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Highlights  

 Magnetocaloric properties of the nanotube system have been investigated theoretically. 
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ABSTRACT 

The magnetocaloric properties - which is important for designing energy efficient and environment friendly heating and 

cooling systems- of the magnetic nanotube are constituted by arbitrary core spin values 𝑆𝐶  and the shell spin values 𝑆𝑆  

have been investigated by mean field approximation. Several quantities have been calculated during this investigation, 

such as isothermal magnetic entropy change, full width at half  maximum value and the refrigerant capacity, in order to 

suggest more efficient heating and cooling. The variation of these quantities with the values of the spins and exchange 

interaction between the core and shell is determined. Besides, recently experimentally observed  double peak behavior 

in the variation of the isothermal magnetic entropy change with the temperature is obtained for the nanotube.   

Keywords: Magnetic refrigeration, Environment friendly cooling and heating systems, Energy efficiency, Refrigerant 

capacity 
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1. INTRODUCTION 

The magnetocaloric effect (MCE) is a physical phenomena that has significance for renewable 

energy technologies, notably in the context of more efficient and ecologically friendly cooling and 

heating systems. Magnetic refrigeration systems are one of the most promising uses of the MCE. 

Magnetic refrigeration, as opposed to typical refrigeration systems that employ hazardous 

refrigerants and compressors, is based on solid-state magnetic materials. When subjected to a 

magnetic field, these materials can absorb and release heat, making them ecologically friendly and 

energy-efficient. 

 

MCE is defined as an occurred temperature change in the material when it is subject to the 

magnetic field. It was first observed in Iron [1] and theoretically explained after many years [2,3]. 

MCE is simply based on the variation in different contributions to the entropy. The entropy of a 

magnetic material is composed of three independent parts namely, the electronic part, lattice part, 

and magnetic part.  Under adiabatic changes, the total entropy of the material is constant. This 

means that, occurred a change in one part of the entropy should be balanced by other parts. Then 

if one increases the magnetic part of the entropy by an adiabatic process, the lattice part should 

decrease (by an assumption of the constant electronic part of the entropy). Decreasing lattice 

entropy manifests itself as a reduction in the temperature of the material. In this way, one can 

construct a thermodynamical cycle, in which at one step the material is at the temperature 𝑇1 and 

at another step it has the temperature 𝑇2>𝑇1. 

 

Refrigerant capacity (RC) is the amount of heat that can be transferred from the cold end (at 

temperature 𝑇1)  to the hot end (at temperature 𝑇2 ) in one thermodynamical cycle. This quantity 

is one of the quantities which measure the suitability of the magnetic material for magnetocaloric 

purposes. It is in relation to another quantity namely  isothermal magnetic entropy change (IMEC). 

In order to obtain a large adiabatic temperature change, the material should have a large IMEC, 

and a large RC. On the other hand a good candidate has sufficient thermal conductivity for the aim 

of easy heat exchange. 

 

The typical behavior of the IMEC by the temperature includes peak at a critical temperature of the 

material. Generally, bulk magnetocaloric materials display larger  IMEC peaks but with negligible 

or very low RC values. On the other side, nanosystems show reduced IMEC values. But their 

IMEC curve spread over a wide temperature range and this fact sometimes yields larger RC (in 
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comparison to the bulk counterparts). Thus they are promising candidates for magnetic 

refrigeration [4,5]. For instance, it has been shown that the geometrical confinement of Dy and Ho 

can lead to an enhanced magnetocaloric effect in comparison to the bulk counterparts [6,7]. 

Similarly, it has been shown for 𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3 nanotube arrays, the bulk sample exhibits higher 

IMEC but  nanotubes present an expanded temperature dependence of IMEC  curves that spread 

over a broad temperature range [8,9]. 

 

As explained in Section 2 , IMEC is related to the magnetization change with the temperature.   If 

the magnetization rapidly changes over some interval of the temperature, it is said that large MCE 

obtained. Nanotubes are promising materials for obtaining efficient MCE. For instance, large 

MCE, associated with the sharp change in magnetization of the 𝐺𝑑2𝑂3 nanotubes has been shown 

experimentally [10,11]. Another example of experimental MCE in nanotubes is the structural 

defect-induced MCE in 𝑁𝑖0.3𝑍𝑛0.7𝐹𝑒2𝑂4 graphene (NZF/G) nanocomposites [12]. 

 

As seen in these examples, experimental studies are up to date for MCE in nanotubes. Although, 

MCE in nano systems is an active research area for experimentalists, to the best of our knowledge 

MCE on nanotube geometry has not been worked out, theoretically. But, from the theoretical side 

both of the magnetic behavior of these systems well studied. After the first theoretical treatments 

of the Ising model on nanotube geometry [13] by effective field approximation, the first results for 

the anisotropic Heisenberg model on nanotube geometry have been obtained within the same 

methodology [14]. As studied in this work in terms of the MCE, mixed spin models have been 

worked out for obtaining the magnetic properties. The magnetic properties of the spin (1/2-1)  

mixed system on nanotube geometry has been worked out within the improved mean-field 

approximation [15] and Monte Carlo simulation [16-18]. Also hysteresis and magnetic properties 

of the spin-1/2 spin-1 nanowire have been determined by Monte Carlo simulations [19]. The 

magnetic and hysteresis behaviors of the higher spin models are also well known theoretically. 

 

The magnetic properties of the spin-1 and spin 3/2 nanotube has been determined within the Monte 

Carlo simulation [20] and quantum simulation treatment [21]. The same model on the nanowire 

geometry has been investigated by Monte Carlo simulation [22]. Spin (1/2-3/2) model on nanotube 

geometry has been investigated within the effective field theory [23] and on a nanowire geometry 

by Monte Carlo simulation [24, 25]. The magnetic phase transition characteristics and hysteresis 

behaviors of spin-3/2 spin -5/2 model on Ising nanowire have been determined by the Monte Carlo 



Int J Energy Studies                                                                                                2023; 8(4): 601-618  

604 
 

simulation [26, 27]. Besides, hysteresis and compensation behaviors of mixed spin-2 and spin-1 

hexagonal Ising nanowire have been studied within the Monte Carlo simulation [28]. 

 

The aim of this work is to determine the MCE characteristics of the magnetic nanotube, by solving 

the Ising model with several different spin values. For this aim, the paper is organized as follows: 

In Section 2 we briefly present the model and formulation. The results and discussions are 

presented in Section 3, and finally Section 4 contains our conclusions. 

 

2. MODEL AND FORMULATION 

In Figure 1 we depict the schematic representation of the one layer of the nanotube.  One layer of 

the nanotube consists  core (inner hexagon) and the shell (outer hexagon). Let the core spins have 

value 𝑆𝑐 and shell spins have 𝑆𝑠. 

 

 

Figure 1. Schematic representation of one layer of the nanotube in xy plane. The system 

periodically extends in z direction. 

 

The Hamiltonian of the Ising model on this geometry can be written as 

 

ℋ = −𝐽𝑐 ∑ (𝑆𝑖
𝑐𝑆𝑗

𝑐) − 𝐽𝑠

<𝑖,𝑗>

∑ (𝑆𝑖
𝑠𝑆𝑗

𝑠) − 𝐽𝑐𝑠 ∑ (𝑆𝑖
𝑐𝑆𝑗

𝑠) − 𝐻 ∑ 𝑆𝑖   

<𝑖,𝑗><𝑖,𝑗><𝑖,𝑗>

                                          (1) 
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where 𝑆𝑖
𝑐, 𝑆𝑖

𝑠 denote the z component of the Pauli spin operator at a site i which belongs to the 

core (c) and shell (s), respectively.  𝐽𝑐 is the exchange interaction between the nearest neighbor 

core spins,  𝐽𝑠 is the exchange interaction between the nearest neighbor shell spins, and 𝐽𝑐𝑠 is the 

exchange interaction between the nearest neighbor core and shell spins. H is the longitudinal 

magnetic field. All summations -except the last one- are taken over the nearest neighbor sites, 

while the last summation is taken over all the lattice sites. 

 

In order to include the effect of all exchange interactions, we take four spin cluster. We can 

construct one layer of the nanotube by repetition of this selected cluster. The nanotube consists of 

repeating layers (seen in Figure 1) in z direction. The Hamiltonian of this cluster (which consists 

of red colored spins in Figure 1 is 

ℋ = −𝐽𝑐(𝑆1𝑆2) − 𝐽𝑠(𝑆3𝑆4) − 𝐽𝑐𝑠(𝑆1𝑆3 + 𝑆1𝑆4 + 𝑆2𝑆3) − 𝐻 ∑ 𝑆𝑖

4

𝑖=1

−    ∑ ℎ𝑖𝑆𝑖

4

𝑖=1

                          (2) 

 

Here, ℎ𝑖 are the local fields that represent the interaction of the 𝑖𝑡ℎ spin with nearest neighbor 

spins that belong to outside of the cluster. These local fields represent the following spin-spin 

interactions 

 

ℎ1 = 𝐽𝑐(𝑆6 + 𝑆11 + 𝑆12) + 𝐽𝑐𝑠𝑆5 

 ℎ2 = 𝐽𝑐(𝑆7 + 𝑆21 + 𝑆22) + 𝐽𝑐𝑠(𝑆8 +  𝑆9) 

 ℎ3 = 𝐽𝑠(𝑆9 + 𝑆31 + 𝑆32)                 

 ℎ4 = 𝐽𝑠(𝑆5 + 𝑆41 + 𝑆42)                                                                                                                               (3) 

 

Here the spins which are denoted as 𝑆𝑖𝑗, where i = 1, 2, 3, 4 and j = 1, 2 represent the neighbor 

spins of the spin denoted as 𝑆𝑖, which are in the upper and lower plane in z direction. The thermal 

average of the quantity can be calculated via the exact generalized Callen-Suzuki identity [29]. 

 

〈Ω〉 = ⟨
𝑇𝑟4Ωexp (−𝛽ℋ(4))

𝑇𝑟4exp (−𝛽ℋ(4))
⟩                                                                                                                     (4) 

 

In Equation (4),  𝑇𝑟4 stands for the partial trace over all the lattice sites which belong to the selected 

cluster and  𝛽 = 1/(kT) where k is the Boltzmann constant and T is the temperature. 
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Let us denote the basis set for this finite cluster by {|𝜑𝑖⟩} = |𝑠1𝑠2𝑠3𝑠4⟩, where 𝑠𝑘 is just one spin 

eigenvalue of the operator 𝑆𝑘 (k = 1, 2, 3, 4). In this representation of the basis set, operators in the 

4-spin cluster acts on the bases via 

 

  𝑆𝑘|𝑠1𝑠2𝑠3𝑠4⟩ = 𝑠𝑘|𝑠1𝑠2𝑠3𝑠4⟩                                                                                                                              (5) 

 

where k = 1, 2, 3, 4. Note that, since the system consist of spin-𝑆𝑐 core and spin-𝑆𝑠 shell particles, 

number of bases equals to (2𝑆𝑐 + 1)2(2𝑆𝑠 + 1)2. Indeed calculation of Equation (4) is trivial, 

since the matrix ℋ(4) is diagonal for the Hamiltonian given in Equation (2), in the chosen basis 

set. The diagonal element related to the base |𝑠1𝑠2𝑠3𝑠4⟩ (which can be obtained by applying 

operator Equation (2) to bases according to Equation (5)) is given by 

 

⟨𝜑𝑖|ℋ
(4)|𝜑𝑖⟩ = −𝐽𝑐(𝑠1𝑠2) − 𝐽𝑠(𝑠3𝑠4) − 𝐽𝑐𝑠(𝑠1𝑠3 + 𝑠1𝑠4 + 𝑠2𝑠3) − 𝐻 ∑ 𝑠𝑖

4

𝑖=1

−    ∑ ℎ𝑖𝑠𝑖          (6)

4

𝑖=1

 

 

Let us denote this element as 𝐻(4) (𝑠1, 𝑠2, 𝑠3, 𝑠4), then we can write Equation (4) as 

 

〈𝑆𝑘,〉 = ⟨
∑ 𝑠𝑘exp (−𝛽𝐻(4)(𝑠1, 𝑠2, 𝑠3, 𝑠4)){𝑠1, 𝑠2,𝑠3,𝑠4}

∑ exp (−𝛽𝐻(4)(𝑠1, 𝑠2, 𝑠3, 𝑠4)){𝑠1, 𝑠2,𝑠3,𝑠4}

⟩ , 𝑘 = 1,2,3,4                                                    (7) 

 

The summations are taken over all the possible configurations of (𝑠1, 𝑠2, 𝑠3, 𝑠4). The core (𝑚𝑐), 

shell (𝑚𝑠) and total (m) magnetizations can be calculated via 

 

𝑚𝑐 =
1

2
(〈𝑆1〉 + 〈𝑆2〉),         𝑚𝑠 =

1

2
(〈𝑆3〉 + 〈𝑆4〉), 𝑚 =

1

3
(𝑚𝑐 + 2𝑚𝑠)                                    (8) 

 

Up to this point, all equations are exact. But how can local fields in Equation (6) be treated? Since 

our aim is to obtain some general qualitative results about the MCE in nanotube system, it is 

enough to treat these local fields in a level of mean field, i.e. by writing operators in Equation (3) 

as their thermal averages 

 

ℎ1 = 𝐽𝑐(𝑚1 + 𝑚2) + 𝐽𝑐𝑠𝑚3 

 ℎ2 = 𝐽𝑐(𝑚1 + 𝑚2) + 𝐽𝑐𝑠(𝑚3 +  𝑚4) 
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 ℎ3 = 𝐽𝑠(2𝑚3 + 𝑚4)                 

 ℎ4 = 𝐽𝑠(𝑚3 + 2𝑚4)                                                                                                                                      (9) 

 

Note that, the periodicity of the lattice has been used for obtaining the expressions of local fields 

given in Equation (9) from Equation (3). In other words, 

 

〈𝑆11〉 = 〈𝑆12〉 = 〈𝑆7〉 = 𝑚1 

〈𝑆21〉 = 〈𝑆22〉 = 〈𝑆6〉 = 𝑚2 

〈𝑆31〉 = 〈𝑆32〉 = 〈𝑆5〉 = 〈𝑆8〉 = 𝑚3 

〈𝑆41〉 = 〈𝑆42〉 = 〈𝑆9〉 = 𝑚4                                                                                                           (10) 

 

By using this approximation, Equation  (7) gets the form 

 

〈𝑚𝑘,〉 = ⟨
∑ 𝑠𝑘exp (−𝛽𝐻(4)(𝑠1, 𝑠2, 𝑠3, 𝑠4)){𝑠1, 𝑠2,𝑠3,𝑠4}

∑ exp (−𝛽𝐻(4)(𝑠1, 𝑠2, 𝑠3, 𝑠4)){𝑠1, 𝑠2,𝑠3,𝑠4}

⟩ , 𝑘 = 1,2,3,4                                                (11) 

 

where the definitions of local fields given by Equation (9) have been used in matrix elements 𝐻(4) 

(𝑠1, 𝑠2, 𝑠3, 𝑠4). Then, the magnetizations 𝑚1, 𝑚2, 𝑚3, 𝑚4 can be found by numerical solution of 

the nonlinear equation system given by Equation (11). Core, shell and the total magnetization can 

be obtained by using Equation (8). Note that, the formulation used here is a generalization of the 

traditional mean-field to a larger cluster. The effect of using larger clusters can be found in Ref. 

[30]. In order to determine the magnetocaloric properties of the system, we calculate the isothermal 

magnetic entropy change (IMEC) when maximum applied longitudinal field is 𝐻𝑚𝑎𝑥, which is 

given by [31] 

 

𝛥𝑆𝑚 = ∫ (
𝜕𝑚

𝜕𝑇
)

𝐻
𝑑𝐻.                                                                                                                       (12)

𝐻𝑚𝑎𝑥

0

 

 

The other quantity of interest is the refrigerant capacity which is defined by [32] 

 

𝑞 =  − ∫ 𝛥

𝑇2

𝑇1

𝑆𝑚(𝑇)𝐻𝑑𝑇.                                                                                                                            (13) 
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Here 𝑇1 and 𝑇2 are chosen as those temperatures at which the magnetic entropy change gains the 

half of the peak value and this is called as the full width at half maximum value (FWHM) of the 

IMEC. This is also an important quantity of the MCE. 

 

3. RESULTS AND DISCUSSIONS 

We want to focus on the magnetocaloric properties of the system. The Hamiltonian of the system 

includes four parameters, as one can see from Equation (1). In order to make it possible for 

investigation, we have to reduce this number of parameters. For this aim let us choose 𝐽𝑐 = 𝐽𝑠 = J. 

By this unit of energy J (which is positive) we can work with scaled quantities as 

 

𝑟 =
𝐽𝑐𝑠

𝐽
, ℎ =

𝐻

𝐽
, 𝑡 =

𝑘𝐵𝑇

𝐽
.                                                                                                        (14) 

 

Note that, ℎ𝑚𝑎𝑥= 1.0 is chosen in the calculations. First, we want to elaborate on IMEC behavior 

for differently structured nanotubes. For this aim, we depict the variation of the IMEC with the 

temperature for several nanotubes constituted by core spin value 𝑆𝑐= 1/2 in Figure 2 and 𝑆𝑐 = 7/2 

in Figure 3. Each figure contains different shell spin values (𝑆𝑠) and core-shell exchange 

interaction values (r), which are shown in the related figure. We can see from Figure 2 that, when 

the spin value of the shell increases, the maximum value of the IMEC occurs in higher 

temperatures, and the peak value (i.e. height of the peak) of the IMEC decreases. At the same time, 

the curve gets wider, i.e. FWHM increases. This is consistent with the general relation between 

the spin value of the model and IMEC behavior. As demonstrated in  Ref. [36], when the spin 

value of the model increases, the height of the peak in IMEC decreases, but the curves get wider, 

i.e. FWHM increases. 
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Figure 2. The variation of IMEC with the temperature for selected values of 𝑆𝑠 = 1/2, 1, 3/2, 2, 

5/2, 3, 7/2 and r = 0.0, 0.1, 0.5, 1.0 for nanotube that have core spin value of 𝑆𝑐= 1/2. 

 

Besides for lower values of r, the double peak behavior of the curve takes attention (see Figures 2 

(a) and (b)). This double peak behavior is depressed when the interaction of the core-shell gets 

stronger (see Figures 2 (c) and (d)). Very recently, this behavior is obtained for the bilayer system 

experimentally [33]. Besides, double peak behavior has been obtained theoretically for bilayer [34] 

and superlattice systems [35]. 

 

The same double peak behavior can be seen for the system constituted by spins 𝑆𝑐 = 7/2 (Figure 

3). But the evolution of the curves by changing Shell spin value is slightly different from the 

nanotubes that have 𝑆𝑐 = 1/2, for the nanotubes that have 𝑆𝑐 = 7/2 as a core spin value (see Figure 

3). When the shell spin value increases, the peak value of IMEC increases. 

 

For non-interacting core-shell, two peaked behavior of IMEC occurs, as seen in Figure 2- (a) and 

3-(a). For non-interacting case, the system consists of two independent layer which have spin 

values 𝑆𝑐 and 𝑆𝑠. The low temperature peak seen in Figure-2-(a) is related to the system with spin 
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value of 𝑆𝑐 and other peak is related to the system with spin value 𝑆𝑠. Since 𝑆𝑠 > 𝑆𝑐 in Figure 2-

(a), it is natural for the peak related to the 𝑆𝑠 to lie right side of the peak related to 𝑆𝑐 in (|𝛥𝑆𝑚|, t) 

plane, due to the relations between the critical temperatures of layers that have different spin 

values. The same reasoning holds also for Figure 3-(a). When the interaction between the core and 

shell increases, one peak behavior takes place (compare Figure 2-(d) by (a), and Figure 3-(d) by 

(a)). While this transition, the peak that occurs at lower temperature values suppressed (compare 

Figure 2-(b) by (a), and Figure 3-(b) by (a)). 

 

 

Figure 3.  The variation of IMEC with the temperature for selected values of 𝑆𝑠 = 1/2, 1, 3/2, 2, 

5/2, 3, 7/2 and r = 0.0, 0.1, 0.5, 1.0 for nanotube that have core spin value of 𝑆𝑐 = 7/2. 

 

To take a closer look at the IMEC behaviors with the spin value and the value of core-shell 

interaction, we calculate the maximum value (height of the peak) of the IMEC for different 

nanotubes which can be seen in Figure 4. At first sight, height of the peak of IMEC for a certain 

𝑆𝑐 occurs at 𝑆𝑠 = 𝑆𝑐 regardless of the value of r. Thus, as seen in Figure 4 decreasing trend with 

rising 𝑆𝑠  occurs for 𝑆𝑐 = 1/2 and increasing trend with rising Ss occurs for 𝑆𝑐= 7/2. For the values 

of 1/2 < 𝑆𝑐 < 7/2, rising 𝑆𝑠 rises the height of the peak of IMEC until 𝑆𝑠 = 𝑆𝑐, after then rising 𝑆𝑠 
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causes to a decline in the height of the peak of IMEC. We can see similar behavior for FWHM in 

Figure 5. Except (𝑆𝑐, 𝑆𝑠) = (5/2, 1/2), (3, 1/2), (7/2, 1/2) nanotubes, rising 𝑆𝑠 first decreases 

FWHM, minimum FWHM occurs at 𝑆𝑠 = 𝑆𝑐, after then rising 𝑆𝑠 causes to increment behavior in 

FWHM. 

 

 

Figure 4. The maximum value of the IMEC for nanotubes that consist of spin 

values 𝑆𝑐, 𝑆𝑠 = 1/2, 1, 3/2, 2, 5/2, 3, 7/2 and for selected values of r = 0.1, 1.0. 

Each box labeled by 𝑆𝑐  contains number of 7 circles for certain value of r. Each 

circle corresponds to different values of 𝑆𝑠, starting from𝑆𝑠= 1/2 (most left), by                

increment value of 1/2 and arrive 𝑆𝑠 = 7/2 (most right) in a box. 
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Figure 5. The value of FWHM for nanotubes that consist of spin values 𝑆𝑐, 𝑆𝑠 = 

1/2, 1, 3/2, 2, 5/2, 3, 7/2 and for selected values of r = 0.1, 1.0. Each box labeled 

by 𝑆𝑐 contains number of 7 circles for certain value of r. Each circle corresponds 

to different values of 𝑆𝑠, starting from 𝑆𝑠 = 1/2 (most left), by increment value 

of 1/2 and arrive 𝑆𝑠 = 7/2 (most right) in a box 

 

For refrigerant capacity defined in Equation 13, we depict the same scatter plot in Figure 6. As we 

can see from Figure 6, rising 𝑆𝑠 cause increasing refrigerant capacity for spin values of core 

provide 𝑆𝑐 < 3. If the core spin value exceeds 5/2, slightly lowering behavior takes place for larger 

shell spin values. Interestingly, weak interaction between the core and the shell causes larger 

refrigerant capacity for higher spin values (compare gray dots by black dots in 𝑆𝑐 = 3 and 7/2). 
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Figure 6.  The value of the refrigerant capacity (q) for nanotubes that consist 

                 of spin values 𝑆𝑐, 𝑆𝑠 = 1/2, 1, 3/2, 2, 5/2, 3, 7/2 and for selected values of r = 

0.1, 1.0. Each box labeled by 𝑆𝑐 contains number of 7 circles for certain value 

of r. Each circle corresponds to different values of 𝑆𝑠, starting from 𝑆𝑠 = 1/2 

(most left), by increment value of 1/2 and arrive 𝑆𝑠 = 7/2 (most right) in a 

box. 

 

4. CONCLUSION 

The MCE properties of the Ising nanotube constituted by arbitrary core spin values 𝑆𝑐 and the shell 

spin values 𝑆𝑠 have been investigated by mean field approximation. During this investigation, 

several quantities have been calculated, such as IMEC, FWHM and the refrigerant capacity (q). 

The variation of these quantities with the values of the spins and exchange interaction between the 

core and shell is determined. 

 

First general conclusions about the variation of the IMEC with the temperature has been obtained. 

As consistently by the conclusions obtained in Ref. [36] for the general spin valued Ising model 

on a regular lattice, it is observed that when the spin values of the nanotube increase, the height of 

the peak in IMEC decreases. This peak occurs at the critical temperature of the system, as expected. 

Besides, for a chosen spin value for the core, increasing shell spin value yields rising height of the 
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peak in IMEC, when 𝑆𝑐 = 𝑆𝑠 maximum value is obtained. After that (i.e. 𝑆𝑐 < 𝑆𝑠), increasing spin 

value of the shell yields decreasing behavior in the height of the peak in IMEC. Completely reverse 

evolution occurs in FWHM, when the value of the shell spin increases. On the other hand, 

refrigerant capacity has increasing trend in the conditions of rising core and shell spin values. 

These observations may yield a tuning of MCE in nanotube system. Although it is very hard task 

to tune the interaction between the core and shell experimentally, theoretical knowledge about the 

relation between the spin values (or exchange interaction between the core and the shell) and MCE 

characteristics may yield important experimental achievements and environment friendly efficient 

cooling system applications.  

 

Note that if the hole size or the length of the nanotube is changed it is expected that the behavior 

of the IMEC and the other quantities not change. All quantities calculated in our work depend on 

the spin value, exchange interaction, and magnetic field strength i.e. the values of the Hamiltonian 

parameters. The change in the size of the system does not yield a change in these Hamiltonian 

parameters. 

 

Other than these results, recently obtained double peak behavior in IMEC for bilayer system is 

observed in nanotube system also. The physical explanation is briefly discussed. We hope that the 

results obtained in this work may be beneficial form both theoretical and experimental point of 

view. 

 

NOMENCLATURE  

MCE            :  The magnetocaloric effect  

RC               :  Refrigerant capacity  

IMEC          :  Isothermal magnetic entropy change  

FWHM        :  Full width at half maximum value  
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