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 Nesne tanıma günümüzün en önemli araştırma konularındandır. Tarımdan, savunma ve uzay 

sanayisine kadar her alanda kapsamlı kullanımı olan nesne tanımanın öneminin giderek artacağı 

beklenmektedir. Bu çalışmada, iPhone 13 Pro Max’in dahili kamerası ve LIDAR sensöründen eş 

zamanlı olarak alınan veriler kullanılarak kullanıcı tarafından sınırları belirlenebilen bir alan 

içerisinde gerçek zamanlı nesne tanıma yapılmıştır. Çalışmada Swift programlama dili, 

framework olarak ise SwiftUI kullanılmıştır. MS COCO veri setindeki elemanlar ile çalışma 

gerçekleştirilmiştir. Nesne tanıma işlemleri için YOLO V5 kullanılmış ve video işleme süreçleri 

Swift Metal kullanılarak gerçek zamanlı veriler üzerinde gerçekleştirilmiştir. Kamera ve LIDAR 

füzyonuna bağlı olarak gerçek-zamanlı olarak alınan verilerden elde edilen her bir frame 

üzerinde kullanıcının arayüzde belirlediği minimum-maksimum uzaklığa göre görüntü alanı 

daraltılarak Swift Metal ile video işleme gerçekleştirilmiştir. Alınan anlık video verilerindeki her 

bir frame içerisinde kullanıcının belirlediği değer aralığındaki bulunan nesnelerin konturları 

dışındaki alanlar karartılmıştır. Böylece karartılmış olan her bir frame içerisindeki nesnelere 

nesne tanıma işlemi gerçekleştirilmiştir. Sonuç olarak, arayüzde 0-15 m sınır aralığında 

ayarlanabilecek şekilde gerçek zamanlı LIDAR ve kamera verileriyle nesne tanıma işlemi 

gerçekleştirilmiştir. 
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 Object recognition is currently one of the most significant research topics. Its significance is 

expected to steadily increase due to its extensive applications across various fields, from 

agriculture to defense and the space industry. In this study, real-time object recognition 

processes were conducted within a user-defined area using data simultaneously captured from 

the built-in camera of the iPhone 13 Pro Max and its integrated LIDAR sensor. The Swift 

programming language was employed, and SwiftUI was chosen as the framework. The study 

utilized elements from the MS COCO dataset, employing the YOLO V5 algorithm for object 

recognition. Real-time video processing was accomplished using Swift Metal. The YOLO V5 

algorithm was utilized for object recognition, and video processing was carried out in real-time, 

narrowing down the area based on the minimum-maximum distance determined in the interface 

using the real-time fused data from the camera and LIDAR. Areas outside the contours of 

objects, defined by user-specified value ranges in each frame of the captured real-time video 

data, were darkened. Consequently, the object recognition process was performed on objects 

within each darkened frame. As a result, object recognition was successfully conducted within a 

user-defined range of 0-15 meters, as configured in the interface. 
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1. INTRODUCTION 

Object recognition, one of the computer vision technologies, is used for detection, location and recognition of objects in images 

and videos. Object recognition is commonly used in autonomous vehicles, robotics, aircraft, weapon systems, communication 

systems, security, surveillance, visualization, medical imaging, autonomous machine control and inspection, and more [1]. Their 

use is becoming increasingly common. With the gradual development of cutting-edge object recognition algorithms, it is predicted 
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that it will be used in numerous areas, considering future use cases [2]. Object recognition has witnessed rapid progress in fields 

like artificial intelligence, deep learning, and machine learning. Advancements in algorithms and larger datasets continuously 

enhance the accuracy and performance of object recognition systems. Thus, object recognition technologies represent a significant 

area of research and development used across various industries today [3]. In the field of object recognition, data types such as 

camera, LIDAR (Laser Imaging Detection and Ranging), RADAR (Radio Detection and Ranging) and ultrasonic sensor data can 

be used to improve object detection and recognition processes and obtain more reliable results. 

It is known that camera data is used in many different applications in the object recognition field. Object recognition is 

accomplished by a combination of image processing and artificial intelligence techniques. Camera data is used to detect and 

recognize objects. LIDAR is a remote sensing technology that measures the distance and 3D structures of distant objects using 

laser beams. LIDAR detects the reflected signals of the emitted laser beams to generate data called 3D point clouds. This data can 

be used to build a precise model of objects and surfaces on Earth. LIDAR also plays a pivotal role in object recognition and 

detection and is used in various application areas. Nikhitha, M. et al., in their study using camera data, carried out a research that 

could predict diseases in fruits and vegetables causing a decrease in crop yield and determine the degree of disease [4]. Sogabe et 

al. pointed out that although cataract, which is one of the biggest causes of blindness, can be solved with surgical treatment, it is 

difficult to treat because the tools and equipment are expensive, and it takes a long time for a surgeon to acquire the necessary 

skills for surgery. They carried out a deep learning-based object recognition study that can detect surgical instruments placed in 

the eye and their positions using camera data [5]. Janakiramaiah et al. emphasized the importance of automatic target detection 

systems based on object recognition technologies in military and stated that the performance of existing algorithms may be low 

due to the lack of data to train deep learning models stemming from security restrictions. They developed a new object recognition 

algorithm based on camera data that could be a solution to this problem [6]. Rezaei et al. developed a deep learning-based traffic 

modeling system by using real-time camera data. With this system, they performed the classification and location determination of 

vehicles and pedestrians in traffic. In addition, this system can make future position predictions of vehicles and pedestrians [7]. 

Kottner, S. et al., using the LIDAR sensor of iPhone 13 Pro, have developed an application that will facilitate crime scene 

investigation processes in forensic incidents with object recognition technology in a short time. With this application, they 

successfully completed the documentation process collecting 3D evidence data at a mock-up crime scene in about 2 minutes [8]. 

Okochi et al. performed object recognition by extracting the 3D structure of the surrounding objects with the point cloud data 

obtained with the LIDAR sensor [9]. Guyot et al., in their study, performed topographic anomaly detection using deep learning 

algorithms based on aerial LIDAR data of the terrain in a region and presented a new perspective for archaeological mapping [10]. 

Tatsumi et al. developed a mobile application that estimates the root diameter and spatial coordinates of trees using LIDAR point 

cloud data available from iPhones with built-in LIDAR sensors [11]. The combined use of detection systems such as LIDAR and 

camera is called sensor fusion and requires the use of more advanced artificial intelligence algorithms. Sensor fusion is the process 

of combining data from multiple sensors and extracting a common meaning. In other words, it is important not only to use two 

sensors together, but also to effectively process and interpret these data [12]. LIDAR measures distances with high precision and 

generates point cloud data. This is useful for pinpointing the position and size of surrounding objects and obstacles [13]. LIDAR 

sends laser beams to the environment and can also work effectively at night and in low light conditions, as it works by receiving 

the beams reflected from objects. The combination of the two provides better environmental perception in any lighting conditions. 

By combining LIDAR's precise distance measurement and the camera's color and pattern detection capabilities, more exact results 

in object recognition and classification can be achieved [14]. In this study, real-time multi-object recognition was performed using 

the camera and LIDAR data fusion with the iPhone 13 Pro Max mobile phone. The details of the study are given in the rest of the 

article.  

2. MATERIAL AND METHOD 

In this study, real-time multi-object recognition is aimed in the area to be limited according to the minimum-maximum values that 

can be set in the user interface with sensor fusion. Since the only mobile phone brand with a built-in LIDAR sensor is Apple 

iPhone devices, the study aimed to be carried out in the mobile environment is planned for iOS, the operating system of these 

devices. The point cloud and camera data required for real-time multi-object recognition within a user-limited area were acquired 

using the iPhone 13 Pro Max, which has a built-in LIDAR sensor and also a built-in high-resolution camera. 

2.1. Software Infrastructure 

It is aimed to realize real-time object recognition within a certain area limitation by using data received simultaneously from the 

built-in camera and LIDAR sensor of the iPhone 13 Pro Max mobile phone. The Swift programming language was employed for 

the study, with SwiftUI serving as the chosen framework. The study was carried out with the elements in the dataset of MS COCO 

(Microsoft Common Objects in Context), which is frequently used in the literature in the field of deep learning object recognition. 
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YOLO V5 (You Look Only Once), one of the state-of-the-art artificial neural network algorithms that can detect objects in real 

time and classify their positions, was used for object recognition. Video processing was performed on real-time data using Swift 

Metal, Apple's library for graphics processing and parallel computing on the iOS platform. According to the point cloud data 

received in real time from the iPhone's built-in LIDAR sensor, video processing was carried out on each frame obtained from the 

data simultaneously received from the iPhone camera, and the area in the frames is limited within the minimum and maximum 

values. The images of the materials used in the study are given in Fig. 1 below. 

 

Figure 1. Images of materials used in object recognition 

Algorithms used before deep learning in the field of object recognition are considered as classical recognition methods. 

2.2. Classical Recognition Methods 

 

Classical recognition methods are based on the use of various mathematical algorithms based on the different properties of the 

objects in the images, mostly without the use of artificial intelligence technologies. 

2.2.1. Viola Jones Sensors 

Viola and Jones have developed an algorithm that detects faces in real time with high precision in video image frames and much 

faster than previous studies on this subject. In order to determine the facial features, the Haar features calculated according to the 

density difference of the pixels represented as black and white in different rectangular regions in the frame form the basis of the 

study. The top region of a feature may be darker while the bottom region may be brighter. This feature density is used to capture 

different features in different facial regions. Two-rectangle, three-rectangle and four-rectangle features that are useful for captur-

ing feature difference along edge, line and diagonal are Haar features and are shown in Fig. 2 below. 

 

Figure 2. Pixel structures with two-rectangle, three-rectangle and four-rectangle features to capture different features in different regions in face 

detection used in Viola-Jones algorithm [15]. 

In the training phase, Haar features and classifiers are trained using the sample data set. After the weak classifiers are trained itera-

tively with the Boosting algorithm, they are combined to form a strong classifier [15]. 

2.2.2. HOG Detector 

Histogram of Oriented Gradients (HOG) is a computer vision method widely used in applications such as object recognition, face 

recognition, and motion detection. Using HOG, a feature vector is generated that specifies the local gradient distribution of the 
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image. After calculating the gradients on the pixels, the image is divided into small cells and the histogram of the gradients in each 

cell is calculated. With these histograms, the local gradient distribution is determined. Histograms of cells created by dividing the 

image into small cells are grouped by blocks. Blocks are regions that contain histograms of neighboring cells in an image area. 

Histograms within blocks are normalized to become a more efficient feature vector in difficult lighting conditions. Then, the fea-

ture vectors of all blocks are combined to obtain the HOG feature vector, which indicates the local gradient distributions of the 

image. These vectors are used as input to capture characteristic features for object detection. Support Vector Machine (SVM),  

which is a frequently used classification method in the field of machine learning, and HOG approach are widely used in object 

recognition applications. Dalal et al. (2005) trained the SVM classifier to detect humans with HOG features [16]. The SVM takes 

HOG feature vectors as input and creates a decision constraint for human detection. In the training phase, the dataset was divided 

into human (positive) and non-human (negative) and used for optimization of SVM classification. The Fig. 3 below shows the 

HOG vector distributions (b), (c-d) positive and negative SVM weighted HOG vector distributions calculated using a test image 

(a) and the calculated rectangular regions of this image. 

 

Figure 3. HOG vector distributions applied on the test image [16]. 

This study has greatly contributed to the HOG + SVM approach becoming a popular method in the field of human detection and 

object recognition. HOG has been particularly successful in object recognition. The use of HOG + SVM provides high accuracy in 

applications such as detection of people and vehicles. However, HOG also has some weaknesses. In particular, it can be sensitive 

to scale changes and rotations. Therefore, HOG may need to be used in conjunction with other feature extraction methods to en-

sure complete accuracy in some cases. 

2.2.3. Deformable Part-Based Model (DPM) 

The Deformable Part-Based Model (DPM) is a model used for object recognition and is particularly effective for the detection of 

people and other deformable objects. DPM is an approach that considers different parts of the object and their positions in order to 

detect and locate objects in an image. The basic idea of DPM is based on a model in which objects are separated into their compo-

nents and the properties and locations of each component are learned. Instead of representing the object as a whole, the model 

treats it as a combination of parts that make up the object. Each piece represents a feature of the object and can have different 

sizes and shapes. Training of DPM is performed on a training set. In the training process, the properties and positions of the parts 

of the objects are learned. This information is combined to create a working model. The learned model is used to detect the object 

in a test image. The model scans the object on the image using part properties and locations and detects possible locations. One of 

the advantages of DPM is its flexibility to deformation and different scales. Learning parts independently allows him to better 

handle the different sizes and shapes of objects. In addition, the ability to represent the structure of objects and exploit the combi-

nation of object parts provides more accurate and comprehensive detection. DPM was first described by Felzenszwalb et al. as a 

continuation of the HOG detector. DPM uses HOG detector for object detection and uses HOG features to model and detect dif-

ferent parts of the object [17]. 
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2.3. Deep Learning Based Recognition Methods 

Deep learning is a sub-branch of machine learning consisting of artificial neural networks. It enables computer systems to auto-

matically learn complex data structures and tasks. Deep learning is carried out using multi-layer artificial neural networks. Deep 

learning-based object detection methods are today's most advanced artificial intelligence techniques and continue to develop with 

studies in this field. 

2.3.1. Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) or ConvNet is an artificial neural network used in the field of deep learning, which gives 

successful results especially in image processing tasks. The main purpose of CNNs is to extract features from a given input image 

and use these features to perform tasks such as classification, detection and segmentation. The CNN architecture consists of key 

components such as convolutional layers, activation functions, pooling layers, and fully-connected layers [18]. An example model 

of the CNN architecture is shown in Fig. 4. 

 

Figure 4. A convolutional neural network (CNN) architecture model 

Input, image data from the dataset can be image frames obtained by separating frames from real-time or non-real-time video data 

with video processing applications. Input data can be from RGB, HSV, CMYK, Grayscale, YUV and similar color spaces. In 

addition, the resolution of the images may vary. Since it will be difficult to calculate in high resolution image data, it is very im-

portant to reduce the resolution of the images in the CNN algorithm without losing their important properties. Thus, the algorithm 

becomes applicable to very large datasets. Convolution layers are formed by applying filters of certain sizes on the input image by 

shifting. These filters are learnable parameters to capture different features of the image. For example, edges, corners, or more 

complex features. Each filter (kernel) is a matrix, usually 3x3 or 5x5 in size, representing a visual pattern. These filters are trained 

to capture patterns that will be used to detect different features of the visual data. The filter is moved over the input image step by 

step by convolution operation and element multiplication is done at each position [19]. As a result, a new value is obtained at each 

location and these values are aggregated into an output matrix. This process affects the output size based on the filter size and the 

convolution step size. As an example, Fig. 5 shows the convolution operation performed by shifting a filter to two-dimensional 

image pixels in an input. As a result of the process, a convolved feature map was obtained. Feature maps are generated by apply-

ing filters to each input image. Each filter learns its weights to detect different features, and each filter extracts a different feature 

map from the input data. These feature maps are then transferred to the pooling layers or other convolutional layers so that the 

network has the ability to learn more complex features. 
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Figure 5. Convolution operation performed by applying a filter to a 2D image 

An activation function is used after each convolution layer. This function adds a non-linearity to the output, allowing the network 

to learn more complex features. This can help the network learn better and reduce overfitting problems. The ReLU (Rectified 

Linear Unit) activation function is an example commonly used in CNNs. The non-linear activation function, ReLU, sets the nega-

tive inputs to zero, while leaving the positive inputs intact [20]. Equationally; 

              f (x) = max(0, x)                                                                                                                             (1) 

it can be expressed with the equation (1) giving 0 as the output when x < 0 and giving a linear function as the output when x ≥ 0. 

Pooling layers are used to reduce the size of input data and reduce computational complexity. Common pooling operations such as 

max pooling, min pooling and average pooling can be used. Full link layers make the output of the CNN usable for classification 

or any other task. These layers flatten the output and are connected to one or more dense layers. Dense layers consist of multiple 

perceptrons capable of learning. CNNs are also trained with a loss function and back propagation algorithm used to update and 

optimize the weights of the deep learning model. Using large amounts of data usually allows the network to learn its weights ap-

propriately to the data [21]. CNNs can be used in the areas of image classification, object recognition, face recognition, segmenta-

tion, video analytics, and more. Deep learning, and especially CNNs, has had a huge impact on computer vision and has achieved 

successful results in many application areas. 

2.3.2. YOLO (You Look Only Once) Algorithm 

The YOLO algorithm, which is a new approach in the field of deep learning-based object recognition and works much faster than 

classical object recognition approaches and other CNN-based object recognition algorithms, was first introduced by Redmon et al. 

in 2016 [22]. Classic object recognition methods, such as DPM, use a model that includes parts and their properties that are de-

fined separately for each object class [23]. CNN algorithms provide classification and positioning information by first detecting 

regional objects in a video frame or an image with the region proposal step, and then extracting features in these regions. YOLO is 

an algorithm that performs the object detection task in a single pass. It processes the input image at once, predicting the class and 

position of all objects at once. It simultaneously obtains classification and positioning information as it predicts all objects in the 

image at the same time. Each cell is associated with the object class and bounding box information. This approach performs the 

object detection task in separate stages [24]. In classical approaches and algorithms such as region proposal-based CNN, the clas-

sification process is slower and more complex compared to the YOLO algorithm, especially in real-time object recognition appli-

cations, since each element must be trained separately [25]. In the YOLO algorithm presented by Redmon et al., a unified model 

of all stages in a convolutional neural network is constructed. After the elements in the image in the input pass through a single 

neural network consisting of multiple convolutional neural networks, the algorithm generates prediction vectors corresponding to 

each element. Unlike CNN, instead of repeating the process for elements in different regions, it performs the recognition process 

very quickly because it makes predictions for elements in the image at once. Also, in the YOLO algorithm, it can achieve good 

results even with small size datasets. CNN usually achieves good results when trained with large amounts of data. The YOLO 

algorithm is widely used in the field of object recognition in the literature, and the YOLO algorithm continues to be developed for 

faster and more precise classification. The first YOLO algorithm is called YOLO V1. The basis of YOLO algorithms is to detect 

an object falling in the center of each frame by dividing a video frame or image into S x S sized frames. If the algorithm detects 

any object in a frame, parts of that object are not taken into account in other frames. 



Y a m a n ,  E r e l / B o z o k  J  E n g  A r c h , 2 0 2 3  2 ( 2 )  1 - 1 9  

7 

To enable object recognition, each square is tasked with predicting 𝐵 bounding boxes, along with their associated parameters and 

confidence scores as it can be seen in Fig. 6 below. These confidence scores indicate whether an object is present or not within a 

particular bounding box.  

 

Figure 6. YOLO model with 7x7 grid cell on input image 

The confidence score calculation is defined as follows in the equation (2): 

                 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 = 𝑝(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ                                                                               (2) 

Here, 𝑝(𝑂𝑏𝑗𝑒𝑐𝑡) represents the likelihood of an object's presence inside each square, while 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ corresponds to the intersec-

tion over union between the predicted bounding box and the actual ground truth box and this ratio is shown schematically in Fig. 7 

below. IoU is often used to assess the accuracy of object detection algorithms. It provides a measure of how well the predicted 

object's location aligns with the actual object. The IoU value ranges between 0 and 1, where 0 indicates no overlap at all, and 1 

indicates a perfect match between the predicted and ground truth objects. The range of 𝑝(𝑂𝑏𝑗𝑒𝑐𝑡)  lies between 0 and 1, causing 

the confidence score to approach 0 when no object is detected in the square. Conversely, the score becomes equal to 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ 

when an object is present [26]. 

 

Figure 7. Intersection over union (IoU) between the predicted bounding box and the actual ground truth box 

● YOLO V5 includes three key components [27]: 

● Backbone: YOLO V5 uses a variety of core network architectures, typically CSPDarknet53 or CSPResNeXt50. These 

networks are used to learn the characteristics of the input image. The term "CSP" (Cross Stage Partial) refers to the cross-

stage connections that the network contains. These links help communicate features better. 
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● Neck: Various neck structures can be used on the YOLO V5. For example, structures such as PANet (Path Aggregation 

Network) or PANet-Lite, a lightweight version of PANet, combine feature maps at different scales to detect objects more 

effectively. Also, various neck structures can include Convolutional, Concatenation, and other operations. 

● Head: The head section of the YOLO V5 is responsible for generating object detection results. This section estimates the 

positions and classes of objects, usually by operating on different feature maps. Various detailing techniques can also be 

used in the head section. 

● There are basic structures and techniques used in the different components of YOLO V5 (Backbone, Neck and Head) 

[28]: 

● CSP (Cross Stage Partial) Blocks: CSP blocks are blocks that are used to better communicate features by dividing the 

network between different stages. It reduces the loss of properties by containing cross-links. 

● SPP (Spatial Pyramid Pooling): SPP is a structure that improves object detection performance by combining feature maps 

at different scales. This is based on the fact that objects can be of different sizes. 

● Concatenation: This process aims to create a richer feature space by combining different feature maps. This can help 

achieve better object detection results. 

● Convolution: The convolution operation allows feature maps to be processed with certain filters. This helps features learn 

more complex patterns. 

● Upsampling: The upsampling process expands feature maps to contain higher resolution information by increasing their 

size. This can be used to make more detailed location estimates. In Fig. 8 below, the YOLO V5 architecture used in the 

study is shown. 

 

Figure 8. YOLO V5 architecture used in the study 

Here, the "Focus" structure in the Backbone section is a kind of convolutional block used to learn the properties of the input im-

age. However, unlike traditional convolution structures, the input is specifically designed to focus the data on a lower-dimensional 

feature map. The Focus structure is used specifically in the YOLO V5 to help detect low-dimensional objects. It is designed to 

capture the details of smaller objects by concentrating on feature maps of smaller size, rather than a traditional convolutional 

structure. The focus structure performs a special convolutional operation to shrink the feature map by reducing the number of 

input channels, thereby focusing on lower dimensional features. In this way, both the computational intensity is reduced, and low-

dimensional objects are detected more effectively. This structural difference differs from previous versions of the YOLO V5 and 

is specifically designed for faster and more efficient feature extraction. The expression "CSP1" means Cross Stage Partial struc-

ture for the first stage i.e. Backbone. "1_1" refers to the CSP version. The term “CSP2” is used for neck. Here, the terms 

"Conv1x1" and "Conv3x3 S2" refer to the properties of the convolutional layers used. Conv1x1 refers to the convolutional layer 

with filters of size 1x1. Convolutions with filters of size 1x1 are also called "pointwise convolution". Such convolutions are often 

used to increase or decrease the number of channels of the feature map. It can also be used to reduce the dependency between 

features and reduce the computational load. Conv3x3 S2 denotes a convolutional layer with a stride value of 2, with filters of size 
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3x3. The step value determines how far the filter moves on the feature map. The expression S2 indicates that the filters move over 

the feature map, skipping 2 pixels. Such convolutions are used to reduce the size of the feature map by half. In the neck section, 

feature maps are combined or resized at different scales using convolutional layers such as Conv1x1 and Conv3x3 S2. This aims 

to provide detection of objects of different scales and better feature extraction. The "Head" section in YOLO V5 is where object 

detection results are generated. The values "76*76*255", "38*38*255" and "19*19*255" indicate the output sizes and channel 

numbers of Conv1x1 layers. The first two values here indicate the size of the feature map, while the third value indicates the num-

ber of channels. 

1. Data Acquisition in Object Recognition 

LIDAR is a technology that transforms reflected light energy into a set of (x, y, z, r) coordinates, providing a detailed representa-

tion of the 3D layout of real-world environments. These coordinates allow us to gather distance information from various points, 

while 'r' corresponds to reflectance data [29]. Reflectance data indicates the intensity of reflected signals, which is influenced by 

factors such as surface roughness, color, and material composition. 

The application software was developed in XCode 14 environment on Macbook Pro with macOS 13 operating system. For the 

object recognition process, data from iPhone 13 Pro Max's built-in LIDAR and high-resolution camera was used on Macbook Pro.  

 

Figure 9. Photo of iPhone 13 Pro Max used to acquire data in object recognition 

Data were obtained using the built-in LIDAR and high-resolution cameras of the iPhone 13 Pro Max seen in Fig. 9. With the built-

in LIDAR sensor, laser beams sent on the objects enable both the determination of the object distance and the creation of a point 

cloud to obtain a 3D image. In addition, live video data was obtained simultaneously with the high-resolution internal camera. 

Sensor fusion was realized by combining LIDAR and camera data. After the live video data received from the camera was split 

into frames, object recognition was performed on each frame using the YOLO V5 algorithm. The object recognition algorithm 

classified the objects on the frame depending on the elements in the MS COCO dataset and received the location coordinates 

information. It is ensured that the objects detected according to the received location information are enclosed in a rectangle with 

their labels around them. 

3.1. Swift Metal 

Swift Metal is a low-level framework developed by Apple for programming the graphics processing unit (GPU). There are two 

types of units for making applications on iPhone devices: The one is the central processing unit (CPU) and the other is the GPU. 

GPUs that can perform very fast and efficient operations in parallel are used in image processing processes. Swift Metal was de-

veloped for GPU programming on iPhone devices, aiming to utilize the full functionality of the hardware and software infrastruc-

ture of iPhone devices in the field of GPU programming [30]. This development was prompted by the inadequacy of the OpenGL 

framework, which was used for graphics processing but became insufficient for powerful graphical applications due to the ad-

vancing capabilities of iPhone devices and OpenGL's inability to fully exploit the CPU-GPU distinction in the device's chip archi-

tecture. Thus, with Metal, more space is processed in the GPU in a more controlled way in graphical applications, while more 

space is reserved in the CPU for other features of the application. In addition, Swift Metal has been developed to work seamlessly 

with other Apple frameworks. Our work was carried out using this framework. 
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3.2. LIDAR 

There have been significant developments in object recognition and image processing in recent years. It is seen that there will be 

Light Detection and Range (LIDAR) sensors that will become widespread in all areas of the industry with further developments in 

the future. It is predicted that LIDAR technology will make a significant contribution to humanity in terms of facilitating many 

works in many fields such as robotic systems, defense technologies, autonomous land vehicles, unmanned aerial vehicles, medical 

technologies, high-tech agricultural machinery, modeling of archaeological artifacts, reverse engineering applications in the indus-

try.  

LIDAR TOF (Time-of-Flight) is a type of LIDAR system that operates based on the principle of measuring the time it takes for a 

laser pulse to travel to an object and bounce back to the sensor. A LIDAR TOF system emits short pulses of laser light towards an 

object. The system then measures the time it takes for the laser pulse to travel to the object and return to the sensor. Since the 

speed of light is constant, the time it takes for the light pulse to make this round trip can be used to calculate the distance between 

the LIDAR sensor and the object. 

 

Figure 10. Basic working principle image of LIDAR sensor systems 

As seen in Fig. 10, by focusing and sending the laser beam on the object via the LIDAR sensor and calculating the return process, 

high-accuracy instantaneous distance measurements and 3D object recognition processes can be easily performed with the created 

point cloud.   

                      𝑅 =
1

2
𝑐𝑡                                                                                                                               (3) 

In Equation 3, R = object distance, c = speed of light, t = round-trip time of the laser beam sent to the object [31].  

3.2.1. LIDAR Point Cloud 

A LIDAR system emits laser pulses and measures the time it takes for the pulses to bounce back after hitting objects. By analyz-

ing the time delay and the speed of light, the system can accurately calculate the distance between the LIDAR sensor and the ob-

ject. A LIDAR point cloud is a collection of data points in three-dimensional space that represents the surfaces and structures of 

objects within the scanned environment. Each point in the point cloud corresponds to a specific location in space and includes 

information about its XYZ coordinates (3D position) as well as additional attributes such as intensity (the strength of the laser 

return) and sometimes color (if the LIDAR sensor is equipped with a color camera or if additional data sources are used). Point 

clouds generated by LIDAR systems are used in various applications including topographic mapping, autonomous vehicles, envi-

ronmental monitoring, urban planning, archaeology and cultural heritage, industrial design and manufacturing, forensics and 

crime scene reconstruction, and virtual reality and simulation. Processing and analyzing LIDAR point clouds can be complex due 

to the large amount of data involved. Specialized software is used to clean, filter, and segment point clouds to extract meaningful 

information. As technology advances, LIDAR systems are becoming more compact, affordable, and capable, enabling their appli-

cation in an ever-expanding range of fields [32]. 
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Figure 11. The 12 × 12 point cloud pattern obtained from the built-in LIDAR sensor of the iPhone 13 Pro in different positions is shown in 

image (a). In images from (b) to (e), combinations of point clouds from different positions before and after are illustrated. In (f), the pattern for 

all different positions of the point cloud is depicted [33] 

Figure 11 shows the 12x12 point cloud patterns created through the iOS application developed for the iPhone 13 Pro with a built-

in LIDAR sensor. With the support of the built-in LIDAR sensor added to the iPhone mobile phones released as of 2020, iOS-

based software has begun to be developed that will enable quick and easy conclusion of crime scene investigations. Especially in 

2022 and later, it is seen from literature research that crime scene investigations are made with iPhone with LIDAR sensor and 

high-resolution camera support [33]. In addition, it is seen in the literature reviews that many thesis studies on the case of crime 

scene investigation with the use of mobile phones with LIDAR sensors. An example of the point cloud data we obtained with the 

iPhone 13 Pro Max in our work is shown in Fig 12. 

 

Figure 12. A sample point cloud data taken from the experimental environment in real time with the iPhone built-in LIDAR sensor 

A sample frame taken from the indoor experimental environment is given in the image (1) of Fig. 12. With the software we devel-

oped, real-time point cloud data was obtained using the built-in LIDAR sensor of the iPhone 13 Pro Max. In the image number 

(2), the frame of a sample point cloud data obtained from the experimental environment is given. 

4. Flow Chart of The Study 

The integration process of lidar and camera data to enhance object recognition and visualization is carried out through a systemat-

ic sequence of operations: 

The procedure initiates with the retrieval of data streams from both the lidar and camera devices, forming the basis for subsequent 

analysis. The lidar device is configured to output depth data, and the camera's color space is set to YCbCr format for compatibil-

ity. Following this setup, instances of data acquisition objects are created, designed to concurrently gather video frames and point 

cloud data. Synchronization mechanisms ensure temporal alignment between the visual and spatial information sources.Data ma-

nipulation involves extracting the PixelBuffer representation of synchronized video data. This intermediary form serves as a foun-

dation for subsequent transformations.The conversion of the PixelBuffer data, encoded in YCbCr, to CIImage format with an 

ARGB color space is the pivotal next step. This transition is crucial for compatibility with downstream processing. The processing 

journey proceeds to the object recognition class, which receives the CIImage input. Here, the Yolo V5-based algorithm conducts 

multi-object recognition using deep learning techniques. The processed CIImage reverts to a UIImage, retaining the object detec-
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tion results. Bounding boxes are superimposed on the UIImage, enhancing visual interpretability. The UIImage is then trans-

formed back into a PixelBuffer with YCbCr encoding, preserving visual enhancements and color space. The depth data from lidar 

and camera is combined into a packaged format. Utilizing Swift Metal, this data undergoes processing according to user-defined 

parameters, including region-based adjustments. The output is then transmitted to the user interface, culminating in an augmented 

visualization enriched with object recognition outcomes. 

In summary, this software-oriented process demonstrates the coherent integration of lidar and camera data through various stages, 

resulting in an augmented user interface experience primed for enhanced decision-making and engagement. Fig. 13. shows the 

flow diagram of the experimental study. 

 

Figure 13. Flow chart of the experimental study 
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4. RESULTS AND DISCUSSION 

In this study, real-time object recognition processes are carried out in an area that can be determined by the user, using real-time 

data from the built-in camera and LIDAR sensor of the iPhone 13 Pro Max mobile phone. With the user interface developed with 

SwiftUI, the minimum and maximum value ranges of the distances in the 0-15 m limit range can be easily set by the user. Based 

on the distance and point cloud data received in real time from the built-in LIDAR sensor, video processing was carried out with 

the Swift Metal framework. According to the determined value ranges, the area in the frame is darkened in real time and limited. 

The developed application can also extract the contours of objects within the bounded area. 

 

 

Figure 14. Actual length vs. deviation length graph of distance measurement with LIDAR sensor 

In Fig. 14, the actual length - deviation graph obtained by comparing the distance measurement values made with the built-in 

LIDAR sensor in a 6 meter long room with the actual length values made with the measuring tape is given. As shown in the graph, 

it is seen that the deviation rate is minimal in the measurements made at a length of 6 meters and the distance is measured accu-

rately with a success rate of over 99%. 

 

 

Figure 15. Area limitation at different distances by applying video processing on frames in real time 

In Fig. 15, the images taken from the indoor experimental environment of the iPhone 13 Pro Max, which is positioned to be 5 m 

from the starting point to the farthest point, are presented. Limitation process has been carried out according to the minimum and 

maximum distance values determined by the user. In (a), 0 m is selected as the minimum value and 6 m is selected as the maxi-

mum value. Since the farthest distance from the point where the phone is positioned is 5 m, the developed application showed the 

entire environment on the phone screen without any limitations within this limit. If the minimum value is 0 and the maximum 

value is greater than 6 m, the farthest distance of 5 m would also show the entire environment without any limitations, since it is 
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still within these limits. (b) shows the situation where the minimum value is 0 m and the maximum value is 4.80 m by the user. 

These selected values mean that the areas from 4.80 m ahead of the starting point of the image will be limited. Areas from 4.80 m 

in the image are limited by darkening. The inwardly recessed part of the window, the curtains and the parts within 4.80 m of the 

seats are not darkened by the application developed as they are within the specified limit. In (c), the user selected 0 m as the min-

imum value and 3.98 m as the maximum value. It is seen that the image is limited to the range of 0 - 3.98 m by darkening the 

sections beyond 3.98 m. 

         

Figure 16. Area limitation at different distances by applying video processing on frames in real time 

In Fig. 16, the visuals obtained in the experimental study by keeping the minimum values constant and reducing the maximum 

values further are shown. Limitation has been made in the range selected as 0 - 2.40 m in (d). Objects 2.40 m ahead appear to have 

disappeared. In (e), the image is limited to the range of 0 - 1.35 m. It was observed that the chair, which was located more than 

1.35 m away, was also outside the border and disappeared. In (f), it is shown that when the ranges are selected as 0 - 0 m, the 

screen is completely blacked out. 

 

Figure 17. Area limitation at different distances by applying video processing on frames in real time 

The Fig. 17 shows the images of the field limitations obtained by keeping the maximum limit value constant at 6 m and increasing 

the minimum value in the experimental study. Increasing the minimum value means that the area limit will narrow from the start-

ing point where the phone is placed. The limitation area obtained for 1.28 - 6.00 m is shown in (a1). In the range of 1.80 - 6.00 m 

selected in (b1), it is seen that the blackout filter moves a little further and includes some of the carpet and chair. If (c1)'d is at 2.30 

- 6.00 m, it is seen that the entire contour of the chair in the foreground is darkened. 
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Figure 18. Area limitation at different distances by applying video processing on frames in real time 

In Fig. 18, the images obtained in the experimental study by keeping the maximum values constant and increasing the minimum 

values are shown. It is seen that with the minimum limit increased in (d1) and (e1), the objects gradually start to disappear by 

staying outside the limit. In (f1), it is seen that the entire screen goes black when 5.10 m exceeds the 5-meter boundary length in 

the 5.10 - 6.00 m value range. 

 

Figure 19. Area limitation at different distances by applying video processing on frames in real time 

The Fig. 19 shows the imagess of the experimental results obtained by changing both the minimum and maximum values. In (a2), 

the output obtained by choosing a minimum area of 1.50 m and a maximum area of 3.60 m is shown. In (b2) and (c2), it is seen 

that only the chair is visible by narrowing the range of minimum and maximum values. 

 

Figure 20. Area limitation at different distances by applying video processing on frames in real time 
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In Fig. 20, (d2), (e2) and (f2) show the limitation areas obtained by bringing the minimum and maximum values closer to each 

other. In (d2) and (e2), it is seen that the chair starts to disappear with the narrowing of the value range. In (f2), it is seen that the 

screen completely darkens at 2.40 - 2.40 m. 

 

Figure 21. Real-time multiple object recognition output obtained as a result of the work done with the application of YOLO V5 algorithm 

In Fig. 21, the output of the real-time multi-object recognition process we performed using the YOLO V5 algorithm on the iPhone 

13 Pro Max is shown. In the image of the study performed in real time, it is shown that 3 different objects are detected at the same 

time and taken into bounding boxes. The information of which class the detected objects included in the bounding box belong to 

and their accuracy percentages are presented in the top label of the bounding box. The ability of the YOLO algorithm to classify 

for each object at the same time allows each object in the real-time received frames to be matched with the class with the highest 

accuracy in the data set, that is, with the highest similarity. In the image, it is seen that laptop, cell phone and person class labels 

are detected in the bounding box in real time, along with the accuracy percentages. 

 

 

Figure 22. Real-time multiple object recognition application outputs in the area whose boundaries can be adjusted with LIDAR and camera 
sensor fusion 

In Fig. 22, the images of the real-time multi-object recognition application with the fusion of the built-in camera and LIDAR sen-

sor of the iPhone 13 Pro Max performed in the study are shown. The slider added to the user interface appears at the top of the 

images. The minimum and maximum limit values can be adjusted easily with the slider. The slider can be adjusted in the range of 

0 - 15 m. As seen on the slider in (a3), the limit values are set as minimum 0 m and maximum 4.20 m. Since the elements in the 

frame are within these limits, there is no limitation on the screen, only object recognition is performed. In (b3), the minimum 

value is set to 0.60 m and the maximum value to 5 m. Increasing the minimum value means that the area limit will narrow from 

the starting point where the phone is placed. The application limited it to include the contours of the objects and at the same time 

recognized the objects it could detect. In (c3), the image of the situation where the minimum value is set as 0 m and the maximum 
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value as 1.88 m is given. In (c4), the situation where the minimum value is 0.60 m and the maximum value is 1.88 m is given. 

Objects that can be detected within these limits appear to be recognized. 

5. CONCLUSION 

Object recognition is one of the priority research topics in computer science. Studies carried out in the fields of video processing 

and artificial intelligence have affected many aspects of technology and have been used in various application areas. The im-

portance of this technology is increasing and it points to great potential for future studies. It is widely used in a wide range of 

areas such as security, medicine, retail, industry, agriculture, automotive and augmented reality. LIDAR sensor is a technology 

that determines the distance of objects by providing distance measurement and also creates three-dimensional models of objects 

by creating point cloud as a method used to obtain environmental information. These point cloud data are widely used in object 

recognition. This data can be used to describe the shapes, sizes and positions of objects, providing benefits in a variety of applica-

tions. The LIDAR sensor creates 3D models of objects using point cloud data, increasing its capacity to determine the precise 

dimensions and positions of objects. In this aspect, it is superior to the camera. The camera, on the other hand, is effective in rec-

ognizing objects by using visual features such as color, pattern and texture. In this way, they can capture detailed features of ob-

jects and provide higher resolution data. Thanks to the fusion of both sensors, both 3D models and visual properties of objects are 

analyzed more comprehensively. In this study, it is aimed to perform real-time multi-object recognition in an area whose bounda-

ries can be adjusted using camera and LIDAR data fusion. Using the built-in LIDAR and built-in camera of the iPhone 13 Pro 

Max mobile phone, multi-object recognition is performed in real-time in the area limited by the minimum-maximum distance 

ranges that can be adjusted with the slider on the user interface. In the study carried out with the MS COCO dataset, Swift, which 

is widely used in iOS programming, was used as the programming language, and SwiftUI was used as the framework. Video pro-

cessing processes were performed with Swift Metal. When the distance measurements made according to the data obtained from 

the built-in LIDAR sensor from the starting point where the mobile phone is placed in the indoor experimental environment are 

compared with the measurement results made with the measuring tape, it has been determined that the sensor measures over 99% 

successfully. By processing the point cloud data received from the LIDAR sensor with Swift Metal, the visual field is limited 

according to the minimum-maximum distance values determined by the user using the slider in the interface. The limitation pro-

cess was carried out by darkening the screen in the determined distance range. The application also extracts the contours of ob-

jects within the boundary range with the blackout filter. Multiple object recognition was successfully performed with the structure 

developed by using the YOLO V5 algorithm on objects in the region within the distance ranges limited in the experimental envi-

ronment of the objects within the boundary range. As a result, multi-object recognition has been successfully accomplished in 

real-time with the built-in LIDAR sensor by fusion of camera data within an area whose distances can be limited. It is predicted 

that a sensor fusion study, which can be performed by narrowing the field of view at the desired range with the point cloud and 

object recognition in this narrowed area, can be used in a wide variety of applications depending on the clear distance information 

determined by the LIDAR sensor in iPhone mobile phones. For example, since such a mobile application can prevent unnecessary 

recognition of distant objects, it is predicted that it will make the lives of visually impaired people easier as it will enable them to 

know more successfully what obstacles and objects are in front of them by detecting objects located near them. Home security can 

be increased by having the camera monitor a specific area. This approach can be used to monitor and recognize movements in 

critical areas such as a doorway, garden or hallway. A particular production line or workstation can be monitored. It can be used 

to spy on the movement of products and production processes. This approach can be used to monitor a particular road section or 

intersection, analyze traffic flow, and detect congestion. Again, such systems can be used to monitor a particular border area, 

detect potentially dangerous situations early, and prevent border intrusions. It can be used for monitoring and accurate placement 

of instruments or supplies during surgical operations. It can be used to detect and track targets in a specific area, detect and track 

enemy movements in military operations. As a result, the sensor fusion realized in this approach has potential in many areas where 

applications can increase efficiency, improve safety and achieve better results in a wide range of areas. This technology can pro-

vide a wide range of benefits, from defense industry to healthcare, agriculture to security applications. Sensor fusion will continue 

to play an important role in the future, combining the advantages of different sensors to provide more comprehensive and precise 

results. 
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