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Nakagami dağılımı, radyo sinyallerinin sönümlenmesini modellemek için ortaya çıkmıştır ve çeşitli 
disiplinlerde yaygın olarak kullanılmaktadır. Bu çalışmada, dağılımın şekil ve ölçek parametrelerini tahmin 
etmek için en çok olabilirlik (ML) tahmin yöntemi kullanılmıştır. Ancak, bu dağılım için olabilirlik 
denklemlerinin açık çözümleri bulunmamaktadır. Bu nedenle, bu denklemlerin çözümü için, parçacık sürüsü 
optimizasyon (PSO), genetik algoritma (GA) ve quasi-newton (QN) algoritmaları olmak üzere üç temel 
algoritma kullanılmıştır. Bu algoritmaların performanslarının karşılaştırmaları, yan, hata kareler ortalaması 
(MSE) ve eksiklik (DEF) kriterleri dikkate alınarak, kapsamlı bir Monte-Carlo simülasyon çalışması ile 
yapılmıştır. Model, kullanışlılığını göstermek amacıyla dört gerçek veri setine uygulanmıştır. 
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algorithm (GA), and the quasi-newton (QN) algorithm, have been used to solve these equations. Comparisons 
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INTRODUCTION 

 The Nakagami distribution was initially introduced in 1960 to model radio signal fade [1]. This 
distribution is later used as a model of a wide range of data signals sent by radar objects [2]. It is utilized 
to simulate a range of data in the communication engineering area in various published research studies in 
the literature [3, 4]. Additionally, the Nakagami distribution has been effectively applied in a number of 
different areas, such as hydrology [5, 6], and to model failure times of a variety of electrical components 
in engineering fields; furthermore, in the healthcare area, to model the time occurrence of tumors and the 
appearance of lung cancer [7, 8], as well as to model ultrasound data for medical images [9, 10]. Moment 
estimators for Nakagami distribution were found by [11] and maximum likelihood estimators were found 
by [12, 13] and demonstrated how the ML-based estimators performed better than the most well-known 
moment-based estimator after their performance compared to each other. Schwartz et al. (2013) estimated 
the shape parameter using the improved maximum likelihood estimation method [14]. However, the scale 
parameter of the Nakagami distribution is estimated by [15] using the Bayesian estimation method. Other 
Nakagami distribution estimators have been examined and contrasted by using Monte-Carlo simulation 
[16] and some general characteristics of Nakagami-m distribution are presented by [17]. The core idea of 
the ML method is to determine the estimate values for the relevant parameters that maximize the likelihood 
function of the model; however, since nonlinear functions are usually involved, an explicit solution is 
barely possible, so iterative numerical techniques are therefore required to maximize the likelihood 
function [18]. The Newton-Raphson algorithm is a popular traditional iterative algorithm for solving 
equation systems generated by partial derivations of the likelihood function. It’s used to find ML estimators 
numerically, as seen in the literature. However, it only works for functions that can be differentiated at 
least twice since it employs a gradient-based search technique to identify the optimal parameter values 
based on the inverse of the hessian matrix. However, every conventional numerical algorithm begins with 
a point that is chosen at random and continues iteratively to the global optimum, with no guarantee of 
getting stuck at the local optimum points [19]. The use of well-known meta-heuristic algorithms like 
particle swarm optimization (PSO) and genetic algorithm (GA) is advised to prevent these problems and 
ensure that the global optimal solution is reached with greater ease and without reliance on the derivation 
[20]. However, in large-scale optimization problems, Quasi-Newton (QN), which is another conventional 
technique, is more efficient than Newton's method since it doesn't require computing second derivatives, 
which lowers the cost of calculation. So, the key objective of this paper is to determine the most appropriate 
algorithm from PSO, GA, and QN for estimating the shape (α) and scale (λ) parameters of the Nakagami 
distribution by a comparison based on the conduct of a comprehensive Monte-Carlo simulation study as 
well as demonstrate the practicality of this distribution.  

 The remaining sections of this work will be arranged as follows: Section (2) discusses the Nakagami 
distribution and its basic properties. In Section (3), the ML estimation method for PSO, GA, and QN is 
covered. An extensive Monte-Carlo simulation study is performed to compare the performance of the 
parameter estimators in Section (4). Four applications using real-world datasets are carried out in Section 
(5). In Section (6), the study provides multiple conclusions. 

 Nakagami Distribution 

If we have a random variable, Y, that is gamma-distributed with the following probability density function 
(pdf). 

  𝑓(𝑦; 𝑘, 𝜃) =
1

Γ(𝑘)𝜃,
	𝑦,./𝑒.

1
2, 𝑦 > 0, 𝑘 > 	0, 𝜃	 > 	0 (1) 

where	Γ is the gamma function, k is the shape parameter and θ is the scale parameter, and then 𝑋 =	√𝑌 
follows a two-parameter Nakagami distribution, X∼ Nakagami (α,λ), with shape parameters 𝛼 = 𝑘 and scale 
parameter 𝜆 = 𝑘𝜃 as in the following probability density function (pdf). 
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𝑓(𝑥; 𝛼, 𝜆) =

2𝛼=

Γ(𝛼)𝜆=
	𝑥>=./𝑒?.	

=@!
A 	B, 𝑥 > 0, 𝛼 > 	0.5, 𝜆	 > 	0 (2) 

X's cumulative distribution function (cdf) is: 

 𝐹(𝑥; 𝛼, 𝜆) =
1

Γ(𝛼)
	𝛾	 G𝛼,

𝛼
𝜆
𝑥>H. (3) 

where 𝛾 is the regularized (lower) incomplete gamma function. If we have another random variable, Z, 
that is chi-square distributed with an integer-valued parameter equivalent to 2α, then the random variable 𝑈 =
	J(𝜆/2𝛼)𝑍  follows Nakagami distribution with parameters α and 𝜆. Furthermore, the Nakagami distribution is 
related to other distributions, such as if α = 0.5, it becomes a half-normal distribution, and when α = 1 it becomes 
a Rayleigh distribution. The plots of the Nakagami distribution for different values of α and 𝜆 are shown in 
Figure 1. The Nakagami distribution's kth moment general formula is given below. 

 
𝐸N𝑋,O =

ΓG𝛼 + 𝑘2H
Γ(𝛼) ?

𝜆
𝛼B

,
>
	 (4) 

By using formula (4), the mean and variance of the random variable X can be calculated as follows: 

 
𝐸(𝑋) =

Γ G𝛼 + 12H
Γ(𝛼) ?

𝜆
𝛼B

/
>
 (5) 

𝑉𝑎𝑟	(𝑋) = 𝜆 − U
Γ G𝛼 + 12H
Γ(𝛼) ?

𝜆
𝛼B

>

V = 𝜆 W1 −
1
𝛼X

Γ G𝛼 + 12H
Γ(𝛼) Y

>

Z (6) 

 
Figure 1. Nakagami pdf for different values of α and λ 

Obtaining the values that maximize the likelihood function to its maximum is the basis for this method; 
commonly, the likelihood function's logarithm is applied to simplify the calculations; this is considered the 
study model. To estimate the unknown parameters for the Nakagami distribution in this study, the log-likelihood 
(log L) function is presented below. 
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log 𝐿(𝛼, 𝜆) = 𝑛𝑙𝑜𝑔(2) + 𝑛𝛼𝑙𝑜𝑔(𝛼) − 𝑛𝑙𝑜𝑔Γ(𝛼) − 𝑛𝛼𝑙𝑜𝑔(𝜆) + (2𝛼 − 1)c𝑙𝑜𝑔(𝑥d)

e

df/

−
𝛼
𝜆
c𝑥d>
e

df/

 
(7) 

To estimate the likelihood parameters of the log L function for the Nakagami distribution, the partial 
derivatives corresponding to the parameters under consideration are determined and set to zero. The likelihood 
equations are given as follows: 

 
	
𝜕 𝑙𝑜𝑔 𝐿(𝛼, 𝜆)

𝜕𝛼
=
𝑛>

𝛼
− 𝑛

𝜕𝑙𝑜𝑔Γ(𝛼)
𝜕𝛼

− 𝑛𝑙𝑜𝑔(𝜆) + 2c𝑙𝑜𝑔(𝑥d)
e

df/

	−
1
𝜆
c𝑥d>
e

df/

= 0	 (8) 

and 

 
	
𝜕 𝑙𝑜𝑔 𝐿(𝛼, 𝜆)

𝜕𝜆
=
𝑛𝛼
𝜆
+
𝛼
𝜆>
c𝑥d>
e

df/

= 0	 ⇒ 	𝜆i = 	
∑ 𝑥d>e
df/
𝑛

 (9) 

It is unlikely to find an explicit solution to the likelihood equation for estimating the shape parameter α 
since it contains a nonlinear function, as illustrated by the equation (8). Iterative numerical techniques are 
therefore necessary to get ML estimations for parameter α. The next subsections provide a brief introduction to 
the highly efficient algorithms PSO, GA, and QN that are used in this study as numerical techniques for 
estimating the likelihood estimators for the Nakagami distribution. 

Particle Swarm Optimization (PSO) 

PSO is a population-based heuristic algorithm that was initially proposed in 1995 by Kennedy and 
Eberhart [21]. It is based on a simulation of the swarming behavior of birds. With this algorithm, which has a 
wide range of applications in the literature [22, 23], every solution is referred to as a particle and any group of 
solutions is referred to as a population. The PSO method's fundamental concept can be stated as a procedure 
that involves continually traveling a swarm of particles in a defined search space with respect to a set of formulas 
until finally obtaining the ideal answer [24]. Considering there are n dimensions in the search space, Every 
particle i in the swarm has a position and velocity vectors 𝑋d = 	 (𝑥d/, 𝑥d>, … , 𝑥de) and, 𝑉d = 	 (𝑣d/, 𝑣d>, … , 𝑣de), 
𝑖 = 1,2, . . . , 𝑚 respectively, where m is the amount of particles. In PSO, the initial solutions are represented by 
the population of particles' initial positions randomly generated during the first iteration of their search over a 
multidimensional search space. The fitness value for the main study's model, represented by the log L function, 
is used to evaluate each particle's position, and the best position that's equivalent to the fitness function's highest 
value for each particle is then determined and called the "personal best" (pbest). After that, the best position 
along with all the particles according to the best fitness value of all particles is found and called the "global 
best" (gbest). Then each particle's position is updated by the following equation: 

 	𝑉d,o/ = 𝜔𝑉d, + 𝑐/𝑅steu"N	𝑝𝑏𝑒𝑠𝑡d
, − 𝑋d,O 	+ 𝑐>𝑅steu!N𝑔𝑏𝑒𝑠𝑡

, 	− 𝑋d,O (10) 

and each particle's velocity is updated by the following equation 

 	𝑥d,o/ = 𝑥d, + 𝑉d,o/	. (11) 

Where 𝑉d, velocity of particle 𝑖 at iteration k, 𝜔 inertia weight parameter, 𝑐/, 𝑐> acceleration coefficients, 
𝑅steu", 𝑅steu! random numbers uniformly distributed between 0 and 1, 𝑋d, position of particle 𝑖 at iteration 𝑘, 
𝑝𝑏𝑒𝑠𝑡d, best position of particle 𝑖 until iteration 𝑘, 𝑔𝑏𝑒𝑠𝑡, best position of the group until iteration k. Until 
convergence is achieved, this process will continue. 

Genetic Algorithm (GA) 

The GA is a powerful technique for finding highly precise, approximate solutions to optimization 
problems that is based on the law of natural selection and Darwinian evolution. John Holland initially introduced 
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it [25], and David Goldberg [26] thoroughly investigated it. Every solution is a chromosome, and every set of 
solutions (chromosomes) is a population. Initializing the GA algorithm involves creating a population at random 
once the fitness function, search space, and initial GA fixed parameters have been determined. Each chromosome 
in the population has its fitness value evaluated; the highest-scoring chromosomes are chosen as the best and the 
lowest-scoring chromosomes are replaced with new, randomly-generated individuals. A specific amount of elite 
chromosomes is chosen and transferred unchanged to the next generation, and the two chromosomes with the 
highest score are considered the parents of the other individuals. The processes of crossover and mutation are then 
carried out to produce a new, more desirable offspring. The mutation phase is critical to avoiding becoming stuck 
in the local optimum, which indicates exploration. This technique will be repeated until convergence is reached. 

Quasi-Newton (QN) 

The Quasi-Newton (QN) is a well-known type of conventional algorithm for unconstrained nonlinear 
numerical optimization problems that uses a quadratic approximation to find the global minimum of the objective 
function. It was invented by William Davidon [27], and it is regarded as a modified algorithm version of the 
Newton method with enhanced computing efficiency, which saves time and costs while computing partial 
derivatives in each iteration [28]. Like any other conventional algorithm, it starts with a carefully selected initial 
point, and then the gradient of the objective function, which is the same as the log L function in this study, is 
calculated to identify the search direction. The step size for each iteration is calculated by continuously updating 
the inverse Hessian matrix approximation and determining if the further approximated point is optimal or not. 
This process is continuing until the convergence requirements are satisfied. For more details, see [29-34]. 

Monte-Carlo Simulations Study 

This section contains the simulated results of the Monte Carlo simulation study for a variety of sample 
sizes. Using iterative techniques such as PSO, GA, and QN, the performance of the ML estimators of the model 
parameters is compared. Matlab R2021a software is used for performing all the calculations for the simulation 
study. All the simulations are based on 2000 executions for Monte Carlo runs. The shape α and scale λ parameters 
are considered to be 0.6 and 0.8, respectively, for a number of sample sizes n that are taken to be 10, 20, 30, 40, 
and 60 in a search space ranging from 0 to 20. The simulations' resulting estimates for the shape and scale 
parameters are denoted, respectively, by 𝛼{ and 𝜆i. The mathematical formulas (12–16) below are used to simulate 
the mean, bias, mean square error (MSE), and deficiency (Def) values, which are used for comparing and 
evaluating the performance of the estimators. 

 
𝑀𝑒𝑎𝑛	N𝜃}O =

∑ 𝜃}de
d
𝑛

 (12) 

 
 𝐵𝑖𝑎𝑠N𝜃}O = 𝐸N𝜃}O − 	𝜃 (13) 

 
 

𝑉𝑎𝑟N𝜃}O 	= 	
1

𝑛 − 1
cN𝜃�� −𝑀𝑒𝑎𝑛	𝜃}O

>
e

df/

 (14) 

 
 𝑀𝑆𝐸N𝜃}O = 𝑉𝑎𝑟N𝜃}O + G𝐵𝑖𝑎𝑠N𝜃}OH

>
 (15) 

 
 𝐷𝑒𝑓N𝛼{	, 𝜆i	O = 	𝑀𝑆𝐸(𝛼{) + 𝑀𝑆𝐸N𝜆i	O (16) 

where θ = (α, λ) ∈ R×R+. The resulting simulated values of mean, bias, MSE, and Def for 𝛼{ and 𝜆i are given in 
Table 1. The simulated values demonstrate that the PSO gives the best results when compared with the GA and 
QN algorithms. Considering the bias simulation results, it is seen that the least biased values of the shape 
parameter estimator 𝛼{ for nearly all sample sizes are produced by the QN algorithm. With regard to MSE values 
for the shape parameter estimator 𝛼{, it is quite apparent that PSO estimator values perform better than other 
algorithms for all n values. Also, it's clear that when sample size increases, the MSE values of GA improve to be 
so close to the PSO values, and in all cases, the PSO and GA MSE have better values than QN. Therefore, the 
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PSO indicates greater performance in accordance with the Def criteria, with the lowest values for all cases. This 
enables us to state that the PSO algorithm is efficient in estimating the shape parameter for the Nakagami 
distribution. 

Table 1. Simulated Mean, Bias, MSE, and Def values for the ML estimators 𝜶$ and 𝝀& . 

  𝛼(    𝜆*     
𝑛      Method 
𝛼 = 0.6, 𝜆 = 0.8 
 

Mean Bias MSE 
 

Mean Bias MSE   Def 

10 PSO  0.5560  -0.0440 0.0672  0.8109 0.0109 0.1094  0.1766 
GA  0.8089  0.2089 0.2241  0.8109 0.0109 0.1094  0.3335 
QN  0.7916  0.1916 0.2297  0.8109 0.0109 0.1094  0.3391 

20 PSO  0.5246  -0.0754 0.0176  0.8069 0.0069 0.0537  0.0713 
GA  0.6870  0.0870 0.0471  0.8069 0.0069 0.0537  0.1008 

 QN  0.6764  0.0764 0.0502  0.8069 0.0069 0.0537  0.1039 
30 PSO  0.5176  -0.0824 0.0133  0.8018 0.0018 0.0356  0.0488 

GA  0.6576  0.0576 0.0281  0.8018 0.0018 0.0356  0.0637 
 QN  0.6509  0.0509 0.0299  0.8018 0.0018 0.0356  0.0655 
40 PSO  0.5161  -0.0839 0.0113  0.8012 0.0012 0.0261  0.0375 
 GA  0.6409  0.0409 0.0164  0.8012 0.0012 0.0261  0.0425  

QN  0.6364  0.0364 0.0176  0.8012 0.0012 0.0261  0.0437 
60 PSO  0.5129  -0.0871 0.0102  0.8032 0.0032 0.0185  0.0286 
 GA  0.6276  0.0276 0.0108  0.8032 0.0032 0.0185  0.0293  

QN  0.6251  0.0251 0.0114  0.8032 0.0032 0.0185  0.0299 

APPLICATIONS 

In this section, in order to demonstrate the Nakagami distribution's flexibility, four real datasets are 
modeled using it. The unknown parameters are estimated via the PSO algorithm. The modeling performance of 
the Nakagami distribution is evaluated in comparison with the performance of various distinct classical 
distributions using well-known criteria, including log-likelihood values, the Akaike Information Criterion (AIC), 
and the corrected AIC (AICc). For more details on these criteria, see [35]. 

 𝐴𝐼𝐶 = 2𝑃 − 2	𝑙𝑜𝑔	𝐿 (17) 
 

 
𝐴𝐼𝐶� = 𝐴𝐼𝐶 +

2𝑃(𝑃 + 1)
𝑛 − 𝑃 − 1

 (18) 

where 𝑙𝑜𝑔	𝐿, n, and p represent the likelihood function, the number of observations, and the total number of model 
parameters, respectively. It is stated to be the best-fit model when the probability model satisfies those criteria 
with the lowest values compared to other probability distributions. 

Dataset 1: The Wheaton river data 

This dataset consists of 72 exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in 
Yukon Territory, Canada, for the years 1958–1984. It was considered for the hydrology field in the literature [27, 
36, 37] and is given in Table 2. The Nakagami distribution is compared to several well-known classical 
distributions in Table 3 below, utilizing the log L, AIC, and AICc criteria for modeling performance. Furthermore, 
the results show that the Nakagami distribution performs better than other distributions. 

Table 2. The Wheaton River data 

1.7 1.4 0.6 9.0 5.6 1.5 2.2 18.7 2.2 1.7 30.8 2.5 
14.4 8.5 39.0 7.0 13.3 27.4 1.1 25.5 0.3 20.1 4.2 1.0 
0.4 11.6 15.0 0.4 25.5 27.1 20.6 14.1 11.0 2.8 3.4 20.2 
5.3 22.1 7.3 14.1 11.9 16.8 0.7 1.1 22.9 9.9 21.5 5.3 
1.9 2.5 1.7 10.4 27.6 9.7 13.0 14.4 0.1 10.7 36.4 27.5 
12.0 1.7 1.1 30.0 2.7 2.5 9.3 37.6 0.6 3.6 64.0 27.0 
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Table 3. Parameter estimates, log L, AIC and AICc, values for Wheaton river data. 

 �̂� 𝛼( 𝜆* -log L AIC AICC 
Nakagami - 0.3241 298.063 251.2767 506.5534 506.7273 
Gamma - 0.8383 14.5588 251.344 506.688 506.8619 
Weibull - 0.9012 11.6322 251.499 506.998 507.1719 
Lognormal 1.7981 - 1.4169 256.215 516.43 516.6039 
Log-logistic  1.9107 - 0.8246 257.839 519.678 519.8519 
Inverse Gaussian - 2.2459 12.2042 267.228 538.456 538.6299 
logistic 10.6372 - 6.60488 279.958 563.916 564.0899 
Normal 12.2042 - 12.2972 282.338 568.676 568.8499 
Extreme Value 19.014 - 16.6415 303.92 611.84 612.0139 
Rayleigh - - 12.2078 302.838 607.676 607.7331 

Dataset 2: The tensile strength 

This dataset consists of the tensile strength (in GPa) of 69 carbon fibers evaluated under stress at 20-mm 
gauge lengths. This dataset consists of the tensile strength (in GPa) of 69 carbon fibers evaluated under stress at 
20-mm gauge lengths. This dataset was used by Bader and Priest in 1982 [38] and is given in Table 4. The 
Nakagami distribution is contrasted with a number of well-known distributions in Table 5 below using the 
considered modeling performance criteria, and the results show that the Nakagami distribution provides a better 
fit than others. 

Table 4. The tensile strength 

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 
1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179 
2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382 
2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554 
2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726 
2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012 
3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.858  

Table 5. Parameter estimates, log L, AIC and AICc, values for the tensile strength’s data. 

 �̂� 𝛼( 𝜆* -log L AIC AICC 
Nakagami - 6.0395 6.2801 50.3933 104.7866 104.9684 
Gamma - 22.8047 0.1077 50.9856 105.9712 106.153 
Log-logistic  0.8883 - 0.1187 51.4346 106.8692 107.051 
Weibull - 5.2702 2.6585 51.7165 107.433 107.6148 
Lognormal 0.8762 - 0.2161 52.1663 108.3326 108.5144 
Inverse Gaussian - 51.9864 2.4553 52.2804 108.5608 108.7426 
Extreme Value 2.7089 - 0.5202 57.5372 119.0744 119.2562 
Rayleigh - - 1.7720 87.4975 176.995 177.0547 

Dataset 3: Failure Times of 84 Aircraft Windshield 

This dataset concerns the investigation of 84 windshields' failure times for a certain type of aircraft, which 
was originally covered by Ramos et al. [39] and is given in Table 6. Using the discussed modeling performance 
criteria, the Nakagami distribution is compared against a number of common distributions in Table 7 below, and 
results demonstrate that it has a better fit than others. 

Table 6. Failure times of 84 aircraft windshield 

0.040 1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 2.610 3.478 
0.557 1.911 2.625 3.578 0.943 1.912 2.632 3.595 1.070 1.914 2.646 3.699 
1.124 1.981 2.661 3.779 1.248 2.010 2.688 3.924 1.281 2.038 2.823 4.035 
1.281 2.085 2.890 4.121 1.303 2.089 2.902 4.167 1.432 2.097 2.934 4.240 
1.480 2.135 2.962 4.255 1.505 2.154 2.964 4.278 1.506 2.190 3.000 4.305 
1.568 2.194 3.103 4.376 1.615 2.223 3.114 4.449 1.619 2.224 3.117 4.485 
1.652 2.229 3.166 4.570 1.652 2.300 3.344 4.602 1.757 2.324 3.376 4.663 
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Table 7. Parameter estimates, log L, AIC and AICc, values for Failure Times of 84 Aircraft Windshield’s data. 

 �̂� 𝛼( 𝜆* -log L AIC AICC 
Nakagami - 1.1960 7.7774 130.9964 270.996 271.1441 
Extreme Value 3.1188 - 1.0633 133.4980 277.874 278.0221 
Gamma - 3.4922 0.7323 136.9370 283.162 283.3101 
Log-logistic  0.8718 - 0.3102 139.5810 311.846 311.9941 
Lognormal 0.7891 - 0.6910 153.923 369.114 369.2621 
Inverse Gaussian - 2.3595 2.5575 182.557 270.996 271.1441 

Dataset 4: Strengths of glass fibers 

The fiber glass data, which consists of breaking strengths of 63, is widely used in statistical literature, and 
this dataset was first given by Smith and Naylor [40] and is given in Table 8. The Nakagami distribution is 
compared to other common distributions in Table 9 below using the previously used modeling performance 
criteria, and the findings show that it has greater fit than rivals. 

Table 8. Strengths of glass fibres. 

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 
1.68 1.73 1.81 2 0.74 1.04 1.27 1.39 1.49 
1.53 1.59 1.61 1.66 1.68 1.76 1.82 2.01 0.77 
1.11 1.28 1.42 1.5 1.54 1.6 1.62 1.66 1.69 
1.76 1.84 2.24 0.81 1.13 1.29 1.48 1.5 1.55 
1.61 1.62 1.66 1.7 1.77 1.84 0.84 1.24 1.3 
1.48 1.51 1.55 1.61 1.63 1.67 1.7 1.78 1.89 

Table 9. Parameter estimates, log L, AIC and AICc, values for Strengths of glass fibres’s data. 

 �̂� 𝛼( 𝜆* -log L AIC AICC 
Nakagami - 5.0427 2.3739 20.8435 45.6870 45.8870 
Log-logistic  0.4228 - 0.1262 22.7900 49.5800 49.7800 
Gamma - 17.4396 0.0864 23.9515 51.9030 52.1030 
Lognormal 0.3811 - 0.2599 28.0089 60.0178 60.2178 
Inverse Gaussian - 21.5608 1.5068 28.6708 61.3416 61.5416 
Rayleigh - - 1.08948 49.7909 101.5818 101.6474 

CONCLUSIONS  

In this study, the estimation of the shape and scale parameters of the Nakagami distribution is considered. 
The ML estimates of the Nakagami distribution are obtained via three iterative algorithms, which are PSO, GA, 
and QN, because of the complexity of the nonlinear likelihood equation of the shape parameter, and then the 
performances of the selected algorithms are compared to each other with respect to bias, MSE, and Def criteria 
by conducting a Monte Carlo simulation study. Simulation results show that the PSO is the most efficient 
iterative algorithm in terms of considered criteria in all cases, especially for small sample sizes, and as the sample 
size increases, the performance of GA improves to get close to the PSO algorithm results. To show the flexibility 
of the Nakagami distribution, four real datasets are employed to fit the Nakagami distribution, and the results 
demonstrate high performance for the Nakagami distribution in comparison with many well-known statistical 
distributions such as gamma, Weibull, log-logistic, and others. 
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