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Given the growing requirement for wireless communication and the limited 

nature of the spectrum, cognitive radio technology plays a crucial role in 

optimizing the use of the radio frequency spectrum. Spectrum sensing is the 

core function of the cognitive radio network. In this paper, the recently 

developed Reptile Search Algorithm (RSA) is used to increase detection 

capabilities in cooperative spectrum sensing for cognitive radio systems. 

Weight assignments were made to secondary users with the help of soft 

fusion scheme and Reptile Search Algorithm was used to ensure that these 

assignments gave the highest detection results. The results were compared 

with the other two optimization algorithms, Particle Swarm Optimization 

(PSO) and Aquila Optimizer (AO), and it was seen that Reptile Search 

Algorithm provides better results than the other algorithms. 

Keywords: 

Cognitive Radio, Reptile 

Search Algorithm, Weight 

Coefficients Optimization, 

Detection Performance   

© 2023 Bandirma Onyedi Eylul University, Faculty of Engineering and Natural Science. 

Published by Dergi Park. All rights reserved. 

M A K A L E  B İ L G İ S İ Ö Z E T

Makale Tarihleri 

Gönderim : 25 Ağustos 2023 

Kabul : 26 Eylül 2023 

Kablosuz iletişim için giderek artan gereksinim ve spektrumun sınırlı doğası 

göz önüne alındığında, bilişsel radyo teknolojisi radyo frekansı 

spektrumunun kullanımının optimize edilmesinde çok önemli bir rol 

oynamaktadır. Spektrum algılama, bilişsel radyo ağının temel işlevidir. Bu 

makalede, yakın zamanda geliştirilen Sürüngen Arama Algoritması (RSA), 

bilişsel radyo sistemleri için işbirlikçi spektrum algılamada tespit 

yeteneklerini artırmak amacıyla kullanılmıştır. Yumuşak füzyon şeması 

yardımıyla ikincil kullanıcılara ağırlık atamaları gerçekleştirildi ve bu 

atamaların en yüksek tespit sonuçlarını vermesini sağlamak için Sürüngen 

Arama Algoritmasını kullanıldı. Sonuçlar diğer iki optimizasyon algoritması 

olan Parçacık Sürü Optimizasyonu (PSO) ve Aquila Optimizer (AO) ile 

karşılaştırılarak Sürüngen Arama Algoritmasının diğer algoritmalara göre 

daha iyi sonuçlar sağladığı görülmüştür. 
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1. INTRODUCTION 

The radio frequency spectrum is utilized as a critical resource in wireless technologies, including radio and 

television broadcasting, cellular networks, Wi-Fi, satellite communications, Bluetooth and much more. As the 

interest and demand for wireless services grow day by day, the proper allocation and utilization of spectrum 

become increasingly essential. Due to the limitations of the fixed spectrum allocation approach in fully utilizing 

the spectrum's capacity, cognitive radio technology is employed to achieve more efficient spectrum utilization [1]. 

Cognitive radio enables unlicensed users to adaptively use frequency bands when licensed users with priority 

rights are not actively occupying the spectrum, using the concept of dynamic spectrum access [2]. The users who 

have a license in the spectrum are considered primary users (PUs), while the users who do not have a license are 

considered secondary users (SUs). One of the critical stages in cognitive radio is spectrum sensing, which refers 

to the process of analyzing and detecting the occupation or availability of radio frequency bands.  The successful 

execution of the spectrum sensing stage is vital because if the presence of primary users is not precisely determined, 

secondary users may cause detrimental interference to the other users, which is highly undesirable [3-4]. 

In the literature, research on spectrum sensing algorithms has been evolving and depending on the system 

requirements and characteristics, various methods such as energy detection [5], matched filter [6], cyclostationary 

detection [7] are used [8]. Cooperative spectrum sensing schemes are proposed to mitigate the impact of different 

challenges such as fading, noise variations and to increase the reliability of spectrum sensing. [9] In these schemes, 

multiple secondary users come together to perform the sensing task cooperatively. Each secondary user senses the 

spectrum locally, and then the information obtained from these users is combined at a fusion center to generate an 

ultimate conclusion. This combining process in the fusion center can be applied with three different techniques: 

Hard Decision Fusion, Soft Decision Fusion and Softened Hard Decision Fusion [10-13]. In this study, the soft 

decision fusion technique is used, which is known to have better detection performance than hard decision fusion. 

In this technique, secondary users report their detection results in the form of probability distributions. These 

reports provide statistical information about the spectrum state and the fusion center merges this information to 

estimate the presence/absence of the PU in the spectrum.  

Several metaheuristic algorithms have been investigated in the literature for the implementation of spectrum 

sensing. In [14], to enhance the detection accuracy in cooperative spectrum sensing, PSO and five additional PSO 

variants were employed to optimize the weight vector, and a comparative study was conducted to evaluate their 

performance. An soft decision fusion (SDF)-based cognitive radio network based on GA is introduced in [15] and 

the results show that it performs better compared to HDF and traditional schemes. In [16], an evolutionary 

optimization approach using the Imperialistic Competitive Algorithm (ICA) is presented for the effective selection 

of weighting coefficients for each secondary user in the cooperative sensing scheme. The ICA-based method has 

been compared to Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and SDF-based methods, 

demonstrating that it surpassed other SDF-based techniques in terms of performance. In [17], the efficient adaptive 

artificial bee colony (EA-ABC) algorithm was developed, and the proposed EA-ABC algorithm was adapted for 

cooperative spectrum sensing. The results have shown that a higher detection probability is achieved compared to 

ABC, PSO, and modified PSO algorithms with the same false alarm probability. Three distinct bio-inspired 

techniques, namely, PSO, firefly algorithm, and fish school search, were employed to assess the optimal weighting 

vector utilized in the fusion center in [18]. Numerical findings demonstrate that bio-inspired techniques outperform 

traditional algorithms commonly used for spectrum sensing and allocation. In this paper, our focus is on enhancing 

spectrum sensing performance. In line with this objective, we aim to achieve maximum efficiency in detection 

performance by leveraging the functionality of intelligent optimization techniques rather than traditional methods 

for assigning weights to users in the soft fusion scheme. Our goal is to harness the power of intelligent optimization 

techniques to enhance detection performance and consequently improve the overall quality of service in cognitive 

radio networks, addressing the growing demand for spectrum resources while minimizing interference and 

ensuring more efficient spectrum utilization. In cognitive radio (CR) systems, weight coefficients are utilized to 

merge the individual sensing reports from multiple secondary users (SUs) during the cooperative spectrum sensing 

process, and they play a critical role in the detection performance. Each SU may be exposed to different channel 

conditions, noise levels, and fading effects, which makes all sensing reports not equally reliable. By assigning 

higher weights to secondary users with more reliable sensing capabilities, they have a greater influence on the final 

combined decision. This way, the cognitive radio system makes more accurate and informed decisions about the 

primary user (PU) activity, reducing the likelihood of harmful interference caused by secondary users. Ultimately, 

by intelligently combining the sensing reports using weight coefficients, the cognitive radio system can better 

utilize underutilized spectrum bands, leading to improved spectrum efficiency and increased capacity. Various 

optimization algorithms are used to search for the optimal set of weights that maximize the detection accuracy.  

Towards this goal, the recently emerged Reptile Search Algorithm (RSA) has been adapted to the cooperative 

spectrum sensing scheme, aiding in determining suitable weight coefficients. We selected the reptile search 

algorithm because of its effective balance between exploration and exploitation mechanisms, thus facilitating our 

efficient discovery of optimal weights. This adaptability of the algorithm allows it to dynamically adapt to 

environmental changes and intelligently explore uncharted regions of the parameter space. In the context of 

cognitive radio networks, where spectrum dynamics can change rapidly, this adaptability is highly valuable. The 

obtained results have been compared with other optimization algorithms such as Particle Swarm Optimization 
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(PSO) and Aquila Optimizer (AO). This paper is divided into the following sections: A summary of the system 

model we used is presented in Section 2.  In Section 3 RSA and weight optimization performed using RSA are 

explained. The simulation parameters and simulation results are presented in Section 4. The overall results of this 

paper are given in Section 5. 

2. SYSTEM MODEL

Figure (1) illustrates the proposed framework for cooperative spectrum sensing. Soft fusion technique has been 

used in this study. M number of SU have been used to transmit local observations to a fusion center (FC). The 

local individual decision of each SU is forwarded to the FC according to the binary hypothesis given in (1).  

{
𝑋𝑖[𝑛] = 𝑊𝑖[𝑛],  𝑓𝑜𝑟  𝐻0
𝑋𝑖[𝑛] = 𝑔𝑖𝑆[𝑛] +𝑊𝑖[𝑛],  𝑓𝑜𝑟  𝐻1

𝑖 =1,2,3,…,M       (1) 

In this hypothesis, 𝐻0 represents that there is no active primary user in the spectrum, indicating that the spectrum

is vacant.  𝐻1, on the other hand, signifies that the spectrum is occupied by a primary user and is not vacant. In (1),

the received signal is symbolized by 𝑋𝑖[𝑛] . The channel gain between the primary user and 𝑖𝑡ℎ secondary user is

signified by 𝑔𝑖 . While 𝑊𝑖[𝑛] represents the additive white Gaussian noise (AWGN)  𝑊𝑖[𝑛]~𝑁(0,𝜎𝑊𝑖

2  ),  s[n]

denotes the signal of the primary user. The channel gain of the secondary user-fusion center link is represented by 

ℎ𝑖. 𝑁𝑖[𝑛] represents the AWGN characterized by a mean value of zero and a variance of 𝛿𝑖
.2. The signals received

from the secondary users are denoted as 𝑌𝑖[𝑛].  𝑍𝑖  stands for the energy accumulated by the fusion center from the

𝑖𝑡ℎ secondary user. Z is the ultimate test statistic computed by the fusion center before the decision-making block.

At the fusion center, the energy of every secondary user is multiplied by a weight and then all the weighted energies 

are summed together. Subsequently, a constant threshold value, dependent on a fixed false alarm probability 𝑃𝑓,

is compared with this sum to make a decision between hypothesis 𝐻0 or  𝐻1. The probability of detection equation

that we want to maximize in this study is given below: 

𝑃𝑑(𝜔) = 𝑄 (
𝑄−1(𝑃𝑓)√𝜔

𝑇𝜑𝐻0𝜔−𝜔
𝑇𝜃

√𝜔𝑇𝜑𝐻1𝜔
) (2) 

where, 𝑄(𝑥) = ∫
1

2𝜋

∞

𝑥
𝑒𝑥𝑝 (−

𝑡2

2
) 𝑑𝑡, 𝜃𝑖 = 𝜎𝑆

2𝐾𝑃𝑅,𝑖|ℎ𝑖|
2|𝑔𝑖|

2, 𝜎𝑆
2 is the variance of the primary user signal, 𝐾

corresponds to the total number of samples, 𝑃𝑅,𝑖  represents the transmitting power of the 𝑖𝑡ℎ  secondary user. 

The covariance matrices for the 𝐻0 and  𝐻1 hypothesis are denoted as 𝜑𝐻0  and 𝜑𝐻1. The weight vector 𝜔 =

[𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑀]
𝑇
 and Reptile Search Algorithm is employed to find the appropriate weight coefficients. The

detailed equations used in this study can be found in [14]. 

Fig.1. Illustration of cooperative spectrum sensing architecture. 

3. REPTILE SEARCH ALGORITHM BASED APPROACH FOR SENSING

OPTIMIZATION

The reptile search algorithm (RSA), introduced by Abualigah et al.[19], is an innovative optimization algorithm 

that replicates the encirclement and hunting actions exhibited by crocodiles. The RSA starts by assigning a random 

solution to the variable 𝑥𝑖𝑗  within the minimum and maximum values. In order to harness the inherent behavior of

crocodiles, RSA divides its total iterations into four stages. The first two stages specifically emphasize exploration, 

employing the encircling strategy that encompasses high and belly walking actions. During the encircling process, 
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crocodiles initiate a search in the area, enabling a comprehensive exploration of the solution area, which can be 

represented in the following manner: 

𝑥(𝑖,𝑗)(𝑡 + 1) = {
𝐵𝑒𝑠𝑡𝑗(𝑡) ×  −η(𝑖,𝑗)(𝑡) × 𝛽 − R(𝑖,𝑗)(𝑡) × 𝑟𝑎𝑛𝑑, 𝑡 ≤

𝑇

4

𝐵𝑒𝑠𝑡𝑗(𝑡) × 𝑥(𝑟1,𝑗) × 𝐸𝑆(𝑡) × 𝑟𝑎𝑛𝑑, 𝑡 ≤ 2
𝑇

4
𝑎𝑛𝑑 𝑡 >

𝑇

4

      (3) 

Where 𝑡  corresponds to the current iteration while  𝑇 signifies the maximum number of iterations.  𝐵𝑒𝑠𝑡𝑗(𝑡)

represents the 𝑖𝑡ℎ position in the currently best solution. 𝑟𝑎𝑛𝑑 denotes a random number generator. The hunting

parameter is denoted by η(𝑖,𝑗) and is calculated utilizing (4). 𝛽, set to a constant value, controls the exploration

accuracy. The reduce function R(𝑖,𝑗) is computed according to (5). 𝑟1   represents a randomly chosen value from

the range [1 𝑁], where 𝑁 is the count of candidate solutions, 𝑥(𝑟1,𝑗) denotes a randomly selected location from the

𝑖𝑡ℎ solution.  The Evolutionary Sense (𝐸𝑆) is a probability ratio, calculated using (6).

η(𝑖,𝑗) = 𝐵𝑒𝑠𝑡𝑗(𝑡) × P(𝑖,𝑗)       (4) 

R(𝑖,𝑗) =
𝐵𝑒𝑠𝑡𝑗(𝑡)−𝑥(𝑟2,𝑗)

𝐵𝑒𝑠𝑡𝑗(𝑡)+ϵ
      (5) 

𝐸𝑆(𝑡) = 2 × 𝑟3 × (1 −
1

𝑇
)        (6) 

Where, ϵ is a small amount. 𝑟2 represents a random value and 𝑟3 represents a random integer number within the

range of -1 to 1. Equation (7) is used to determine the difference parameter P(𝑖,𝑗). The accuracy of exploration is

controlled by 𝛼. The average positions of the 𝑖𝑡ℎsolution, denoted by 𝑀(𝑥𝑖), are determined using (8).

P(𝑖,𝑗) = 𝛼 +
𝑥(𝑖,𝑗)−𝑀(𝑥𝑖)

𝐵𝑒𝑠𝑡𝑗(𝑡)×(𝑈𝐵(𝑗)−𝐿𝐵(𝑗))+ϵ
      (7) 

𝑀(𝑥𝑖)  =
1

𝑛
𝑥(𝑖,𝑗)

𝑛
𝑗=1       (8) 

During the final two phases, RSA employs exploitation to carry out the local search, utilizing two approaches: 

hunting coordination and cooperation. The solution's value can be updated using (9) throughout the exploitation 

phase [20].  

𝑥(𝑖,𝑗)(𝑡 + 1) = {
𝐵𝑒𝑠𝑡𝑗(𝑡) ×  P(𝑖,𝑗)(𝑡) × 𝑟𝑎𝑛𝑑,       𝑡 ≤ 3

𝑇

4
𝑎𝑛𝑑  𝑡 > 2

𝑇

4

𝐵𝑒𝑠𝑡𝑗(𝑡) − η(𝑖,𝑗)(𝑡) × ϵ − R(𝑖,𝑗)(𝑡) × 𝑟𝑎𝑛𝑑, 𝑡 ≤ 𝑇 𝑎𝑛𝑑 𝑡 > 3
𝑇

4

      (9) 

In our study, the size of the weight vector is equal to the number of secondary users, which corresponds to the 

population size in RSA. At the beginning of RSA, random solutions are generated, and during the iteration cycles, 

RSA's search mechanisms explore possible locations of solutions close to the optimum. Each solution adjusts its 

positions based on the processes proposed by RSA and ultimately finds the most suitable weight coefficients that 

maximize the detection probability given in (2), which corresponds to the best solution obtained. Accordingly, (3), 

(5), (7), (8) and (9) have been updated as follows, 

𝜔(𝑖,𝑗)(𝑡 + 1) = {
𝐵𝑒𝑠𝑡𝑗(𝑡) ×  −η(𝑖,𝑗)(𝑡) × 𝛽 − R(𝑖,𝑗)(𝑡) × 𝑟𝑎𝑛𝑑, 𝑡 ≤

𝑇

4

𝐵𝑒𝑠𝑡𝑗(𝑡) × 𝜔(𝑟1,𝑗) × 𝐸𝑆(𝑡) × 𝑟𝑎𝑛𝑑, 𝑡 ≤ 2
𝑇

4
𝑎𝑛𝑑 𝑡 >

𝑇

4

    (10) 

R(𝑖,𝑗) =
𝐵𝑒𝑠𝑡𝑗(𝑡)−𝜔(𝑟2,𝑗)

𝐵𝑒𝑠𝑡𝑗(𝑡)+ϵ
   (11) 

P(𝑖,𝑗) = 𝛼 +
𝜔(𝑖,𝑗)−𝑀(𝜔𝑖)

𝐵𝑒𝑠𝑡𝑗(𝑡)×(𝑈𝐵(𝑗)−𝐿𝐵(𝑗))+ϵ
    (12) 

𝑀(𝜔𝑖)  =
1

𝑛
𝜔(𝑖,𝑗)

𝑛
𝑗=1     (13) 

𝜔(𝑖,𝑗)(𝑡 + 1) = {
𝐵𝑒𝑠𝑡𝑗(𝑡) ×  P(𝑖,𝑗)(𝑡) × 𝑟𝑎𝑛𝑑,       𝑡 ≤ 3

𝑇

4
𝑎𝑛𝑑  𝑡 > 2

𝑇

4

𝐵𝑒𝑠𝑡𝑗(𝑡) − η(𝑖,𝑗)(𝑡) × ϵ − R(𝑖,𝑗)(𝑡) × 𝑟𝑎𝑛𝑑, 𝑡 ≤ 𝑇 𝑎𝑛𝑑 𝑡 > 3
𝑇

4

    (14) 

4. SIMULATION RESULTS

In this section, simulation studies aimed at maximizing the detection probability given by equation (2) are 

presented. The simulation parameter values used throughout this study are defined in Table 1. For the reptile search 

algorithm, 𝛼 and 𝛽 parameter values that control the exploration accuracy are selected as 0.1. The values for noise 

and channel gain are chosen at random within a certain range in order to simulate sub-optimal SNR scenarios. We 

assessed the sensing performance using detection probability metric, which quantifies the reliability of correctly 

identifying the existence of PUs’ signals when they are indeed present. To provide a comprehensive assessment, 

we contrasted the RSA approach with two other metaheuristic techniques: Particle Swarm Optimization and Aquila 
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Optimizer.   PSO, inspired by social behavior patterns, iteratively refines solutions by mimicking the movement 

of particles in a multidimensional search space. On the other hand, AO, simulates four different hunting tactics 

observed in the hunting behavior of Aquila, navigating through a multidimensional search space to find optimal 

or near-optimal solutions.  Fig. 2 depicts the average detection probabilities of weight schemes obtained using 

PSO, AO, and RSA. The population size is taken as 20 for all three algorithms. The obtained results are for a fixed 

false alarm probability value of 0.24. At the beginning of iterations, all three algorithms exhibited similar behavior. 

The following is the provided pseudo code for the suggested system: 

Algorithm 1: The pseudo code of the reptile search algorithm for optimizing 𝑃𝑑(𝜔)

Initialize the population 𝜔𝑖(𝑖 = 1,2,3, …𝑀), 𝑀:Number of Secondary Users, and parameters 𝛼, 𝛽
While (𝑡 < 𝑇) do 

Compute the fitness values of every potential solution  

Save the best solution obtained so far 

Update 𝐸𝑆 according to (6) 

for ( 𝑖 = 1 − M) do 

for (𝑗 = 1 −M) do 

η, R, 𝑃 are updated using (4),(11) and (12) 

If ( 𝑡 ≤
𝑇

4
) then

𝜔(𝑖,𝑗)(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗(𝑡) × −η(𝑖,𝑗)(𝑡) × 𝛽 − R(𝑖,𝑗)(𝑡) × 𝑟𝑎𝑛𝑑,

else if (𝑡 ≤ 2
𝑇

4
 𝑎𝑛𝑑 𝑡 >

𝑇

4
) then

𝜔(𝑖,𝑗)(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗(𝑡) × 𝜔(𝑟1,𝑗) × 𝐸𝑆(𝑡) × 𝑟𝑎𝑛𝑑 ,

else if (𝑡 ≤ 3
𝑇

4
 𝑎𝑛𝑑  𝑡 > 2

𝑇

4
) then

𝜔(𝑖,𝑗)(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗(𝑡) × P(𝑖,𝑗)(𝑡) × 𝑟𝑎𝑛𝑑 ,

else 

𝜔(𝑖,𝑗)(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗(𝑡) − η(𝑖,𝑗)(𝑡) × ϵ − R(𝑖,𝑗)(𝑡) × 𝑟𝑎𝑛𝑑,

end if 

end for 

end for 

𝑡 = 𝑡 +1 

end while 

Return the solution with the highest fitness 

However, after surpassing a certain iteration, RSA outperformed PSO and AO significantly in terms of average 

probability of detection(𝑃𝑑) values. While the average 𝑃𝑑 value of RSA exceeded 0.9, AO remained approximately

0.78 and PSO remained around 0.81. The convergence speed of RSA has shown improvement after around 370 

iterations. 

The simulation curves shown in Fig. 3 and Fig. 4 are used to evaluate the detection probability values of PSO, AO 

and RSA for various false alarm probability values. In these receivers operating characteristic (ROC) curves, the 

value of probability of false alarm (𝑃𝑓) is changed at each iteration, instead of being set to a fixed value. The

probability of false alarm is systematically varied between 0 and 1, with increments of 0.1. For each probability 

value, the corresponding probability of detection is calculated to construct the ROC curve, illustrating the trade-

off between false alarm rate and detection rate. The performance of RSA is compared with PSO and AO and the 

results have shown that the detection performance of PSO and AO are approximately close to each other, while 

the detection performance of RSA has outperformed both of them. Additionally, to observe the impact of the 

number of secondary users on the detection performance, in Fig. 3, the number of secondary users was set as 20, 

while in Fig. 4, the number was increased to 24. The results indicate that as the number of secondary users 

increases, the detection performance also improves. For example, when the 𝑃𝑓   value is 0.1, in the cognitive radio

system with 20 users, the detection probability for RSA is 0.79, while with 24 users, it increases to approximately 

0.82. For AO, it rises from around 0.60 to 0.65, and for PSO, it increases from around 0.59 to 0.61. When the  

𝑃𝑓  value is 0.2, in the cognitive radio system with 20 users, the detection probability for RSA is approximately

0.84, while with 24 users, it increases to approximately 0.86. For AO, it rises from 0.71 to 0.78, and for PSO, it 

increases from about 0.73 to around 0.77. With an increasing number of secondary users, the cooperative spectrum 

sensing process becomes more robust due to the diversity in sensing reports from multiple users. This diversity 

enhances the accuracy of detecting PU signals. As more secondary users participate, more accurate decisions can 

be made regarding the occupancy or availability of the frequency band. The simulation results underscore the 

effectiveness of the proposed RSA-based cooperative spectrum sensing approach in cognitive radio systems. The 

obtained results presented in this section demonstrate that the weight optimization performed with the help of RSA 

significantly boosts the sensing accuracy in spectrum sensing and is superior to the other two meta-heuristic 

optimization algorithms. 
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Fig. 2. Comparison of average fitness values for 

PSO, AO and RSA. 
Fig. 3. 𝑃𝑓  vs 𝑃𝑑 for 20 secondary users.

Table 1. Simulation parameters. 

Variable Value 

Number of SUs (M) 20 

Probability of False Alarm 0.24 

Sensing time, Bandwidth 28 𝜇sec, 6 MHz 

SU-FC channel noise variance −60 dBm≤ 𝛿i2 ≤ −47 dBm

PU-SU channel gain −50 dBm ≤ 𝑔𝑖 ≤ −40 dBm

SU-FC channel gain −40 dBm ≤ ℎ ≤ −30 dBm

Transmit power (PU) 25 dBm 

Transmit power (SU) 12 dBm 

Fig. 4. 𝑃𝑓 vs 𝑃𝑑 for 24 secondary users.

5. CONCLUSION

Cognitive radio is a technology that offers an opportunistic solution to the spectrum scarcity issue caused by the 

increasing number of wireless communication devices. Spectrum sensing is a vital process of cognitive radio. In 

this paper, we focused on adapting different metaheuristics algorithms to the soft fusion scheme to enhance the 

effectiveness of cooperative spectrum sensing systems in cognitive radio. We used RSA, PSO and AO to perform 

weight optimization. Compared to PSO and AO, RSA offers better performance in terms of detecting spectrum 

holes and determining the presence of primary users, which are measures of detection probability. 
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