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Article History Abstract − The Triangular Greenness Index (TGI) is a vegetation index derived from high-resolution aerial images 
acquired using unmanned aerial vehicles (UAVs). It serves as a valuable tool for quantifying vegetation health and 
dynamics in the visible spectrum. The TGI combines key components, including red reflectance and green reflectance, 
extracted from UAV-based imagery. The red component represents chlorophyll absorption and photosynthetic 
activity, while the green component reflects vegetation density and canopy structure. By integrating these components, 
the TGI offers a comprehensive measure of photosynthetically active vegetation, utilizing UAVs as a data collection 
platform. This study highlight the importance of the TGI derived from UAV-based imagery in monitoring vegetation 
changes, assessing ecosystem responses, and tracking variations in land cover and biodiversity. Furthermore, the 
application of TGI analysis using UAV-based aerial imagery shows promise in accurately identifying and monitoring 
vegetation affected by fungal diseases.  This integrated approach enables the detection of diseased trees based on 
distinct changes in greenness observed in their foliage. Because fungal diseases dry the plant and cause the green areas 
to disappear. The integration of UAV technology enhances the accuracy and efficiency of TGI calculation, 
contributing to effective management and conservation strategies in the context of fungal disease detection in 
vegetation. In this study, TGI was produced using UAV-based orthophoto and healthy and sick trees were determined. 
According to the accuracy analysis, producer accuracy for detecting green plants was 99.7% and user accuracy was 
98.5%. Fungal disease could be detected with 98.5% producer accuracy and 96.5% user accuracy. The overall 
accuracy of the study was calculated as 98.6%. 
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Makale Tarihçesi Öz − Üçgen Yeşillik İndeksi (TGI), insansız hava araçları (İHA) kullanılarak elde edilen yüksek çözünürlüklü hava 

görüntülerinden türetilen bir bitki örtüsü indeksidir. Görünür spektrumda bitki örtüsünün sağlığını ve dinamiklerini 
ölçmek için değerli bir araç olarak hizmet eder. TGI, İHA tabanlı görüntülerden elde edilen kırmızı yansıma ve yeşil 
yansıma dahil olmak üzere temel bileşenleri birleştirir. Kırmızı bileşen klorofil emilimini ve fotosentetik aktiviteyi 
temsil ederken, yeşil bileşen bitki örtüsü yoğunluğunu ve kanopi yapısını yansıtır. Bu bileşenleri entegre eden TGI, 
İHA'ları bir veri toplama platformu olarak kullanarak fotosentetik olarak aktif bitki örtüsünün kapsamlı bir ölçümünü 
sunmaktadır. Bu çalışma, İHA tabanlı görüntülerden elde edilen TGI'nın bitki örtüsü değişikliklerinin izlenmesinde, 
ekosistem tepkilerinin değerlendirilmesinde ve arazi örtüsü ve biyoçeşitlilikteki değişimlerin izlenmesindeki önemini 
vurgulamaktadır. Ayrıca, İHA tabanlı hava görüntüleri kullanılarak TGI analizinin uygulanması, mantar 
hastalıklarından etkilenen bitki örtüsünün doğru bir şekilde tanımlanması ve izlenmesinde umut vaat etmektedir.  Bu 
entegre yaklaşım, yapraklarında gözlemlenen yeşillikteki belirgin değişikliklere dayanarak hastalıklı ağaçların tespit 
edilmesini sağlar. Çünkü mantar hastalıkları bitkiyi kurutur ve yeşil alanların yok olmasına neden olur. İHA 
teknolojisinin entegrasyonu, TGI hesaplamasının doğruluğunu ve verimliliğini artırarak bitki örtüsündeki mantar 
hastalıklarının tespiti bağlamında etkili yönetim ve koruma stratejilerine katkıda bulunur. Bu çalışmada, İHA tabanlı 
ortofoto kullanılarak TGI üretilmiş ve sağlıklı ve hasta ağaçlar belirlenmiştir. Doğruluk analizine göre, yeşil bitkileri 
tespit etmek için üretici doğruluğu %99,7 ve kullanıcı doğruluğu %98,5'tir. Mantar hastalığı %98,5 üretici doğruluğu 
ve %96,5 kullanıcı doğruluğu ile tespit edilebilmiştir. Çalışmanın genel doğruluğu %98,6 olarak hesaplanmıştır.  
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1. Introduction 

Environmental monitoring is a crucial element in comprehending and effectively managing Earth's resources 
and ecosystems (Roy et al., 2022). It encompasses the systematic and efficient observation and evaluation of 
changes in land use, land cover, and natural processes over time. Remote sensing, a pivotal technique in Earth 
observation, plays a vital role in this endeavor by acquiring information about the Earth's surface and 
atmosphere without direct physical contact (Sohl and Sleeter, 2012; Chowhan and Chakraborty, 2022). It 
involves the utilization of sensors mounted on satellites, aircraft, or unmanned aerial vehicles (UAVs) to collect 
data by measuring the interaction between electromagnetic radiation and the Earth's features. Through remote 
sensing, environmental scientists and researchers can effectively monitor various phenomena such as 
deforestation, urbanization, soil erosion, and the impacts of climate change (Aksoy and Kaptan, 2020; Durkaya 
et al., 2020; Blaga et al., 2023). The utilization of remote sensing data provides valuable information for the 
development of effective environmental policies, resource management strategies, and conservation efforts. 

Vegetation analysis (Demir and Başayiğit, 2021) is an integral aspect of environmental monitoring and 
management as it serves as a fundamental indicator of ecosystem health and dynamics. Assessing the health 
and dynamics of vegetation is crucial for understanding ecological processes, monitoring ecosystem responses 
to environmental stressors, and identifying changes in land cover and biodiversity. Greenness indices, 
including the Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974; Tucker, 1979), Enhanced 
Vegetation Index (EVI) (Huete et al., 2002), and Triangular Greenness Index (TGI) (Hunt et al., 2011)., are 
essential tools for quantifying vegetation health and dynamics. These indices exploit the differential reflectance 
properties of vegetation in the red and near-infrared (NIR) regions of the electromagnetic spectrum. Healthy 
and vigorously growing vegetation typically exhibits high reflectance in the NIR region due to strong 
chlorophyll absorption in the red region, resulting in higher greenness index values. The utilization of 
greenness indices, derived from remote sensing data, seamlessly integrates with the previous discussion on 
vegetation analysis. 

In recent decades, unmanned aerial vehicles (UAVs) have gained significant popularity in various engineering 
projects. These projects include tasks such as determining pond volume (Kaya et al., 2019), assessing landslide 
sites (Kusak et al., 2021), analyzing rockfall sites (Yakar et al., 2022), creating cultural heritage models 
(Yilmaz et al., 2012; Yakar and Doğan, 2018), and evaluating soil erosion (d’Oleire-Oltmanns et al., 2012). 
These applications have emerged as the most utilized applications of UAV technology in engineering projects. 
It has now revolutionized detailed and up-to-date monitoring by providing a flexible, cost-effective platform 
for data collection in environmental studies. 

UAVs have diverse applications across various fields, including water resource management (Kaya et al., 
2023), product observation, equipment and building inspection, mapping, yield monitoring, soil erosion 
assessment, water stress analysis, disease (Bhupathi and Sevugan, 2021) and pest detection, as well as weed 
control (Türkseven et al., 2016; Özgüven, 2018; Şin and Kadıoğlu, 2019; Demir and Başayiğit, 2020). To 
combat these weeds, different types of cameras with specific features are utilized (Bannari et al., 1995; 
Brovkina et al., 2018). By collecting data from cameras mounted on UAVs, it becomes feasible to map the 
existing flora (Özgüven, 2018). Additionally, the potential losses in crop yield can be estimated. Studies 
focusing on NDVI (Normalized Difference Vegetation Index) and similar metrics are conducted as green 
plants exhibit a heightened sensitivity to infrared wavelengths (Türkseven et al., 2018). UAVs offer a unique 
advantage in vegetation analysis by acquiring high-resolution aerial imagery. Integrating Triangular Greenness 
Index (TGI) analysis with UAV technology offers a promising solution for the identification and monitoring 
of vegetation. The TGI, a visible vegetation index, quantifies the relative abundance of photo synthetically 
active vegetation and serves as a proxy for vegetation health and dynamics. It is calculated by exploiting the 
differential reflectance properties of vegetation in the red and green regions of the electromagnetic spectrum. 
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UAV-based TGI analysis involves capturing aerial imagery using RGB (red, green, blue) digital cameras 
mounted on UAV platforms. 

In the specific context of this study, there is an ongoing issue of fungal disease in pine trees at Harran 
University Osmanbey Campus. This disease causes the leaves of pine trees to dry up and lose their green color. 
To address this problem, an approach is being taken to detect the affected trees by generating the TGI from 
images obtained using UAV technology. By utilizing UAV-based aerial imagery and applying TGI analysis, 
it is anticipated that the diseased trees can be accurately identified based on distinct changes in greenness 
observed in their foliage. 

This study aims to achieve the following objectives: firstly, to assess the applicability of the TGI obtained from 
UAV-based aerial images for the detection and monitoring of fungal disease affecting pine trees at Harran 
University Osmanbey Campus. Secondly, to examine the relationship between TGI values and the severity of 
the fungal disease, with the goal of establishing a quantitative measure of vegetation health and identifying 
areas with a high disease prevalence. Lastly, to evaluate the feasibility and effectiveness of utilizing UAV-
based aerial imagery and the TGI as a cost-effective and efficient method for early detection and monitoring 
of fungal disease in pine trees. 

2. Material and Methods 

The methodology section of this study encompasses the implementation of a data collection, the subsequent 
image processing, the generation of the TGI, and the accuracy analysis of the obtained results. 

2.1. Data Collection 

The data collection process using UAVs for acquiring high-resolution aerial images involves planning the 
flight path and imaging parameters. A photogrammetric flight plan is meticulously designed to ensure 
comprehensive coverage of the target area and optimize the image acquisition process. Factors such as spatial 
resolution, image overlap, and flight altitude are carefully considered during the planning stage. The flight plan 
determines the path that the UAV will follow to capture images of the designated area, often designed in a grid 
or zigzag pattern with sufficient image overlap. Imaging parameters, including camera settings and image 
capture intervals, are also determined during the flight planning phase (Uysal et al., 2013; Demirel et al., 2022). 
These parameters ensure high-quality images with optimal exposure and sufficient overlap for accurate 
photogrammetric analysis. 

During the actual UAV flight, the system follows the predetermined flight plan, capturing images at regular 
intervals. The onboard camera system captures high-resolution images at specified locations along the flight 
path. The images are geotagged with GPS coordinates, providing precise location information for each 
captured image. Geotagging enables accurate spatial referencing and integration of the images into a coordinate 
system. After data collection, the images undergo post-processing, which includes georeferencing, distortion 
correction, and image mosaicking. Georeferencing aligns the images with reference points, establishing their 
accurate geographic location. Distortion correction corrects any lens or perspective distortions, ensuring 
accurate measurements and analysis. Image mosaicking stitches the individual images together, creating a 
seamless orthomosaic for a comprehensive view of the target area. This carefully planned and executed data 
collection process using photogrammetric UAV flights provides high-resolution aerial images with precise 
geolocation, supporting vegetation analysis, land cover mapping, and environmental monitoring endeavors. 

This study was carried out with the DJI Mavic 2 Pro UAV system, which is useful in data collection and has 
high sensitivity. It is a successful system with features such as an effective range of 8 km, a maximum flight 
time of 31 minutes, 4K recording with a Hasselblad camera, a 1" CMOS sensor, GPS sensor, 4-way obstacle 
sensing, automatic return to home, and a weight of approximately 1 kg. The UAV used in the study is depicted 
in Figure 1. 
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Figure 1. The UAV system used in the study (URL-1) 

2.2. Fungal Monitoring 

Vascular wilt diseases represent a significant threat to pine forests on a global scale, inducing swift wilting, 
discoloration, and eventual demise. These afflictions primarily stem from fungal pathogens infiltrating the 
xylem, the vital water transport system within trees, disrupting water flow and triggering dehydration, nutrient 
deficiencies, and ultimately mortality. Common culprits encompass Bursaphelenchus xylophilus, the pin-
ewood nematode, often coupled with Bursaphelenchus conicentrus, a fungal symbiont, culminating in pine 
wilt disease (PWD), and Ceratocystis fagacearum, accountable for Ceratocystis wilt in diverse pine species 
(Zhou et al., 2017; Costanza et al., 2018). PWD has notably wrought widespread havoc in Asia, decimating 
millions of hectares of pine forests. Its dissemination is facilitated by insect vectors such as the pine sawyer 
beetle (Monochamus spp.), which transmit the nematode to uninfected trees. Initial symptoms manifest as 
wilting and discoloration of needles, escalating to complete crown browning over weeks to months (Kim et 
al., 2020). A comprehensive understanding of the intricate interplay between fungus, insect vector, and host 
tree is indispensable for devising effective management tactics. Contemporary strategies are centered around 
thwarting vector dispersal via insecticide applications and implementing silvicultural measures. Moreover, 
ongoing research into resilient pine varieties and biological control agents offers promising avenues for future 
disease mitigation efforts (Kim et al., 2020; Wang et al., 2011). 

2.3. Image Processing 

The image processing section of this study focuses on the post-processing of UAV-based aerial images using 
the structure from motion (SfM) algorithm, a widely used technique in photogrammetry (Akca and Polat, 2022, 
Uysal et al., 2015; Yiğit, 2020). The SfM algorithm plays a crucial role in reconstructing three-dimensional 
structures by establishing correspondences between common features in a collection of two-dimensional 
images and estimating camera positions and orientations (Snavely et al., 2008). By applying the SfM algorithm 
to the captured aerial images, accurate orthomosaics and three-dimensional models can be generated, providing 
researchers with precise geometric information about the study area. The SfM algorithm examines shared 
points or features that appear in multiple images and employs intrinsic and extrinsic camera parameters, 
including focal length, distortion, principal point, camera position, and orientation. By utilizing these 
parameters, the algorithm calculates the 3D coordinates of the points in the scene, generating a point cloud that 
represents the scene's structure (Remondino and El-Hakim, 2006). SfM algorithms are grounded in the 
principles of photogrammetry, computer vision, and machine learning, representing advanced techniques that 
are widely acknowledged and embraced in the field (Toprak et al., 2019) 

The generated orthomosaics and three-dimensional models offer numerous applications, including vegetation 
analysis, topographic mapping, and infrastructure planning. These representations provide detailed and reliable 
information about the spatial distribution and characteristics of vegetation, as well as the topography of the 
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area of interest. This information is valuable for assessing vegetation health, quantifying land cover changes, 
and supporting decision-making processes related to infrastructure development and management.  

By utilizing the capabilities of the SfM algorithm and image processing techniques, this study aims to gain 
insights into various aspects, such as vegetation dynamics, topographic features, and spatial relationships. 
These findings will contribute to effective environmental monitoring and management practices, enhancing 
the understanding and decision-making capabilities in relevant fields. 

2.4. Triangular Greenness Index (TGI) 

Currently, spectral information plays a crucial role in agriculture for distinguishing vegetation types and 
conducting in-depth analysis of vegetation characteristics. Typically, these analyses are based on spectral 
indices, which are derived by calculating ratios of different bands or normalizing band differences (Jackson 
and Huete, 1991). Many of these indices utilize NIR wavelengths, which are sensitive to both chlorophyll 
content and leaf area index (LAI). Haboudane et al. (2008) introduced the triangular chlorophyll index based 
on green, red, and red-edge bands to quantify leaf nitrogen levels. Subsequently, red-edge bands have been 
incorporated into various satellite sensors (Eitel et al., 2007; Herrmann et al., 2011; Ramoelo et al., 2012), 
thereby enhancing the sensitivity for chlorophyll detection (Gitelson, 2011). However, low-cost multispectral 
sensors typically lack NIR or red-edge bands and are limited to visible wavelength bands. To address this 
limitation, a visible-band index known as the TGI was developed (Hunt et al., 2011). The proposed method 
relies on chlorophyll content as its basis.  

TGI is an important vegetation index utilized to assess the greenness and vigor of vegetation using remotely 
sensed data. It serves as a valuable tool for evaluating vegetation health and dynamics in various applications. 
The TGI is computed by utilizing three spectral bands, namely the red, green, and blue bands, which are 
typically extracted from remote sensing imagery. The selection of these bands is contingent upon the particular 
remote sensing system or sensor employed. In the context of this study, the visible region of the 
electromagnetic spectrum (RGB) captured by a consumer-grade digital camera is utilized for TGI calculation. 
TGI is calculated as follows. 

𝑇𝑇𝑇𝑇𝑇𝑇 = (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − (0,39 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅) − (0,61 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)                                                                                                        (1) 

The TGI formula compares the spectral differences between the green band and the red/blue bands, capturing 
the greenness component of vegetation. Higher TGI values indicate healthier and more vigorous vegetation, 
reflecting a greater level of greenness. It is worth noting that the choice of spectral bands in the TGI formula 
may vary depending on the remote sensing system's characteristics and the specific objectives of the analysis. 

The calculation of the TGI incorporates key components that contribute to its biological significance in 
assessing vegetation health. The green band represents the reflectance of green light, which is strongly 
absorbed by chlorophyll, the primary pigment responsible for photosynthesis. The red band reflects the 
absorption of red light, and healthy vegetation tends to reflect more green light and absorb more red light due 
to its high chlorophyll content. The inclusion of the blue band in the TGI formula further emphasizes the 
greenness component. Herewith, higher TGI values indicate vegetation with higher chlorophyll content and 
greater greenness, while lower TGI values may suggest stressed or less vigorous vegetation with reduced 
chlorophyll levels and diminished photosynthetic activity (Hunt et al., 2011). 

2.5. Raster Color Slices 

The color slice technique is a valuable tool used in image processing to highlight specific data ranges and 
colors within an image (Yu et al., 2023). By utilizing the raster color slices tool, users can select desired data 
ranges and assign corresponding colors to visually emphasize certain areas of interest (Harris Geospatial, 
2016). The output of this tool is a raster image where pixel values are color-mapped based on the defined 
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ranges and colors. This resultant image can be treated as a classification image in subsequent processing, 
enabling further analysis and interpretation. The color slices effectively group pixel values into discrete ranges, 
each represented by a unique color. Overlaying a color slice on an associated image enhances the visualization 
of image processing results, allowing for a clearer understanding of the spatial distribution and characteristics 
of the highlighted areas. This technique is particularly useful in applications where specific data ranges or 
features need to be emphasized and analyzed in the context of the overall image. 

2.6. Accuracy Analysis 

The methodology for calculating a confusion matrix with ground truth region of interest (ROI) involves 
comparing predicted and actual class labels. This is done by applying a classification or prediction model to a 
dataset with labeled instances and comparing the predicted labels with the ground truth labels. The confusion 
matrix, a tabular representation of the predicted and actual class labels, is constructed based on the counts of 
instances in each combination. From the confusion matrix, producer accuracy (sensitivity), user accuracy 
(precision), overall accuracy, and Kappa coefficient can be calculated (Story and Congalton, 1986). Producer 
accuracy measures the proportion of correctly predicted instances for each class, while user accuracy calculates 
the proportion of correctly predicted instances based on the predicted labels. Omission errors, also known as 
false negatives, occur when the model fails to predict instances that belong to a particular class. Commission 
errors, also known as false positives, occur when the model incorrectly predicts instances to belong to a 
particular class. These errors can be identified by examining the entries in the confusion matrix. Overall 
accuracy provides an assessment of the model's accuracy across all classes, taking into account both omission 
and commission errors. The Kappa coefficient takes into account chance agreement between predicted and 
actual labels and provides a measure of the model's performance beyond random chance. 

To calculate the confusion matrix and associated metrics, appropriate formulas and calculations are applied 
based on the counts within the matrix. These metrics offer valuable insights into the model's performance, 
indicating its accuracy in classifying instances and providing an overall assessment of its performance, 
considering omission and commission errors. By evaluating the producer and user accuracy, overall accuracy, 
and Kappa coefficient, researchers can gain a comprehensive understanding of the classification model's 
strengths and weaknesses, enabling further analysis and improvement (Wang et al., 2022). 

Errors of commission indicate the proportion of values that were erroneously predicted to belong to a 
particular class, despite not actually belonging to that class. These errors, often referred to as false positives, 
can be observed in the rows of the confusion matrix, excluding the values on the main diagonal. On the other 
hand, errors of omission represent the fraction of values that truly belong to a specific class but were 
inaccurately predicted to be part of a different class. These errors, known as false negatives, can be found in 
the columns of the confusion matrix, except for the values along the main diagonal. 

Producer accuracy, also known as sensitivity, measures the probability that a value belonging to a certain 
class is correctly classified as such. It is derived by calculating the ratio of correctly predicted values to the 
total number of values in that class. User accuracy, also referred to as precision, assesses the likelihood that a 
predicted value truly belongs to a given class. This probability is determined by evaluating the fraction of 
correctly predicted values against the total number of values predicted to be in that class. 

Overall accuracy, a fundamental metric, is computed by summing the number of correctly classified values 
and dividing it by the total number of values. The correctly classified values correspond to the elements along 
the diagonal from the upper-left to the lower-right of the confusion matrix. The total number of values used 
for this calculation can be obtained from either the ground truth or predicted-value arrays, as they should be of 
equal size and reflect the entire dataset. 

𝑂𝑂𝑂𝑂 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

                                                                                                                                            (2) 
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All calculations and ROI selections were performed in Envi software. For detailed information about confusion 
matrix and associated metrics, please check the (HarrisGeospatial, 2023) resource. 

3. Results 

In this study, a total of 1,263 aerial images were acquired using a single camera station. The unmanned aerial 
vehicle (UAV) was flown at an altitude of 50 meters, resulting in a ground resolution of 1.53 centimeters per 
pixel. The coverage area of the imagery was approximately 0.136 square kilometers. To ensure comprehensive 
coverage and minimize data gaps, a 70% overlap between adjacent images was maintained during the flight. 
This overlap ensured sufficient redundancy and allowed for the creation of accurate orthomosaics and three-
dimensional models. Additionally, during the processing stage, 323,584 tie points were identified and used to 
establish precise georeferencing and alignment of the images. The combination of the extensive image dataset, 
high overlap, and numerous tie points provides a robust foundation for detailed analysis, mapping, and 
interpretation in this study. As a result of the data processing and analysis, several outputs were obtained for 
the study area. Firstly, a point cloud was generated, which represents a digital elevation model (DEM) 
capturing the three-dimensional structure of the terrain. This point cloud provides detailed information about 
the elevation and topography of the study area (Figure 2).  

 
Figure 2. UAV Flight path, dense point cloud and DSM 

Additionally, a high-resolution orthophoto was produced, which is an orthorectified image with consistent 
scale and minimal geometric distortions. This orthophoto accurately represents the study area from a top-down 
perspective, allowing for visual interpretation and analysis. Figure 3 displays the high-resolution orthophoto, 
providing a clear and detailed view of the study area and its features. 
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Figure 3. Generated orthophoto 

The next step in the study involved generating the TGI using the band math tool in Envi software, based on 
Equation 1 (Figure 4). The pixel values derived from the color slice operation exhibit a range between -42,9 
and 60,46. Figure 4 visually demonstrates that positive pixel values correspond to greener vegetation, 
indicating higher levels of vigor. Based on the conducted analysis, pixel values equal to or greater than 15.3 
are indicative of green vegetation. In contrast, pixel values falling within the range of -5.5 to 15.3 suggest the 
presence of fungal disease. Negative pixel values represent other elements present in the scene, such as soil 
and roads. The color slice technique, as illustrated in the figure, facilitates the effective classification and 
interpretation of the TGI image, allowing for the differentiation and delineation of specific features and 
components based on their corresponding pixel values. 

 
Figure 4. Generated TGI 
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By considering the defined thresholds for each class, a color slice technique was employed to classify the TGI 
image, resulting in the delineation of three distinct categories as depicted in Figure 5. These classes include 
green vegetation, fungal disease, and others. The "other" class encompasses various non-vegetation elements, 
such as soil, roads, buildings, and shadows, which are not directly related to the vegetation health analysis. 
Through the successful segmentation and classification of the TGI image, a comprehensive understanding of 
the spatial distribution and characteristics of different components within the imagery was achieved. This 
segmentation approach provides a valuable foundation for further analysis and interpretation of the study area, 
facilitating the identification of specific regions of interest and supporting decision-making processes in 
vegetation monitoring and management. 

 
Figure 5. TGI color slice result 

Within the scope of the study, a three-class image was generated using TGI color slice. The resulting color 
slice was initially visually analyzed by comparing it with the orthophoto. Since TGI is sensitive to green color, 
the accuracy of correctly identifying green pixels representing trees was assessed. The comparative visual 
representation of three selected sample regions from the area is presented in Figure 6. 

  
Figure 6. The comparative visual representation of three selected sample regions 
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It is clear in Figure 6 that TGI is highly successful in detecting green color. Similarly, regions affected by 
fungal disease are visibly represented as darker shades. Through more detailed visual analysis, it was observed 
that TGI also performs reasonably well in partially diseased trees. In other words, it provides accurate results 
for trees that have partially dried due to fungal infection but still have green branches. An example of a partially 
diseased tree can be seen in Figure 7. 

  
Figure 7. View of a partially diseased tree 

In Figure 7, the green branches of the partially diseased tree are clearly visible in the orthophoto. Similarly, 
these green branches are distinctively separated in the TGI image as well. 

To assess the accuracy of the color slice classification, a general accuracy calculation was performed in 
addition to the visual analysis. In this regard, the confusion matrix was computed depending on the ground 
truth ROIs, as described in section 2.5. For each class, manual ground truth samples were collected from the 
field, representing the pixels that truly belonged to each class. Subsequently, using these ROIs, the accuracy 
of the classified image was calculated. The confusion matrix, generated using the ground truth ROIs, is 
presented in Table 1. 
 
Table 1 
Confusion matrix  

Ground Truth Pixels 

Pr
ed

ic
te

d 
 

Pi
xe

ls
 

 Green Vegetation Fungal Disease Soil and others Total 
Green vegetation 4490 9 0 4499 
Fungal Disease 12 3185 74 3271 
Soil and others 56 105 10207 10368 
Total 4558 3299 10281 18138 

In the confusion matrix, the diagonal represents the ground truth values of each class and the number of 
correctly estimated pixels. The horizontal and vertical elements of the matrix indicate commission and 
omission errors, respectively, which represent the number of pixels that have been misclassified or transitioned 
between classes. Based on the pixel values in the confusion matrix, Commission and Omission errors for each 
class, as well as Producer and User Accuracy values, were calculated (Table 2). 
 
Table 2 
Producer accuracy and user accuracy 

 Green vegetation Fungal Disease Others 
Errors of Commission 0.002 0.026 0.016 
Errors of Omission 0.015 0.035 0.008 
Producer Accuracy 0.997 0.974 0.985 
User Accuracy 0.985 0.965 0.993 
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Commission errors, as previously mentioned, indicate the proportion of pixels that were erroneously assigned 
to a specific class, despite not belonging to that class. Upon reviewing Table 2, it becomes evident that the 
lowest commission error value is observed in the “Green vegetation” class, indicating a high level of accuracy 
in correctly classifying pixels as green. On the other hand, omission errors represent the proportion of pixels 
that truly belong to a particular class but are mistakenly classified as belonging to a different class. Upon 
examining Table 2, it is observed that the lowest omission error value is found in the “Other” class, indicating 
the misclassification of pixels that should have been assigned to the “Other” class. 

Based on these error values, user accuracy and producer accuracy are calculated. Notably, the lowest user and 
producer accuracies are observed in the fungal disease class. This outcome is expected due to the significant 
occurrence of both commission and omission errors in this class. It suggests that pixels associated with fungal 
disease are less accurately detected and tend to be mixed with other classes. Consequently, to gain further 
insights into this finding, a visual analysis was conducted, aiming to identify the specific classes with which 
the fungal disease class was frequently confused and to explore the underlying reasons for this confusion (see 
Figure 8). 

 
Figure 8. Fungal disease mixed with shadow. 

During the analysis, it was observed that shadows, which are included in the “Other” class, were partially 
mixed with fungal disease.  Despite this partial mixing with shadows, it is believed that this index can be 
utilized for detecting diseased trees. Especially in dense forests and data where the shadow is very little in the 
orthophoto depending on flight time and weather conditions, it is thought that this index will give higher 
results. From the perspective of end-users, the “Green vegetation” class achieved a detection rate of 98.5%, 
while the “Fungal Disease” class achieved a detection rate of 96.5%. The overall accuracy of the study, 
calculated using equation 2, yielded a general accuracy of 98.6%. 

4. Discussions 

The results obtained from the application of the TGI using UAV-based aerial imagery for the detection and 
monitoring of fungal disease in pine trees at Harran University Osmanbey Campus are promising. The TGI 
analysis effectively identified distinct changes in greenness observed in the foliage of affected trees, enabling 
accurate detection of diseased vegetation. The integration of UAV technology in data collection enhanced the 
accuracy and efficiency of TGI calculation, contributing to effective management and conservation strategies 
in the context of fungal disease detection in vegetation. 

The high-resolution aerial images acquired through UAV flights provided detailed information about the study 
area, allowing for precise vegetation analysis and monitoring. The SfM algorithm was applied to the aerial 
images for image processing, enabling the generation of accurate orthomosaics and three-dimensional models. 
These representations facilitated the assessment of vegetation dynamics, topographic features, and spatial 
relationships, supporting environmental monitoring and management practices. 
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The TGI, calculated using the red, green, and blue spectral bands from the UAV-based aerial imagery, served 
as a valuable tool for evaluating vegetation health and dynamics. The TGI formula exploited the spectral 
differences between the green and red/blue bands, capturing the greenness component of vegetation. Higher 
TGI values indicated healthier and more vigorous vegetation, while lower values suggested stressed or less 
vigorous vegetation. By quantifying vegetation greenness, the TGI provided insights into vegetation health, 
stress, and productivity, supporting various environmental applications such as agriculture, forestry, and 
ecosystem studies. 

The accuracy analysis of the TGI results involved the calculation of a confusion matrix and associated metrics, 
including producer accuracy, user accuracy, overall accuracy, and the Kappa coefficient. These metrics 
provided a comprehensive assessment of the classification model's performance, considering both omission 
and commission errors. By evaluating these metrics, researchers gained insights into the strengths and 
weaknesses of the classification model and identified areas for improvement. 

The successful application of UAV-based TGI analysis in detecting and monitoring fungal disease in pine trees 
highlights the potential of this integrated approach for vegetation assessment and management. The early 
detection of diseased trees based on changes in greenness observed in their foliage allows for timely 
intervention and targeted conservation efforts. The cost-effective and efficient nature of UAV technology, 
combined with the TGI analysis, offers a practical solution for environmental monitoring and management 
endeavors. 

TGI analysis has several limitations that need to be considered. Firstly, it is sensitive to lighting conditions, 
and variations in cloud cover or shadows can affect the accuracy of results. Additionally, the effectiveness of 
the TGI can vary depending on the vegetation type and coverage, as different species may respond differently 
to the spectral bands used in the analysis. Furthermore, the TGI may have limited sensitivity to factors beyond 
chlorophyll content, such as nutrient deficiencies or non-chlorophyll-related diseases. Spatial and temporal 
limitations, as well as the need for ground truth validation, should also be considered. Despite these limitations, 
addressing them through calibration, validation, and complementary analyses can enhance the utility of the 
TGI in vegetation assessment and management. 

5. Conclusions 

This study demonstrated the applicability and effectiveness of the TGI derived from UAV-based aerial imagery 
for the detection and monitoring of fungal disease in pine trees. The integration of UAV technology in data 
collection and the utilization of the TGI provided accurate and timely identification of diseased vegetation, 
enabling effective management and conservation strategies. 

The high-resolution aerial images acquired through UAV flights, along with the application of the SfM 
algorithm, supported precise vegetation analysis, topographic mapping, and spatial relationship assessment. 
The TGI, calculated using the red, green, and blue spectral bands, served as a valuable tool for evaluating 
vegetation health and dynamics. The TGI analysis allowed for the quantification of vegetation greenness and 
provided insights into vegetation stress, productivity, and overall condition. 

The successful detection and monitoring of fungal disease in pine trees using UAV-based TGI analysis 
demonstrate the potential of this integrated approach for vegetation assessment and management. The early 
identification of diseased trees based on changes in greenness observed in their foliage facilitates targeted 
conservation efforts and intervention strategies. The cost-effective and efficient nature of UAV technology, 
combined with the TGI analysis, offers a practical and promising method for environmental monitoring and 
management in the context of fungal disease detection in vegetation. 

Further research can explore the application of the TGI analysis in other vegetation types and disease scenarios, 
expanding its potential for environmental monitoring and management. Additionally, the integration of other 
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remote sensing such as thermal imaging or multispectral analysis, could enhance the capabilities of the TGI 
analysis for comprehensive vegetation assessment.  
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