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Abstract

In this research study, we aim to approximate a solution for the mathematical model of the
Human Immunodeficiency Virus (HIV) infection of CD4+T-cells. An operational matrix method
based on Chebyshev orthogonal polynomials has been adapted to obtain numerical solutions for
the model of HIV infection of CD4+T-cells. The proposed numerical scheme is built on a system
of anonlinear algebraic equation, including coefficients of a finite Chebyshev series that represent
the approximate solutions of the model. Results are compared to existing methods to verify the

accuracy of the numerical scheme.

Keywords: Model of the HIV infection; CD4+T cells; Operational matrix method;

Chebyshev polynomials; Nonlinear system of differential equations.

CD4+T Hiicrelerindeki HIV Enfeksiyonunun Yayilim Modelinin Chebyshev

Operasyonel Matris Metodu ile bir Niimerik Uygulamasi
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Oz

Bu calisma, CD4+T hiicrelerinde HIV virlislinlin matematiksel yayilim modeli i¢in
yaklasik ¢oziimler elde etmeyi amaglamaktadir. Niimerik ¢oziimler Chebyshev polinomlar ile
operasyonel matris metodunun CD4+T hiicrelerinde HIV viriisiiniin matematiksel yayilim
modeline uygulanmasi ile elde edilecektir. Onerilen method modele ait niimerik ¢dziimlerin bir
Chebyshev serisi formunda yazilarak, Chebyhev serisi i¢indeki bilinmeyen katsayilar: igeren
lineer olmayan bir denklem sistemi insa atmeyi amaglar. Yontemin dogrulugunu kontrol etmek

icin niimerik sonuglar var olan niimerik yontemlerle karsilagtirilmistir.

Anahtar Kelimeler: HIV Enfenksiyon Modeli; CD4+T hiicreleri; Operasyonel matris

metot; Chebyshev polinomlari; Lineer olmayan diferansiyel denklem sistemleri.

1. Introduction

Applied mathematics is modeled to interpret natural events. These models and their
numerical solutions obtain valuable information about those events. For example, a crucial event
for public health is the dynamics of HIV infection of CD4+T-cells. Firstly, Perelson developed a
system of nonlinear differential equations to describe HIV infection of CD4+T-cells in 1989 [1-

5]. Nowadays, humanity spends millions of dollars on the treatment of this disease.

The mathematical model of infection of HIV of CD4+T cells is given by [6-9]

T _ o ar - _prr
dl
—=kVT-pI 1
o B (1)
14
—=ufl -V
o ppL—y
with the conditions
T(0)=r. 10)=r, V(0)=r, &

where 7'(7) is denoted as the concentration of healthy CD4+ T cells, /(#) infected CD4+ T cells,

V(t)and free H.I.V. at a time ¢ in blood. In addition, ¢ is the source term for uninfected CD4+
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T cells, « is the natural death rate of the CD4+ T cell concentration, » is the growth rate of
CD4+ T cells, k is the rate at which CD4+ T cells become infected with a virus, § is the total

death rate of infected CD4+ T cells, x is the number of virions produced by infected CD4+ T
cells. y is the death rate of the free virus. k > 0 indicates the infection rate, and kVT indicates
the infection rate of healthy CD4+ T cells. The termination T _ , in the denominator of the

logistic term in the equation for healthy T4 cell density, indicates the total T4 cell density that can
be found stably in the blood; in other words, the carrying capacity of the blood for T4 cells. It will
be assumed that each infected CD4+T cell produces. This model's global stability and a periodic

solution are achieved in [10].

In this paper, we will take the numerical data as ¢ =0.1, ¢ =0.02, r =3 £=0.3,
k=0.0027, y =24, u=10, T, =1500 and initial conditions data 7, =0.1, r, =0,
r, =0.1. Since the mathematical model of H.IV. infection HIV CD4+T cells (1) are nonlinear

differential equations with three terms, the exact solution to this problem cannot be obtainable or
nonexistent. A resolution to this problem is needed to analyze its epidemiology and stability and
to predict advances in AIDS treatment. In this stage, numerical solution methods become crucial
to solve Eq. (1) with the conditions. Many numerical methods for approximating H.I.V. in CD4+
T cells have been improved over the last twenty years. Ghoreishi [11] presents the homotopy
analysis method for H.I.V. infection of CD4+T-cells. The homotopy analysis method accepts the
solution as an infinite series with auxiliary parameters. All calculations are investigated in six
terms in this method. Ongun [12] implement the Laplace Adomain Decomposition Method to get
numerical results for H.I.V. infection of CD4+T-cells. To obtain approximate solutions to the
H.LV. infection of the CD4+ T cells model, Merdan [13] applied the variational iteration method.
Yiizbas1 [14] developed a Bessel collocation method for finding numerical solutions of this
model. Beler [15] analyzed to find approximate solutions of the proposed model by using
Laguerre wavelets. In addition, we have access to more numerical papers to obtain such a class

of nonlinear ordinary differential equation systems [16-29].

In this study, we have obtained the approximate solutions of the mathematical model (1)
by developing the Chebyshev operational matrix method (COMM). Chebyshev polynomial is the
cornerstone of numerical analysis. Those polynomials adapted almost all numerical methods. For
example, in [30-32], Chebyshev polynomials combined the operational matrix method to solve
the linear Fredholm-Volterra integro-differential [33], Lane-Emden equations [34-35], for
fractional differential equations involving non-singular Mittag-Leffler kernel [36], fractional

differential equations [37], mixed Volterra-Fredholm delay integro differential equations [38].
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2. Materials and Methods
2.1. Shifted Chebyshev polynomials of the first kind

Chebyshev polynomials mainly admit to the approximation of continuous functions.
Chebyshev polynomials have crucial properties to perform nearly all numerical methods [26]. We

have four kinds of Chebyshev polynomials, which are defined in interval [—1,1]. If we choose the
interval [0,1], they called shifted Chebyshev polynomials [30]. While readers can find the

definition of Chebyhev polynomials in many books [30-32], we want to take the recurrence

relation
T, (t)=2(2t-DT, ., ()~ T,.,(1)
with the following initial conditions
T, () =1, T (t)=2t-1

Those polynomials have the following property [30-32]

n

2n) .
" =27 Z'(knJTn—k (1), 0<¢<1 3)

k=0
and the orthogonality condition is

. z, Jj=k=0,
<Tj* ), T, (t)>w = I T ()T, (tw(t)dt =712, j=k#0,
0 0, j#k,

where w(t) =(t—1*)""%. {TO* O, T, (), T, (t),+,T, (t)} is an orthogonal basis of 71—

dimensional polynomial space P for j#k, <Ti*(t)’Tk*(t)> =0, for j=k,

(77 (0).1¢ (z)>w > 0. Inaddition. if p, € By, for k <. then {p, (1), (z)>w =0 forall n >k

[30-32].

Any given function y(¢) € L*[0,1] can be approximated as a sum of shifted Chebyshev

polynomials in the following way [30-32]:
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W0 =3 a,T (1)

n=0

where

a, =(y(0).T; (t)>w = j Y(OT (O)wW()dt, n=0,,...

Our study aims to achieve the approximate solution of Eq. (1) as a truncated shifted Chebyshev

series defined by:
. N . *
e =2alT(®) @)
r=0

where is used to denote the first kind of Chebyshev polynomials, a rj are referred to as unknown

Chebyshev coefficients, and are chosen to be any positive integer.
3. Relations and Methods
3.1. Matrix relations

In this part, we shall obtain the matrix-vector form of Eq. (1). For this purpose, let us

consider the truncated Chebyshev polynomials 7, (¢), I, (t) and V, (¢) are the numerical

solutions of the Eq. (1) and so those solutions can be written like this:

N

TN (t) = Z Cer;* (t) (5)
r=0
N ¥

IN (t) = ZbrTr (t) (6)
r=0
N *

V(@)= e,T,(t) (7)
r=0

The matrix-vector shape of the numerical solution polynomials can be written as:

T,()=T (HA ®)
I,@)=T (B ©)
V() =T ()C (10)
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where

T (1) =[T, () I, (1) . Ty (1)]

1 1 1
A:[an a,...ay] B:[Eb0 b,...b, 1" C:[EcO eyl

and where the dimension of A, B, C matrices are (N + 1) x 1, dimension of the T (#) matrix is

1x(1+N).
The property Eq. (3) permits us to write the below essential relation
X®)" =D(T (1)) and X@t)=T (1)D’ (11)
where
X)) =[1t¢...t"1],

it is a lower triangle matrix, for 7, j =0,1,2,..., N

Dz[dijJ

where

22(51)(2(.(1. _.1)} j<i
d;, = i—j

0 L >0

Moreover, D is an invertible square matrix with (N +1)x (NN +1)dimensional and the

dimension of X(#) is 1x (N +1).
From Eq. (11), we obtain the following matrix relation

T (1) = X@)(D™)" (12)
and

(T"@)" =X" 0D
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So, the basic matrix-vector forms of the differential of approximate solutions of Eq. (1) are

T () =X(@)YDH)'A (13)
IV () =X@®YD")'B (14)
i) =X@®YMd")'C (15)
where
XY () =X()Y (16)

and for i, j =0,1,2,..., N,

i+1, j=i+l
Y =|y.|=
[y” ] {O, otherwise

For example, N =3, it can be written as

<
I

o O O O

S O O =

S O N O

S W o O

3.2. Solution method

The numerical scheme is constructed to find the unknown coefficients in Eqgs. (5-7) to
obtain the numerical result of Eq. (1). To constitute the numerical scheme, firstly, Eq. (1) and
initial conditions are turned into a matrix-vector form with shifted Chebyshev series. Using the

matrix relations in Section 3, Eq. (1) can be written in matrix form:

X(OY(D') ' A +[a-r]X(E)D') A + TL (X@OD) ' A)XOD’) " A+ X(@O)(D") " B]

max

+kX(@OD") " OXOMD") " A) =g
X(OY(D")'B-kX@D") " OX(@)D") " A)+ SX(#)D") ' B=0 (17)

X(OY(D") ' C- upX(n)(D") B+ X()(D')'C=0

65



Oztiirk et. al. (2023) ADYU J SCI, 13(1&2), 59-73

The residuals R, (¢) for i =1,2,3 form can be written as

R(1)* XOY(D')' A+[a—r[XOD) ' A+ (XD A)XOD") " A+ X(1)(D")'B]

T e (18)
+k(X@OMD)C)X(@ED') ' A)-¢
R,(t) » X(0)Y(D") " B—k(X(H)(D") " O)X(H)(D") " A)+ SX()(D")"'B (19)
R,(1) = X(Y(D")'C— upX(1)Y(D") "B+ X(1)(D") ' C (20)

3x N -times nonlinear systems of the equation are obtained by applying the operational matrix

method in the following form, for i =1,2,3
1
(R(0,1,®0)=[ROT, ()dt =0, n=0]1,....N -1 1)
0

The initial conditions Eq. (2) give us three equations:
[7(0)]=X©O)(D")" A =[r]
[1)]=X©O)D")'B=[r,] 22)
()] =x©)D")'C=[r]

As aresult, we get the 3x (N + 1) sets of nonlinear equation systems with 3 x (N + 1)unknowns

by Egs. (21-22). Then, finally, those systems are puzzled out by the mathematical program Maple
13, and Eqgs. (5-7) coefficients are achieved.

4. Numerical Results

In this part, we applied this proposed method (PM) to the given numerical data for the
proposed method N=.7. Numerical solutions are obtained by the proposed method; other
numerical methods are given in Table 1 for the uninfected population 77, Table 2 for infected
CD+4 T-cell concentration 7 , and Table 3 for the concentration of free H.I.V. virus V' . All tables
show that PM agrees well with the solutions of other numerical results. Figures 1-2 show the
uninfected population 7', infected CD+4 T-cell concentration / , and concentration of free
H.IV. virus V' versus time. As time increases, the uninfected population 7 increases, the

infected CD+4 T-cells concentration / increases, and the concentration of free H.I.V. virus
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decreases. The amount of infected CD+4 T-cells concentration 7 is slower to increase than the

uninfected population 7", and H.L.V. infection disease may end at any t time. In Figures 3-5, we

compare the numerical results by obtained Adomian Decomposition Method, Pade

approximation, Inverse Laplace transformation method, and present method. All results nearly

resemble each other.

Table 1: Numerical results for 77 PM and other numerical methods.

t The method in | The method in | The method in The method in PM PM
[13] [11] [12] [17] N=5 N=7
0.0 0.1 0.1 0.1 0.1 0.1 0.1
0.2 | 0.2038616561 | 0.2088072731 0.2088073214 0.2088080849 0.208458510 0.2088072279
0.4 | 0.3803309335 | 0.4061052652 0.4061346587 0.4062405440 0.406339373 0.4062410095
0.6 | 0.6954623767 | 0.7611467713 0.7624530350 0.7644239007 0.764734581 0.7644229384
0.8 | 1.2759624442 | 1.3773198590 1.3978805880 1.4140468559 1.413686781 1.4140470895
1.0 2.382277428 | 2.3291697610 2.5067466690 2.5915948594 2.591645820 2.5915948594
Table 2: Numerical results for / PM and other numerical methods.
t The method in The method in The method in The method in PM PM
[13] [11] [12] [17] N=5 N=7
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 | 0.624787210E-5 | 0.60327072E-5 | 0.603263436E-5 | 0.603270226E-5 | 0.6034893E-5 | 0.63517134E-5
0.4 | 0.129355222E-4 | 0.13159114E-4 | 0.131487854E-4 | 0.131583409E-4 | 0.1315659E-4 | 0.12751088E-4
0.6 | 0.203526718E-4 | 0.21268368E-4 | 0.210141719E-4 | 0.212237855E-4 | 0.2122560E-4 | 0.21636848E-4
0.8 | 0.283730212E-4 | 0.30069186E-4 | 0.279513045E-4 | 0.301778550E-4 | 0.3017857E-4 | 0.29847613E-4
1.0 | 0.369084236E-4 | 0.39873654E-4 | 0.243156231E-4 | 0.400378145E-4 | 0.4003936E-4 | 0.37812697E-4

Table 3: Numerical results for ¥ PM and other numerical methods.

t The method in The method in The method in The method in PM PM
[13] [11] [12] [17] N=5 N=7
0.0 0.1 0.1 0.1 0.1 0.1 0.1
0.2 | 0.06187991856 | 0.06187996025 | 0.06187995314 | 0.06187984322 | 0.061874446 0.0618798985
0.4 | 0.03829493490 | 0.03831324883 | 0.03830820126 | 0.03829488777 | 0.038298806 0.0382948388
0.6 | 0.02370431860 | 0.02439174349 | 0.02392029257 | 0.02370455004 | 0.023706103 0.0237045399
0.8 | 0.01467956982 | 0.00996721893 | 0.01621704553 | 0.01468036368 | 0.014675339 0.0148040545
1.0 | 0.02370431861 | 0.00033050764 | 0.01608418711 | 0.00910084499 | 0.009100830 0.0091000845

67




Oztiirk et. al. (2023) ADYU J SCI, 13(1&2), 59-73

— & --The infected CD+4 T-cell Concentration |

—-&--The concentration of HIV vV

5
: : :[ =+~ The uninfected population T
— &3 -The infected CD+4 T-cell Concentration |

— & --The concentration of HIV
L g dpn e s

10 : g
w@§$$<H}e§egﬁﬁﬂyéeéeé«»<

by e o i - T AR R R B R B R

il (S 2 5888 0-3-0 8 8
?#D"B' 3 : : : p

-
4 05 06 07 08 09

Figure 2: Comparison of the numerical results for N=7
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Figure 4: Comparison of numerical method solution of /
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Figure 5: Comparison of numerical method solution of V’

5. Conclusion

This paper uses the Chebyshev operational matrix method to solve the mathematical model
of HIV infection of CD4+ T-cells. The uninfected population 7 infected CD+4 T-cell
concentration / , and free H.I.V. virus values concentration are compared with other methods in
Table 1, Table 2, and Table 3, respectively. Also, with figures, the efficiency and accuracy of the
method are demonstrated. The proposed method has a lower operation, so cumulative errors are
minor. Moreover, the solution code of the method is easily written in Maple. The results show
that the present method is accurate compared to Bessel collocation, the Adomian decomposition,

the Pade approximation, and the inverse Laplace transformation with five and seven terms.
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