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Introduction 

The impact of proper sitting postures on health is 

gaining significance in today's modern lifestyle, where 

computers and technological devices are extensively used. 

Musculoskeletal Disorders (MSDs) are a prominent 

concern, with around 60% of EU workers attributing work-

related health complaints to Musculoskeletal Disorders 

(MSDs) as their most serious problem [1]. MSDs are 

responsible for a substantial portion of work-related 

illnesses, often stemming from prolonged incorrect sitting 

positions. Globally, MSD cases have risen by 25% in the 

past decade, constituting 2% of the overall disease burden 

[2]. Addressing this, the study aims to enhance awareness 

of ergonomics and health by identifying and defining 

various sitting postures. The research seeks to delineate 

distinctions between these postures through scientific 

literature analysis and propose suggestions, ultimately 

promoting healthier habits. The potential of an automated 

sitting posture tracking system in fostering a healthier work 

environment is highlighted as a solution to mitigate health-

related costs. With the data obtained from the relevant 

scientific literature, it is aimed to understand the 

differences between sitting postures and to present 

suggestions for this. 

Related Works 

Ray et al. [3] proposed an automated approach to classify 

construction workers' postures as ergonomic or non-

ergonomic. The dataset, which contains 22226 poses 

compiled from twelve joint body points, has been used to 

classify the four postures belonging to 8 subjects. 

According to the experimental results, the accuracy value 

94.8 has been achieved using the linear discriminant 

analysis (LDA) method in real time. Patsadu et al. [4] 

proposed a human gesture recognition system. There are six 

subjects, equal numbers of males and females, of various 

heights and weights. Two Kinect cameras have been used. 

They collected 7,200 and 3,600 records in the training and 

testing data sets, respectively. They labeled the raw data 

manually. They utilized BPNN (Back Propagation Neural 

Network) to classify three human gesture positions: 

standing, sitting, and laying down. They achieved the 

classification of three postures with 100% accuracy. Xia et 

al. [5] present a human action recognition system based on 

a Kinect device depth sensor. The dataset, which contains 

6220 poses compiled from twenty body skeleton points, has 

been used to classify the five postures belonging to 10 

subjects. They labeled the raw data using histograms of 3D 

joint locations. 
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This study aims to create a non-contact system for recognizing the sitting postures of office workers, 

applicable to healthy sitting monitoring. Skeletal point data were obtained via a depth sensor-based Kinect 
device while subjects performed five different sitting postures. Five angles have been calculated that can 

differentiate these postures. A fuzzy rule-based automated approach using angle values is proposed to label 

the data. With this method, two different data sets were created using traditional time-based labeling 
methods. Angular and geometric features were used to classify the depth values, and 99.6% and 98.9% 

accuracy were obtained with KNN and Adaboost classifiers. The proposed labeling method outperformed 

the traditional time-based labeling method according to the classification results. This system offers a high-
performance solution for promoting healthy sitting habits in office workers and has applications in health 
monitoring and robot vision. 

Doi: 10.24012/dumf.1351801 

* Corresponding author 



DUJE (Dicle University Journal of Engineering) 15:3 (2024) Page 559-568 

 

560 

 

Linear discriminant analysis (LDA) has been used for 

feature extraction. According to the experimental results, 

the accuracy value of 91.5 has been achieved using the 

Hidden Markov Model (HMM) to recognize five postures, 

including walking, sitting down, standing up, picking up, 

and carrying. Paliyawan et al. [6] proposed classifying 

office workers' sitting on the real-time skeleton data stream 

captured by a Kinect camera in an office work area. To 

create the dataset, they collected 397800 poses compiled 

from 10 body skeleton points belonging to 28 different 

subjects. The performance of several classification methods 

such as Decision Tree, (DT) Neural Network (NN), Naive 

Bayes (NB), and k-Nearest Neighbors (KNN) have been 

compared. They achieved the classification of one posture 

with 98% accuracy. Thus, real-time feedback based on the 

three levels of health in ergonomics has been given to 

subjects. Pal et al. [7] researched occupational hazards from 

prolonged sitting in a particular employee posture. Sitting 

posture recognition has been achieved using seven 

similarity measures. Using city-block distance, they 

classified two sitting body posture types with a high 

accuracy of 94.29% in 3.83 milliseconds. Therefore, the 

6500 sitting poses containing the 16 different body skeleton 

points from 20 subjects have been collected to create the 

dataset. Yao et al. [8] proposed a new method to separate 

unhealthy sitting postures from others based on neck angle 

and torso angle detection using a Kinect sensor. While the 

angles have been calculated, the ten body skeleton points 

have been used. They collected 66330 sitting postures from 

10 subjects in the five different posture classes. The method 

includes using a threshold at specific angle values, and they 

achieved 86,65 accuracy in classifying different sitting 

postures according to angle calculation results. There is no 

validation of the angle values calculated by the Kinect 

device in the study. Li et al. [9] proposed a method 

involving BPNN. The BP network used the skeleton data 

captured by the Kinect depth sensor to classify postures. 

They utilized eight skeleton points to recognize the sitting 

posture of 100 subjects. While they recognized four types 

of body posture, they achieved 97.77 accuracy for sitting 

posture. Bei et al. [10] present a sitting posture classification 

method based on a Kinect device depth sensor. The dataset, 

which contains 16200 poses compiled from six body 

skeleton points, has been used to classify the nine postures 

belonging to 18 subjects. According to the experimental 

results, the accuracy value of 95.8 has been achieved using 

the fusion of the body skeleton point features and the KNN 

method. 

Research Gap 

The existing literature does not clearly explain how 

various sitting postures are identified or the medical studies 

and standards underpinning them. This study examined 

relevant medical and health literature to precisely define the 

standard sitting posture, incorporating specific expressions 

and angle values to address this gap. In addition to 

establishing four distinct sitting postures to differentiate the 

standard from others, this research also revealed disparities 

between the subjects' preferred comfortable and standard 

sitting postures through classification. 

 

Some studies have relied on observational methods to 

categorize body postures. In contrast, this study introduces 

a Kinect-based angular features method to address the 

limitations associated with qualitative observations. Many 

studies in the literature have proposed a single method for 

data classification, which may hinder the generalizability of 

findings. To overcome this limitation, this study classified 

five different sitting postures using angular features 

obtained from the Kinect device with eight classifiers. The 

classification results were then compared with existing 

studies in the literature. The comparison indicated that 

higher accuracy values were achieved with fewer joint 

points. 

Material and Method  

Determination of Sitting Postures 

The suggestions of the studies in the literature [11]–[15] and 

definitions in ISO 7250-1:2017 [16] have been referred to 

for the determination of sitting postures. One is a healthy 

and standard body posture defined according to suggestions 

in the literature and ISO 7250-1 standard. A sample drawing 

of a healthy and standard body posture determined 

according to these suggestions in [11], [15], [16] is given in 

Figure 1 [12]. The five different positions that were 

determined are given in Table 1. 

 

Figure 1. Standard sitting illustration (a), Kinect skeleton 

points (b) 

In order to ensure that the sitting postures of the 

subjects are correctly changed during the experiment to 

apply the sitting positions specified in Table 1, a 

presentation containing the positions in Figure 4 was 

prepared. The subjects were asked to follow their sitting 

postures via this presentation throughout the experiment. 

Experimental Setup and Software 

Depth sensor-based data used for this study were collected 
with a Kinect camera. By using the depth camera, 
monitoring can be done without the user needing to install 
any equipment. An experimental setup was set up to create 
a depth sensor-based sitting posture database. In this setup, 
the subjects sit on a chair 1.5 meters from the Kinect device. 
They were requested to exhibit the postures defined in 
Table 1. Subjects waited for 30 seconds for each posture. 
The real-time data collection and recognition software (a) 
developed by Python, experimental setup (b), and 
presentation samples (c) are shown in Figure 2. The 
recognition software uses the TensorFlow machine learning 
library to create classification models. 
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Table 1. Definitions of sitting postures used in experiments 

# Name Description Ref. 

1 
Standard 

sitting 

The hands were asked to sit on both armrests with the back fully 

leaned back and knees bent 90 degrees straight. 

[11], [16], 

[17] 

2 
Leaning to 

the front side 

They were asked to sit, so they bent forward as much as possible, 

avoiding contact with the back. 

[11]–[14], 

[16]–[18] 

3 
Leaning to 

the left side 

It was requested that the body be bent to the left by placing the 

right foot on the left foot and leaning the left arm on the armrest. 

The contact with the right sitting area was cut as much as 

possible. 

[11]–[14], 

[16]–[18] 

4 
Leaning to 

the right side 

The body was requested to be bent to the right by placing the left 

foot on the right foot and resting the right arm on the armrest. The 

contact with the left sitting area was cut as much as possible. 

[11]–[14], 

[16]–[18] 

5 
Leaning to 

the backside 

They were asked to sit and slide in the seat by creating a 

triangular gap in this area, in the form of cutting contact with the 

lower back and sitting back area. 

[11]–[14], 

[16]–[18] 

 

 

Figure 2. (a) Data collection software, (b) experimental 

setup, and (c) guide presentation  

Labeling of Body Posture Data 

Two approaches were used to label body posture. First, the 

traditional time-based approach was used. For this reason, 

the sitting posture signal of a subject was labeled by adding 

the start time of each subject to the duration of each sitting 

posture. Sample depth sensor signals of a subject are given 

in Figure 3. Dashed lines indicate signals of settling 

processes. When the time values are examined, it is seen 

that the subject does not take 30 seconds for each sitting 

position but more than 30 seconds for some postures. It was 

also observed in some other subjects. 

 

Figure 3. Example of a time-based depth sensor signal of 

sitting postures 

The second approach is labeling sitting postures by using 

body limb angles in a fuzzy decision-making method while 

sitting. To apply the fuzzy-decision approach, the skeleton 

point positions were used to exclude body posture transition 

values from the data set and to label skeleton point data 

according to the definitions in Table 1. 

 

Figure 4. The skeleton points and the angles for standard 

posture  

Each posture's specific angle values were selected to label 

using the skeleton points data. An example drawing and 

angle representation of skeleton point position data of 

standard sitting position is given in  Figure 4. These angles 

have been defined respectively as the angle of the back with 

the left upper leg axis in the sitting position (A), the angle 

of the hip axis with the left upper leg (B), the angle of the 

hip axis with the right upper leg (C), and the left angle of 

the back with the hip axis (D). It was decided that these 

angles are the least number of angles that can represent 

incorrect sitting postures according to suggestions in [11], 

[15], [16]. Skeleton point location data is used as unit 

length, not actual length measures such as meters or inches. 

In order to calculate the angles A, B, C, and D, four triangles 

given in  Figure 4 were formed, and the lengths of the sides 

forming these triangles were calculated. Since skeleton 

point coordinate information was obtained from the Kinect 

device in 3D space, the edge lengths of the triangles were 

calculated according to Equation 1 [19]. 

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 (1) 

For a triangle whose sides are A, B, and C, respectively, and 

each side has interior angles with the same name, angle A 

is calculated by Equation 2 [19]. According to the example 

triangle (a) given in Figure 4, whose side lengths were 

calculated with Equation 1, the value of angle A was 

calculated with Equation 2. Likewise, Equation 2 calculates 

the angles B, C, and D. 
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𝐴° =180 −  𝑎𝑟𝑐𝑐𝑜𝑠  (
|𝐴𝐵|2 +  |𝐴𝐶|2 − |𝐵𝐶|2

2 × |𝐴𝐶| × |𝐴𝐵|
) ×  

180

𝜋
 (2) 

During the experiment, raw data on the x (horizontal), y 

(vertical), and z (depth) axes of the 25 joint points of the 

subjects were obtained. The sample raw data of a subject 

and images of the skeletal pattern are presented in Figure 

5. 

 

Figure 5. A subject's Kinect raw data as to sitting postures 

(between 1 and 2477 of supplementary data)  

In Figure 5, the changes in the regions of the joint positions 

corresponding to the sitting positions for different axes 

values can be observed. The aim here is to determine the 

positions of the skeleton points of the subjects in the sitting 

position and to observe the proper sitting behavior with 

mathematical values instead of qualitative observation. The 

drawings were created as a result of axis rotation processes 

in order to make the skeleton point position drawings look 

more understandable in Figure 5. According to the angle 

range values determined by the recommendations in the 

literature in [11], [15], [16], the average angle values of the 

postures are given in Table 2; it is seen that angle values are 

suitable for the postures in Table 1. 

Table 2. Angle values of sitting postures 

Posture 1 2 3 4 5 

Angle A 104.3 68.8 88.2 80.4 118.2 

Angle A 

Range 

95-

105 
65-90 85-90 

85-

90 

110-

120 

Angle B 101.3 121.5 71.1 46.4 115.3 

Angle B 

Range 

95-

105 
110-125 65-80 

40-

60 

110-

125 

Angle C 104.2 125.7 44.2 68.4 118.2 

Angle C 

Range 

95-

105 
110-125 40-60 

65-

80 

110-

125 

Angle D 92.1 88.2 92.2 76.4 88.4 

Angle D 

Range 

95-

105 
85-100 85-100 

70-

80 
80-90 

 

Since the sides forming the B and C angles represent the 

upper legs mutually, these values should be close to each 

other. When the values are examined in  Table 2, it is seen 

that this situation is achieved. At the same time, angle A is 

an angle that should decrease when leaning forward and 

increase when leaning back. Therefore, when the values are 

examined, they are calculated correctly, especially in the 

second and fifth sitting postures. It is also seen that the D 

angle values should not change much since there is not 

much bending to the right and left in the second and fifth 

sitting postures. For each pose recorded in the dataset, the 

angle values were calculated using the joint points in Figure 

4.  

 

Figure 6. Fuzzy inference evaluation 

Using SQL stored procedures, the sitting postures were 

labeled according to the angle ranges. Mamdani's fuzzy 

inference system is used in the fuzzy logic-based labeling 

approach. Four inputs are specified for each angle value. 

According to the angle ranges in Table 2, the Gaussian 

membership functions and the range of output variables for 

each class are defined as [0 5]. As the output variable 

membership function rules, range [0 1] for grade 1, range [1 

2] for grade 2, range [2 3] for grade 3, range [3 4] for grade 

4 and [4 5] range is determined for the 5th grade. The output 

results and MSE (Mean squared error) values after the 

designed fuzzy inference system's evaluation of the angle 

values are presented in Figure 6. When the charts are 

examined, it is seen that the classes are separated from each 

other due to the evaluation, and the MSE value is relatively 

low. Therefore, the fuzzy inference result labeled angle 

values clustered around their class as belonging to that 

class.  

Selecting Features and Preparing the Dataset  

After the fuzzy-rule-based labeling process, angular and 

geometric features from the upper body region were 

selected. This selection is because bottom body joint points 

like the hip can be unavailable due to office stuff like tables. 

Obtaining bottom body joint positions will be difficult when 

the study can be developed towards real-time application. 

Triangles were created using upper body joint points, and 

angle and distance attributes representing different seating 

positions were determined. The feature set is given in 

Figure 7. 
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Figure 7. Calculation of angular and geometric features 

The labeling and classification diagram is given in Figure 8. 

The depth sensor-based data of sitting body posture were 

obtained with an average 100 ms cycle (10 Hz). The field 

of view is 84.1 and 53.8 for horizontal and vertical, 

respectively. The depth distance is 3 meters.  

 

Figure 8. The general system diagram 

It has been accepted that the lower body region meets the 

angle definitions made according to the standards and 

health recommendations in the literature given in Table 1. 

On the other hand, when the Kinect device is used in any 

office environment, access to the lower part of the body will 

inevitably be restricted due to office environment 

conditions. At the same time, it is clear that access to the 

upper part will be easier. For this reason, lower body angle 

values are used for labeling, while upper body angle 

features are used for feature extraction for classification. 

Since some subjects corrected their sitting positions during 

each sitting experiment, the angle values obtained from the 

skeleton point data were not at the desired values. 

Therefore, angle-based fuzzy decision labeling could not 

label these data for the determined sitting position. Different 

numbers of pose data were obtained for each class using 

time-based and fuzzy decision-based labeling. Time-based 

labeling is based on 30 seconds. Some subjects exhibited 

sitting behavior exceeding 30 seconds. Therefore, fuzzy 

decision-based tagging has more pose value than time-

based tagging for each sitting class. 55649 and 33125 sitting 

body posture poses were obtained for 22 subjects in 5 

classes by fuzzy decision labeling and time-based, 

respectively. The fuzzy decision labeling data set has 

11130,  10115, 11220, 11957, and 11227  records for the 

first, second, third, fourth, and fifth postures, respectively. 

The data set of time-based labeling has 6748,  6167, 6703, 

6727, and 6760  records for the first, second, third, fourth, 

and fifth postures, respectively. For all classifiers, 15% of 

the data was used as validation and test data. The training 

model has been tested with data not previously used in 

training. Therefore, test data is entirely different from 

training data. To recognize sitting body posture, shallow 

machine learning algorithms, the most widely used in the 

related literature, were used, and results were evaluated 

with performance indicators. Although deep learning 

methods gradually become overwhelming, shallow 

classifiers remain preferred because training time is shorter 

than deep learning methods [20]–[22].  

Classification 

In order to avoid depending on the solution of a single 

classifier in multi-class classification problems and to 

optimize the classification value, more than one classifier 

was used in this study. KNN, AdaBoost (AB), NN, Gradient 

Boosting (GB), DT, Quadratic Discriminant Analysis 

(QDA), NB, and Random Forest (RF) classifiers were 

designed and used to classify sitting postures. The 

classification models with different parameters were 

optimized and evaluated for best performance. For the 

KNN, model flexibility parameters such as the number of 

neighbors, distance metric, and distance weight have been 

chosen as 10, Euclidean, and SquaredInverse, respectively. 

The number of estimators and the learning rate are 50 and 

1.5, respectively, for the AB model. The classification 

algorithms have been selected as SAMME.R. The 

regression loss function has been used as exponential. The 

NN model has  6 inputs, 100 hidden layers, and five output 

layers. Data division features random training function 

scaled conjugate gradient (SCG), Levenberg-Marquardt 

optimization method, and cross-entropy are used in the 

networks. The activation function is tan-sig, and the error 

goal has been limited to 0.001 [23], [24]. The weights and 

biases are initialized using the Nguyen-Widrow method. 

The number of trees is 200, and the learning rate is 0,02 for 

the GB model. The depth of individual trees is  5, and 

subsampling instances are 1. The maximum split parameter 

for the DT is 100. A minimum number of instances is 4 and 

6 for leaves and internal nodes, respectively. The Maximum 

depth is 100, and the Gini Impurity Index has been used as 

the splitting criterion. The covariance structure is the 

complete option for Quadratic Discriminant Analysis. 

Kernel distribution has been utilized for the NB. The 

number of trees and the depth of individual trees are 50 and 

10 for the RF model. All models were validated through a 

5-fold cross-validation process. The cross-validation was 

performed without data sharing between training and 

validation data to avoid overtraining. In order to measure 

the performances of each model, a multi-class confusion 

matrix is defined in [25]. In order to measure the 

performances of each model, a multi-class confusion 

matrix, which is defined in [25] and the ROC curve, is 

created, and Accuracy (A), Recall (R), precision (P), F1-
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score (F), AUC (Area Under Curve), and Specificity (S) 

indicators are calculated to evaluate performance [25]. 

Results and Discussion 

For the classification of body postures, confusion matrices 

for the models are presented in Figure 9. Both training and 

testing processes were performed on the same computer. 

When the confusion matrices are examined, it is seen that 

the samples are mainly classified according to their classes.  

 
Figure 9. Confusion matrices of classifiers for datasets 

It is seen that the first-class labeled samples are mainly 

classified as 5th class apart from their groups and vice versa 

for both datasets. Next, it is seen that the samples labeled as 

3rd class are mainly classified as 2nd class and 5th for fuzzy 

decision labeling dataset, and 1st class and 5th for time-

based labeling dataset, except for their groups.  

 

Figure 10. ROC curves of classifier 

Except for their groups, the samples labeled as 4th class are 

mainly classified as 5th class for fuzzy decision and time-

based labeling datasets. Finally, it is seen that the samples 

labeled as 5th class are mainly classified as 1st and 4th class, 

except for their groups. The ROC curves belonging to the 

models with the highest accuracy values for interpreting the 

accuracy values are presented in Figure 10. When the ROC 

curves are examined, it is seen that they confirm the 

confusion matrix values. For example, in confusion 

matrices (percentage section), the RF classifier has the 

worst values for both data sets' first and fifth classes. 

Likewise, when the ROC graph is examined, it can be 

understood that the first (blue) and fifth (green) classes have 

the worst learning success for the RF classifier since these 

graphs are far from the (0,1) point. When the ROC graphs 

are examined, it is seen that the KNN, NN, AdaBoost, and 

GB models are very close to the upper left corner point 

(0,1); therefore, the ability of these models to diagnose 

classes fits quite well. The classifier accuracy values are 

given in Figure 11. The other classifier performance metrics 

are given in Table 3. 

 
Figure 11. Classifier accuracies 

When the performance of the classifiers is evaluated, if 

Figure 9, Figure 10, Figure 11, and Table 3 are examined, it 

is seen that the classification accuracy of the KNN classifier 

is higher than the other classifier for both two datasets. It is 

essential to visualize the decision-making rules of 

classifiers for multi-class classification problems in 

particular.  

 
Figure 12. Classifier decision surfaces 

Table 3. Classifier performance metrics 
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Dataset Classifier Accuracy Precision Recall F-Score Specificity AUC 
Train Time 

(seconds) 

Test Time 

(seconds) 

Fuzzy 

Decision 

NN 98.760 0.98 0.98 0.99 0.99 0.98 446.94 0.235 

NB 89.808 0.89 0.89 0.97 0.93 0.89 0.452 0.078 

DT 96.999 0.97 0.97 0.97 0.99 0.98 2.014 0.009 

GB 98.638 0.98 0.98 0.98 0.99 0.99 416.44 0.6 

KNN 99.617 0.99 0.99 0.99 0.99 0.99 1.484 4.23 

AB 98.906 0.98 0.98 0.98 0.99 0.99 2.536 0.083 

RF 73.951 0.73 0.73 0.73 0.93 0.83 1.789 0.144 

QDA 93.534 0.93 0.93 0.93 0.98 0.95 2.41 0.034 

Time-

based 

NN 93.002 0.93 0.93 0.93 0.98 0.95 56.809 0.077 

NB 73.515 0.73 0.73 0.73 0.93 0.83 0.1 0.011 

DT 91.964 0.91 0.91 0.91 0.97 0.94 1.633 0.004 

GB 91.022 0.91 0.91 0.91 0.97 0.94 109.656 0.237 

KNN 95.037 0.95 0.95 0.95 0.98 0.96 0.234 0.993 

AB 92.148 0.92 0.92 0.92 0.98 0.95 1.037 0.022 

RF 72.728 0.72 0.72 0.72 0.93 0.83 1.219 0.043 

QDA 89.232 0.89 0.89 0.89 0.97 0.93 1.35 0.014 

*Green to red background: from the best to the worst 

Therefore, to visualize the decision-making rules of the 

classifiers, artificial pose values were produced according 

to the minimum and maximum limits of the feature values 

of each class, and the models classified these. In this 

context, the classifiers with high classification accuracy 

values are expected to create more indented rule regions, 

and the lower ones will create less unindented rule regions. 

In this way, the decision surfaces presented in Figure 12 

were created. When the rule areas given in Figure 12 are 

examined, it is seen that the most and least indented rule 

areas are formed by the KNN and RF classifiers for two 

datasets, respectively. In addition, the results of this study 

were compared with other studies in the literature and 

presented in Table 4. This study achieved a classification 

accuracy of over 99% and 95% by KNN for two datasets. 

In this context, classification accuracy values and other 

features obtained in studies in the relevant literature were 

compared with the results of this study and presented in 

Table 4. Dataset volume represents the total number of 

postures used as training and test data. The number of 

subjects indicates how many people were involved in 

experiments while the data set was created. The Joint Point 

is the skeleton point value used to create angular and 

geometric features to classify sitting positions. In Table 4, 

classification results and features using the datasets in this 

study are presented separately. When Table 4 is examined, 

it is seen that the highest accuracy value for the models used 

in both data sets was reached in this study. While there are 

studies in Paliyawan [6], Yao [8], and Li [9] with datasets 

more extensive than the dataset volume in this study, other 

studies used smaller-volume data. As a result, high accuracy 

values were obtained from studies in [6], Yao [8], and Li 

[9] with a larger volume than the dataset volume used. 

Although fewer joint points were used using the same 

labeling and classification method (KNN) than Bei's [10] 

study, higher performance was achieved. Better 

classification success was achieved using fewer subjects 

and fewer joint points than Li's [9] study. Compared to the 

other study in Paliyawan [6] using the NB method, the 

feature set with fewer joint points and a less voluminous 

data set was used, and a higher accuracy value was 

obtained. According to the sitting posture class type, this 

study has more class types than studies in Paliyawan [6], 

Pal [7], Li [9], and Ray [3]. Therefore, higher accuracy 

values were obtained compared to studies with the same or 

lesser class types. 

Conclusions and Recommendations 

Developing new, low-cost, accessible technologies is an 

essential step towards facilitating the assessment of sitting 

postures as office workers sit for extended periods. In this 

direction, standard sitting posture has been determined 

within the scope of relevant medical and health studies and 

standards to carry out the tests of the proposed system. 

Using the Kinect device, the depth sensor-based 98735 

sittings pose data was obtained from 22 subjects for five 

different sitting positions, including the standard sitting 

posture. A fuzzy-logic labeling and traditional time-based 

method with depth-based angular features for labeling the 

sitting pose has been proposed. After labeling, angular and 

geometric features were obtained in the upper body region. 

In order to obtain the best classification accuracy, the sitting 

poses dataset with the minor joint points was classified 

using eight classification methods. A high classification 

accuracy value was obtained in most of the methods. In 

order to determine the relationship between emotional 

states and sitting postures, simultaneous data can be 

obtained by methods such as EEG [26], [27]  and emotion 

detection-recognition, and their similarities can be 

investigated. 
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Table 4. Comparison of studies in the related literature 

Study Accuracy 
Labeling 

Method 

Feature 

Method 
Classifier 

Joint 

Point 

Position 

Classes 

Dataset 

Volume  
 Subjects 

Yao [8] 86.6 AC AF Threshold 10 5 66330 10 

Xia [5] 91.5 Histogram LDA HMM 20 5 6220 10 

Pal [7] 94.3 AC AF CBD 16 2 5600 20 

Ray [3] 94.8 AC 
Grayscale 

image 
LDA 12 4 22226 8 

This Study 95 
Time-

based 

Angular - 

Geometric 
KNN 5 5 33125 22 

Bei [10] 95.8 AC 
Local contour 

-topological 
KNN 6 9 16200 18 

Paliyawan 

[6] 
98.2 

Automatic 

Time-based 
Statistics  NB 10 2 397800 28 

Li [9] 99.1 

Geometric 

shape 

calculator 

Body physical 

features 
BP NN 8 2 55080 100 

This Study 99.6 
Fuzzy  

Decision 

Angular - 

Geometric 
KNN 5 5 55649 22 

LDA: Linear discriminant analysis, HMM: Hidden Markov models, CNN: Convolution Neural Network, CBD: City-Block Distance, AF: 

Angular Feature, AC: Angular calculation 

The presentation of a depth sensor-based system prepares 

the infrastructure for a system that can be used in intelligent 

robot assistants, especially in robot vision. The system is 

thought to recognize sitting or other postures (bending, 

lifting, etc.) for those working in other fields. The proposed 

system is thought to be innovative and promising for 

detecting the sitting postures of office workers and 

presenting meaningful suggestions. The study proposes a 

new labeling process method to overcome the systems' 

shortcomings, which were proposed in previous studies 

involving joint points. The detailed results explain that this 

method is generalizable and can be used in joint point-based 

posture classification studies. 

In terms of contributing to the literature, a comparison 

was made according to the features specified in Table 4, and 

it was revealed that this study is superior to other studies in 

the literature according to parameters such as accuracy, 

labeling method, feature method, classifier, joint point, 

position classes. Compared to the studies in the literature, it 

is thought that it contributes to the knowledge on the 

number of joint positions (provides low computational 

cost), the number of sitting postures class (proves the 

classification accuracy), and the labeling method (provides 

high accuracy). In addition, it is possible to mention some 

limitations of the system. Since the studies involving human 

subjects are limited to the number of volunteers 

participating in the experiments, it is planned to reach more 

people for data set expansion studies. In this direction, this 

study is considered a preliminary study. After the data set 

expansion studies, real-time potential use and performance 

tests in different environments will be performed, and the 

results will be discussed. In this way, it will be ensured that 

the system can be generalized in future studies, and its 

effectiveness in practice will be better evaluated. 

Limitations of the study include the ability to classify four 

incorrect sitting postures other than the standard posture. In 

addition, as another limitation of the study, according to the 

trained models, other incorrect postures that are different 

from the incorrect postures in the study can be classified 

according to these incorrect postures in real-time 

application. In this case, a measure such as a standard sitting 

score can be calculated by comparing the standard sitting 

posture classification rate with the rate of other postures in 

the real-time application. Obstacles may be encountered in 

the natural office environment (computer, panel, light, etc.) 

when obtaining the joint positions used as attribute values 

in creating the dataset. In addition, it may be difficult to 

obtain joint positions for rear-facing users. This may cause 

the classification model created with both the algorithm and 

the dataset to obtain incorrect results. 
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