidity are more closely associated 

with aging populations in industrialized countries. Various data sources, including clinical records and 
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laboratory findings, are used to get this data [29]. Incorrect or missing data during the data collection 

phase, although unsynchronized time-referenced data, difficulty processing different data formats, and 

restrictions on digital storage capacity are the difficulties encountered, the MIMIC-III database, which 

is easily accessible by the researcher, provides the advantage of not having an access fee, unlike other 

databases [20,30]. 

 

All adult patients admitted to Beth Israel Deaconess Medical Center's intensive care units between 

2001 and 2007 are included in this database's first version, MIMIC-II. Clinical data and physiological 

data make up MIMIC-II's two main parts. Physiological data are digital data produced by electronic 

device signals recorded for vital signs during the patient's stay in intensive care. Clinical data in the 

database are organized to include data such as the patient's demographic information, intravenous 

drug administration rates, and laboratory test results [31]. The MIMIC III dataset includes Beth Israel 

Deaconess Hospital intensive care unit patients from 2001 to 2012 [20].  The extensive MIMIC III 

database contains details on individuals older than 16 who are admitted to intensive care units. The 

data comprises vital signs, medications, lab findings, observations and remarks made by medical 

personnel, fluid balance, procedure and diagnosis codes, imaging reports, length of hospital stay, 

survival rates, and demographic information. For specialists doing various studies on intensive care 

research, from the creation of clinical decision support algorithms to a better comprehension of 

retrospective clinical investigations, the MIMIC-II and MIMIC-III databases are crucial sources of 

data. 

Despite advances in disease identification and treatment, the rate of mechanical ventilation, sepsis 

infection and mortality in intensive care units have been growing recently [12,29,32,33]. Globally, 

deaths in intensive care units are seen as a severe health concern. The onset of disease symptoms in 

intensive care units of patients at high risk of death, diagnosis with methods with low predictive 

accuracy, and time-consuming access to laboratory data cause the risk of death to reach its highest 

level. For this reason, various machine learning models have been developed using data obtained from 

physicians' risk indicators in intensive care patients. Therefore, earlier disease detection and prediction 

lead to quicker recovery and better results [34].  

 
3. METHOD 

 

Ensemble learning [18] is one of the most effective techniques for a successful ML model. In 

ensemble learning, multiple learner objects are created and trained to solve the problem. Basic 

learners can be decision trees from training data. Ensemble learning, which consists of decision trees, 

can be performed in the form of bagging. In bagging ensemble learning [35], the ML model is trained 

with a randomly selected subset of the data. In this approach, the classification is made by voting the 

outputs of the basic learners. RFC, RFC-based WRF and BRF are the bagging ensemble learning-

based models that were used in the study.  

 

3.1. Random Forest Classifier (RFC) 

One of the decision tree-based bagging models is the RFC model [36]. RFC is made up of decision 

trees that act as a community, making judgments based on a variety of sub-decisions and defending 

one another from individual mistakes. Each decision tree has nodes representing the features in the 

dataset and leaves representing the algorithm's decisions [19]. Nodes are decided by selecting from the 
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dataset the features to be applied to train the current tree. The model makes sure that the attributes to 

be used in the nodes for each tree are randomly chosen in order to maintain diversity while 

minimizing the correlation between trees. The quality of the node separation for each attribute can be 

evaluated using either the entropy gain or the Gini index, but doing so can entail the risk of 

misclassification [37]. 

 

The RFC method consists of two steps: creating the trees and selecting the decision tree. The initial 

step is to create decision trees using any randomly chosen model component from the training dataset. 

After receiving votes from the numerous decision trees in the test set, the final choice is determined in 

the last phase. The RFC algorithm is shown schematically in Figure 1 [38]. As represented in the 

figure, the dataset is separated into training and test sets. The RFC model generates the decision trees 

with the instances in the training set by using the features as random nodes which allows the model to 

learn the classes with patterns. The algorithm evaluates the test data by the constructed decision trees 

during training. It categorizes test data according to the most votes from the decision trees.  

The pseudo code of the algorithm is represented below in which  ‘X’, ‘y’ and, ‘n_estimators’ represent 

the input features, the corresponding target labels, and the number of trees (number of iterations), 

respectively. 

 
Algorithm 1: Random Forest Classifier 

    Initialize with a number of trees (n_estimators) 

 

    Train the model: 

    for each tree in n_estimators: 

        Create a decision tree using some data (X, y) 

        Add the tree to the ensemble 

 

    Make predictions: 

    for each tree in the ensemble: 

        Get predictions from the tree 

    Combine the tree predictions to make a final prediction 

 
The RFC model has many advantages over other ML techniques. One of the main problems in the 

application of ML models is that the model, which is defined as overfitting, cannot correctly classify 

data outside the training set. The RFC method is resistant to over-learning because it has a forest of 

decision trees. Since the importance of each feature in the decision-making process can be calculated, 

the model can be interpreted and the relationship between the features used and the decisions can be 

recognized more clearly. The application of the RFC model has the potential to produce successful 

results for particle identification and event selection [37,38]. 
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Figure 1. Schematic representation of the RFC classification model [38]. The dataset is 

divided into training and testing. The algorithm constructs the decision trees with the 

examples in the training set by using the features in the data as random nodes. It is ensured 

that the model learns about classes with patterns. Evaluates the completed RFC test dataset 

according to the created decision trees. It classifies the model test data according to the 

category with the most votes from the decision trees. 

 

3.2. Weighted Random Forest (WRF) 

The WRF model is a class-weighted RFC model adapted to manage groups of different sizes in the 

dataset. The ARO method was developed to increase the success of the RFC algorithm on skewed 

datasets [39]. In this model, in order to reduce the effect of majority samples in the dataset on learning 

and to increase the learning of the minority group, a weight inversely proportional to the size of the 

classes in the dataset is used in the nodes and predictions of the decision trees in the model [39]. The 

pseudo code of the WRF is shown in the following where  ‘X’, ‘y’ and, ‘n_estimators’ represent the 

input features, the corresponding target labels, and the number of trees (number of iterations), 

respectively. 

 
Algorithm 2: Weighted Random Forest 

Initialize with a number of trees (n_estimators) 

 

    Train the model: 

    for each tree in n_estimators: 

        Create a decision tree using some data (X, y) and consider sample weights 

        Add the tree to the ensemble 

 

    Make predictions: 

    for each tree in the ensemble: 

        Get predictions from the tree 

    Combine the tree predictions to make a final prediction 
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This method has attracted great interest for the classification of data, which often has data imbalances. 

Unlike the current random forest method, class weights are based on the assignment of separate 

weights for each class, rather than a single weight. With high accuracy in categorizing majority and 

minority classes, this recommended approach provides a solution to the problem of classifying 

between majority and minority classes for unbalanced medical data. It also shows that it improves the 

overall performance of the classifier. 

 

3.3. Balanced Random Forest (BRF) 

The BRF technique is another version of the RFC model developed for skewed datasets. BRF applies 

a subsampling technique for each decision tree generation process in the RFC algorithm. This is why 

it is known as the Balanced Random Forest because it combines the sampling technique with the idea 

of an ensemble where unbalanced data processing becomes an algorithmic process. In the BRF 

algorithm, the size of the majority group in the dataset is determined randomly and in accordance with 

the minority group size. The classifier tackles imbalanced data by creating decision trees that are 

sensitive to both majority and minority classes. For the majority class, it employs balanced sampling, 

ensuring a representative subset of majority class instances in each tree. For the minority class, it 

ensures that all minority class instances are included. This approach leads to decision trees that can 

capture relevant patterns in the minority class while maintaining a fair balance with the majority class, 

ultimately resulting in a more equitable and accurate classification of both classes when combined in 

the forest. The pseudo code of the BRF is illustrated below where  ‘X’, ‘y’ and, ‘n_estimators’ 

represent the input features, the corresponding target labels, and the number of trees (number of 

iterations), respectively. 

 

Algorithm 3: Balanced Random Forest 

Initialize with a number of trees (n_estimators) 

 

    Train the model: 

    for each tree in n_estimators: 

        Create a balanced training sample from the data (X, y) 

        Create a decision tree using the balanced sample 

        Add the tree to the ensemble 

 

    Make predictions: 

    for each tree in the ensemble: 

        Get predictions from the tree 

    Combine the tree predictions to make a final prediction 

 

There are studies in the literature comparing the recall or sensitivity of its performance which revealed 

that BRF performed better than the Random Forest algorithm [40,41]. Although there are studies in 

which RF's ensemble learning algorithm is applied to unbalanced data for classification [42], it is 

known that BRF offers a better approach to the classification problem in these unbalanced data with 
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multiple classification problems [40]. The computational efficiency of BRF over WRF for skewed 

data was also demonstrated by Chen et al. [39]. 

 

4. ANALYSİS 

 

In the analysis, MIMIC-III dataset were studied to investigate the impact of the features on mortality 

prediction of RFC based ML models. In addition, different groups of features were used in each 

method application to understand the effect of various categorical properties on decisions of the 

machine learning algorithms. 

 

4.1. Dataset 

MIMIC-III, a substantial and openly accessible database, contains health-related data devoid of 

personal identification for over 40,000 patients who received care within critical care units at the Beth 

Israel Deaconess Medical Center from 2001 to 2012 [20]. The following information was included as 

a feature in the analysis by taking into account prior studies [43,44,45,46], clinical relevance, and 

available data: comorbidities (hypertension, atrial fibrillation, ischemic heart disease, diabetes 

mellitus, depression, hypoferric anemia, hyperlipidemia, chronic kidney disease (CKD), and chronic 

obstructive pulmonary disease [COPD]); and laboratory variables (hematocrit, red blood cells, mean 

corpuscular hemoglobin [MCH], mean corpuscular hemoglobin concentration [MCHC], mean 

corpuscular volume [MCV], red blood cell distribution width [RDW], platelet count, white blood 

cells, neutrophils, basophils, lymphocytes, prothrombin time [PT], international normalized ratio 

[INR], NT-proBNP, creatine kinase, creatinine, blood urea nitrogen [BUN] glucose, potassium, 

sodium, calcium, chloride, magnesium, the anion gap, bicarbonate, lactate, hydrogen ion 

concentration [pH], partial pressure of CO2 in arterial blood, and LVEF) [47]. The dataset includes 

demographic information like age, gender, and body mass index (BMI) at admission, as well as vital 

indicators including heart rate (HR) systolic blood pressure [SBP], diastolic blood pressure [DBP] 

respiration rate, body temperature, saturation pulse oxygen [SPO2], and urine output in the first 24 

hours [47]. The description of each feature is represented in Table 1 [48].  

 

Table 1. The description of each feature used in the analysis [48]. 

Name Description Unit Min Max 

age Patient age years 0 100 

basos basophils % 0 50 

bicar bicarbonate mEq/L 5 50 

bmı body mass index kg/m
2
 18.5 24.9 

bun Blood urea nitrogen mg/dL 0 200 

ca calcium mg/dL 4 20 

ck Creatine kinase IU/L 0 - 

cl chloride mEq/L 80 130 

crea creatinine mg/dL 0 15 

dbp Diastolic blood pressure mmHg 0 200 

gender/

sex 

patient sex - - - 
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glu glucose mg/dL 0 1000 

hct hematocrit % 15 60 

hgb hemoglobin g/dL 4 18 

hr Heart rate bpm 0 300 

ınr international normalized ratio prothrombin 

time/international 

normalized ratio 

- - 

k potassium mEq/L 0 10 

lact lactate Mmol/L 0 50 

mg magnesium mg/dL 0.5 5 

lvef left ventricular ejection fraction % 52 72 

mch mean corpuscular hemoglobin pg 0 - 

mchc mean corpuscular hemoglobin 

concentration 

% 20 50 

mcv mean corpuscular volume fL 50 150 

na sodium mEq/L 110 165 

neut neutrophils % 0 100 

NT-

proBN

P 

N-terminal pro–B-type natriuretic peptide pg/mL 0 100 

spo2 Oxygen saturation % 50 100 

pco2 partial pressure of CO2 in arterial blood mmHg 10 150 

pH hydrogen ion concentration - 6.8 8 

plt platelet count K/uL 5 1200 

pt prothrombin time sec 0 - 

rbc red blood cells m/uL 0 20 

rdw red blood cell distribution width % 0 100 

resp respiration rate insp/min 0 120 

sbp systolic blood pressure mmHG 0 300 

temp temperature C 32 42 

urine urine output mL 0 2000 

wbc white blood cells K/uL 0 - 

hp hypertension mmHg 90/60 120/

80 

A-Fib atrial fibrillation dk 60 100 

ihd ischemic heart disease mmol/L 1.20 1.62 

iddm diabetes mellitus mg/dL 0 100 

bdı Depression (Beck Depression Inventory ) - - - 

hwa hypoferric anemia ng/mL 11 - 

hdl hyperlipidemia  mg/dL 0 200 

ckd chronic kidney disease (CKD mL/min 60 - 

copd chronic obstructive pulmonary disease 

[COPD] 

% 88 92 
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For the analysis, the information of the patients having missing value was removed from the dataset. 

In the study, 428 records including information of 65 dead (15% of the dataset) and 363 (85% of the 

dataset) alive patients were analysed with 48 features and outcome information which represents 

mortality conditions. Table 2 explains the number of instances for each class in total, train and test 

dataset which indicates that each group has 15% mortality samples. 

 

Table 2. Mortality and alive class sizes for total, train, and test datasets.  

Dataset Total Train Test 

Alive Class 363 292 71 

Mortality Class 65 50 15 

 

4.2. Application of Ensemble Learning 

In the analysis, WRF, and BRF algorithms were used to analyze the mortality condition of the patients 

by using three different feature group. In addition, RFC algorithm was also implemented to compare 

its performance with its improved versions for imbalanced data. In group 1 all features given in the 

dataset were utilized by the algorithms as properties to predict the condition of the patient. In group 2 

only comorbidities were considered as features by the models. In group 3 laboratory variables with 

vital signs were used as features by the methods. In all feature groups, demographic characteristics 

were included. In all models 100 trees (number of iteration) were used [49], and the quality of the 

node separation was preferred “Gini” for all algorithms. In WRF, the parameter used for setting the 

class weights was set to ‘balanced’ which modifies the weights inversely proportional to class 

instances in the input data [50]. Due to the structure of the data 80% of the data was selected for 

training and the rest for the test. 

 

Figures 2, 3, and 4 represent the significance of features in RFC, WRF, and BRF across three distinct 

groups. Analyzing the outcomes of models used group 1 features, it is evident that apart from age, 

vital attributes exert minimal influence on the algorithms. Additionally, the relevance of comorbidity 

information in group 1 is below 2%. The comparison of feature importance within group 1 leads to the 

observation that similar attributes wield a shared impact on algorithmic decisions. Plot illustrations 

concerning group 2 reveal that ‘age’ and ‘bmi’ emerge as dominant features across all algorithms. 

Interestingly, comorbidity features exerted a modest influence on models, accounting for less than 

10%. Analysis of feature importance plots within group 3 suggests that 'urine output' is the pivotal 

feature in BRF and WRF algorithms, while 'bmi' and 'age' consistently affect decision mechanisms in 

all models. Notably, gender information held negligible importance in the decision algorithms across 

all group analyses. 

 

5. RESULTS AND DISCUSSIONS 

 

In the study, sensitivity or recall, precision, and F1 score, performance metrics of the ML, were used 

for the comparison of model performances by considering the class sizes in which the mortality and 

alive information were labeled as positive class (signal class) and negative class, respectively. In 

addition, AUC ROC [51] values were also determined to assess the discrimination power of the 

algorithms for unbalanced datasets [52,53].  
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5.1. Performance Metrics 

Sensitivity (recall), precision, and F1 score values will be determined using parameters found in the 

confusion matrix, a table of the real class information in the dataset against the ML model predictions, 

obtained as a result of the ML model application [54,55]. Recall or sensitivity is used to calculate the 

percentage of fatalities that may have been accurately predicted, by Equation (1). 

 

   Sensitivity = TP / (TP + FN)                                 (1)  

 

In Equation (1), The values for TP and FN correspond to the proportion of information that was 

mistakenly categorized as alive and correctly classified as mortality, respectively. The expression 

"precision" is used to describe the accuracy of the predictions made by the model using Equation (2) 

in which FP represents misclassified mortality samples.      

 

                                             Precision = TP / (TP + FP)                                                                       (2)   

 

The harmonic mean of sensitivity and precision, known as the F1 score, allows for a comprehensive 

two-sided evaluation of the model represented in Equation (3). 

 

 F1 score = (2 * Precision * Recall) / (Precision + Recall)                                                      (3) 

 

 
(a) Feature Group 1 
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(b) Feature Group 2 

 
(c) Feature Group 3 

Figure 2. The feature importance in RFC for three feature groups. 
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(a) Feature Group 1 

 
(b) Feature Group 2 

 
(c) Feature Group 3 

Figure 3. The feature importance in WRF for three feature groups. 



  
  
 
 

 

 
 
 

Özyurt-Serim, A. B.,  Journal of Scientific Reports-A, Number 54, 364-384, September 2023 
 

 
 

377 
 

 

 
(a) Feature Group 1 

 
(b) Feature Group 2 

 
(c) Feature Group 3 

Figure 4. The feature importance in BRF for three feature groups. 
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The Receiver Operating Characteristic Curve (ROC) curve, one of the most important metrics in 

machine learning, illustrates the relationship between the rate of misclassified positive classes and the 

rate of mortality instances. The method includes several criteria to identify model performance. The 

ROC curve is based on determining (iii) two-dimensional graphs of (i) sensitivity or recall and (ii) 

“false positive rate (FPR=FP/(FP+TN) where TN is correctly categorized alive class.)” criteria and 

(iv) calculating the area under the curve (AUC ROC). An indicator of how well a metric can 

discriminate between two diagnostic classes is the area under the ROC curve (AUC ROC). AUC ROC 

is a measure of how well two classes can be distinguished by the model. A high AUC ROC value 

signifies an improvement in the model's ability to differentiate between mortality and alive classes 

[52,53]. If the values of F1 score, and AUC ROC close to 1, that means the model is a perfect 

classifier [54]. Accuracy, another performance evaluation metric of the ML model, was not used in the 

analysis since it might not provide sufficient information about the success of models applied to 

datasets with imbalanced classes [39,40,41].  

 

5.2. Evaluation of Model Performances  

Table 2 represents RFC, WRF, and BRF weighted performances by implementing three different 

features in the algorithms to find the mortality from MIMIC-III dataset with AUC ROC values. The 

model performances can be comprehended by closeness of each metric to the value 1. For an ideal 

case, perfect classifier exhibits the maximum performance scores, 1. For performance comparison of 

machine learning models, the algorithm is outperformed if the scores are higher than the rest. The 

AUC ROC score implies the success of the algorithm and precision score represents how well the 

model categorizes the classes. According to the table, 88.095% of BRFs that used group 3 attributes 

were able to accurately identify mortality at 90.814%. A higher F1 score indicates better model 

performance which is BRF model using Group 3 features. The table illustrates how all algorithms 

have low success rates when comorbidities are taken into account as features. The results exhibited 

that even if RFC is not modified for the dataset its achievement is very close to the improved versions 

when the discriminative features were used. In general usage of Group 3 features enables all the 

algorithms to find each class with high precision. The results confirm that BRF handles imbalanced 

data by training its decision trees in a way that gives equal importance to both the majority and 

minority classes, ensuring a fair and accurate classification for both. 

 

Table 2. Table of RFC, WRF, and BRF model performances. The performance metrics' top scores are 

shown in bold. 

Model Feature 

Group 

Precision Recall F-1 score AUC ROC 

 

RFC 

Group 1 0.86773 0.87209 0.84850 0.65962 

Group 2 0.80349 0.83721 0.80894 0.58631 

Group 3 0.88064 0.86047 0.81939 0.60000 

WRF 

 

Group 1 0.78904 0.83721 0.78242 0.52877 

Group 2 0.77829 0.82558 0.78940 0.55060 

Group 3 0.89756 0.88372 0.84587 0.58333 

BRF Group 1 0.86893 0.73256 0.77716 0.71842 

Group 2 0.77054 0.65116 0.69279 0.59028 
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Group 3 0.90814 0.84884 0.86390 0.88095 

 

6. CONCLUSIONS 

 

In recent years, digital health record system data has become a valuable research area for data analysis 

with ML approach. It is thought that machine learning (ML) approaches will provide solutions to the 

issues brought on by a lack of evidence in their application domains by improving the accessibility of 

large-scale medical datasets. In addition, potential patients who can be treated are given the 

opportunity to better predict events such as heart attacks and death in intensive care using machine 

learning methods. Thanks to mortality estimates, hospitals can now more accurately anticipate 

resource needs, properly identify illnesses, and decide whether a patient needs additional care before 

it's too late. [55,56]. 

In the present study, compared to RFC and WRF models, the results of BRF algorithm in which the 

laboratory variables with vital signs were used showed the highest performance for the morality 

determination. RFC approach in general provides the best prediction performance in previous studies, 

however, due to the data structure BRF, the improved version of RFC for imbalanced data, 

demonstrated higher success than it. WRF model, another version of RFC in which the class weights 

were arranged, did not show better discrimination power compared to the other models. From the 

results of models using different features, it can be concluded that comorbidities and gender 

information did not affect the morality determination. Class imbalance in the classification of medical 

data is a problem that is currently being studied and has to be solved. In the study, an algorithm (BRF) 

is proposed to be used in handling imbalanced and limited medical data. BRF, an improved version of 

one of the successful ensemble learning algorithms RFC, addresses class imbalance by constructing 

decision trees in a way that ensures balanced representation of minority and majority classes in each 

tree's training subset. Considering the values of BRF assessment metrics such as AUC ROC and F-1 

score, the model is promising to be used in unbalanced medical data analysis.   
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