doi: 10.34248/bsengineering.1355194

Open Access Journal e-ISSN: 2619 – 8991

Research Article

Volume 6 - Issue 4: 502-521 / October 2023

BIODIVERSITY OF ACTINOBACTERIA ISOLATED FROM MARMARA AND AVŞA ISLANDS IN TÜRKİYE

Ahmet Ridvan TOPKARA^{1,2*}, Kamil ISIK¹

¹Ondokuz Mayis University, Faculty of Science, Department of Biology, 55139, Samsun, Türkiye ²Çankırı Karatekin University, Central Research Laboratory Application and Research Center, 18100, Çankırı, Türkiye

Abstract: The main purpose of this study is to investigate the microbial diversity of *Actinobacteria*, living in soils in the "Marmara" and "Avşa" Islands and to identify species at genus level based on 16S rRNA gene sequences. These islands are located in the southwest of the Sea of Marmara and in the literature review, no *Actinobacteria* biodiversity studies related to Marmara and Avşa Islands were found. Such unexplored ecological habitats are potentially rich source for discovery sources of novel species and bioactive molecule. *Actinobacteria* play an important role in many natural phenomena such as nitrogen fixation, roles of these prokaryotic microorganisms. In this article, we focused on the presence and the diversity of *Actinobacteria* were isolated using ten different isolation media. A total of 400 culturable *Actinobacteria* were isolated using ten different silation media. A total of 400 culturable *Actinobacteria* and phylogenetic analysis. The results showed a high level of actinobacterial diversity with 16 different genera. These genera obtained as a result of phylogenetic analyzes are *Streptomyces, Nonomuraea, Nocardia, Actinomadura, Micromonospora, Kribbella, Mycolicibacterium, Microbispora, Saccharopolyspora, Jiangella, Rhodococcus, Actinopolymorpha, Geodermatophilus, Dactylosporangium, Pseudonocardia and Nocardioides. Many isolates are identified as new species by our current research. Findings from this study showed that the soil of Marmara and Avşa Islands can be a good source of isolation for <i>Actinobacteria*.

Keywords: Actinobacteria, Isolation, 16S rRNA gene, Island soil, Biodiversity

*Corresponding author: Çankırı Karatekin University, Central Research Laboratory Application and Research Center, 18100, Çankırı, Türkiye					
E mail: ahmetridvantopkara@karatekin.edu.tr (A. R. TOPKARA)					
Ahmet Ridvan TOPKARA	Ð	https://orcid.org/0000-0001-5813-1095	Received: September 04, 2023		
Kamil ISIK	Ð	https://orcid.org/0000-0003-1764-8113	Accepted: September 28, 2023		
	Ť.,		Published: October 15, 2023		
Cite as: Topkara AR, Isik K, 2023, Biodiversity of actinobacteria isolated from Marmara and Aysa islands in Türkiye, BSI Eng Sci. 6(4): 502-521.					

1. Introduction

Actinobacteria, one of the largest bacterial phyla within the Bacteria domain; It is a group of microorganisms consisting of members widely distributed in various terrestrial and aquatic ecosystems. *Actinobacteria* (Küster, 1968), consisting of aerobic and gram-positive bacteria, help the nutrient cycle by degrading different organic compounds due to their wide distribution in nature and their saprophytic properties (Goodfellow and Williams, 1983; Hasegawa et al., 2006).

Actinobacteria, which are widely distributed in the soil have been isolated from aquatic microbiota. environments such as hot springs (Barabote et al., 2009; Mokrane et al., 2016; Amin et al., 2017), swamps (Suzuki et al., 1994; Tanasupawat et al., 2016), sea sponges (Kämpfer et al., 2015; Huang et al., 2016; Thawai et al., 2017), and sediments (Deng et al., 2015; Phongsopitanun et al., 2015; Veyisoglu et al., 2016) and from different habitats such as marble surface (Montero-Calasanz et al., 2014), underground caves (Groth et al., 1999; Také et al., 2018), plant rhizosphere (Zhang et al., 2011; Wang et al., 2014; Corretto et al., 2016; Sujarit et al., 2016), rocks (Trujillo et al., 2017), desert (Röttig et al., 2017; Idris et al., 2017; Saygin et al., 2019) and Island soils (Saricaoğlu

et al., 2014).

The best-known feature of Actinobacteria is that they have the potential to produce a wide range of bioactive molecules, especially antibiotics (Lazzarini et al., 2000; Prescott et al., 2002). Investigation of these powerful potentials has allowed the discovery of more than 120 antibiotics, different enzymes, enzyme inhibitors and many useful products from actinobacterial sources (Wink et al., 2017). In addition, microorganisms such as Actinobacteria, which increase soil fertility and contribute to plant development, are called "biofertilizers" and are used in the preparation of microbial vaccine materials in agriculture. Most of the rare actinomycetes are used as "phytostimulators" or plant growth promoters in the soil because they produce substances (e.g., vitamins and plant hormones) that increase plant health and contribute to high yields (El-Tarabily and Sivasithamparam, 2006; Koçak, 2019). At the same time, Actinobacteria members are also used as biocontrol agents because they support plant growth by inactivating many plant pathogens that cause disease in plant roots with the bioactive agents they produce endophytically (El-Tarabily and Sivasithamparam, 2006; Kurtboke, 2000; Kurtboke et al., 2007).

BSJ Eng Sci / Ahmet Ridvan TOPKARA and Kamil ISIK

In this study, we examined *Actinobacteria* in two regions: Marmara and Avşa Islands, which are part of the "Marmara" region. To our knowledge, the biodiversity of *Actinobacteria* of inhabiting these regions (Marmara-Avşa) has not been studied yet. The aims of the present study were to detect the diversity of *Actinobacteria* of islands (Marmara-Avşa), the presence of the secondary metabolite genes in the isolates and reveal whether soils investigated in islands represents a valuable source for new species. As a result of 16S ribosomal RNA gene analysis, A large number of isolates from two different islands were accepted as potentially new species.

2. Materials and Methods

2.1. Collection of Soil Sample and Geographical Locations

Soil samples were collected from different parts of the two islands in November 2020 as shown in Figure 1. The soil samples were randomly taken from ten different areas within Avşa and Marmara islands. Samples taken from 10 cm depth of the soil surface were placed in sterile tubes (10 g). The lands of the island of Marmara were later combined, sifted, and thoroughly mixed. Labeled samples were transferred to sterile plastic bags, transported to the laboratory, and stored at 4 °C for analysis.

2.2. Selective Isolation of *Actinobacteria* from Island Soils

First of all, soil samples were left to dry for 14 days at room temperature in a sterile petri dish. The dried soil samples are pulverized with a mortar so that they do not mix with each other. Each of the prepared solutions was shaken for 30 minutes. Soil samples weighing 1 g were added to 9 ml of Ringer's solution and tubes with a dilution ratio of 10^{-1} were obtained. Dilutions of 10^{-2} and 10^{-3} were prepared by serial dilution. For each dilution, 2 plates were prepared. The two hundred microliters solutions taken from each diluted suspensions with the help of an automatic pipette were inoculated on different media surfaces and incubated at 28 °C for 21 days. The isolation process was carried out using the dilution plate method. A total of 10 diverse media were used for the selective isolation of *Actinobacteria* members. The media commonly used for the isolation of *Actinomycetes* are shown in Table 1. Various antibiotics (Table 1) have been added to all media to eliminate unwanted gram negative and fungal growth. Inoculated plates were incubated at 28 °C for 3 weeks.

Figure 1. Map of the islands showing sample areas

Number	Name of medium	Antibiotics	Reference
1	Czapek-Dox Agar*	Rifampicin (5 µg/ml)	Waksman, 1967
2	Marine Agar*	Rifampicin (5 µg/ml)	ZoBell, 1941
3	R2A Agar*	Nalidixic acid (10 µg/ml)	Reasoner and Geldreich, 1985
4	Raffinose-Histidine Agar*	Rifampicin (5 μg/ml), Nalidixic acid (10 μg/ml)	Vickers et al.1984
5	Humic Acid-Vitamin Agar*	Nalidixic acid (10 µg/ml)	Taechowison et al. 1993
6	M1 Agar*	Neomycin sulphate (4 µg/ml)	Mincer et al. 2002
7	Gause Synthetic Agar*	Neomycin (4 µg/ml),	Tan et al. 2006
8	SM3 Agar*	Nalidixic acid (10 µg/ml), Neomycin (10 µg/ml)	Tan et al. 2006
9	Sodium Succinate Asparagine Agar*	Neomycin sulphate (4 µg/ml)	Piao et al. 2017
10	Starch-Casein Agar*	Rifampicin (5 μg/ml), Nalidixic acid (10 μg/ml)	Küster and Williams, 1964

Table 1. List of selective media used and antibiotics

2.3. Selection, Purification and Storage of Isolates

Colonies that were likely to be *Actinobacteria* in terms of features such as morphology and spore formation were selected from the incubated colonies. In order to obtain pure cultures of these colonies, passage was carried out by streaking on the surface of International *Streptomyces* Project Medium No.2 (ISP2; Shirling and Gottlieb, 1966) agar using sterile loop. Pure isolates were obtained from transferred plates after 14 days of incubation at 28 °C. The pure cultures obtained were transferred into glycerol stock solution (20%, v/v) and finally stored at - 80 °C until the time of use.

2.4. Genomic DNA Extraction from Pure Cultures

PureLink® Genomic DNA Isolation Kit (Invitrogen, USA) was used to perform genomic DNA isolations of isolates for molecular identification and phylogenetic analysis (Zothanpuia et al., 2017). The presence of products obtained following DNA isolation will be checked in 1% agarose gel electrophoresis. With the Nanodrop, DNA purities and concentrations were checked using a spectrophotometer (Thermo Scientific Multiskan GO microplate reader) with an optical density ratio of

260/280.

2.5. Identification and 16S rDNA Amplification of Actinobacterial Isolates

The 16S rRNA gene region polymerase chain reaction (PCR) amplifications were performed on a Thermal Cycler (MyGenie-96 Gradient Thermal Cycler, Korea) using the universal primers 27F and 1525R (Table 2). A reaction mix of 50 µl was prepared for 16S rRNA PCR of each test isolate. The components of this mixture are GoTaq® Hot Start Colorless Master mix (Promega), primer 27F, primer 1525R, genomic DNA and deionized water. In the mixture, these components were added as 25 µl, 1 µl, 1 µl, 1 µl and 22 µl, respectively. PCR amplification (MyGenie-96 Gradient Thermal Cycler, Korea) contains the following parameters: Predenaturation at 95 °C for 2 min, denaturation at 95 °C for 1 min, consisting of 30 cycles, 1.5 min bonding at 55 °C and elongation at 72 °C for 3 min, end at 72 °C for 10 min and 4 It consists of storage stages at 4°C. Amplification products were then checked by gel electrophoresis using 4 µL of PCR product in 1.5% agarose gel (Merck) and performed using the Gel imaging system (Bio-RAD).

Table 2.	Oligonucleotide	primers used	for 16	S rRNA PC	R amplification	and	sequencing
Table 2.	ongonucicotiuc	primers useu	101 10	SIRMIT	it ampinication	anu	sequeneing

Primer code	Sequences (5'-3')	Base length	References
27F	AGAGTTTGATCMTGGCTCAG	20	Weisburg, 1991
518F	CCAGCAGCCGCGGTAAT	17	Buchholz-Cleven et al, 1997
800R	TACCAGGGTATCTAATCC	18	Chun and Goodfellow, 1995
MG5F	AAACTCAAAGGAATTGACGG	20	Chun and Goodfellow, 1995
1525R	AAGGAGGTGWTCCARCC	17	Lane, 1991

*M; adenine or cytosine, R; adenine or guanine, W; adenine or thymine.

2.6. 16S rRNA Gene Analysis

Chromatogram files in ABI format obtained as a result of sequencing PCR products were checked using the Chromas version 1.7.6 (C. McCarthy, School of Health Sciences, Griffith University, Queensland, Australia) program and 16S rRNA gene nucleotide sequences were obtained in FASTA format for each organism by overlapping the reads of the primers. Sequences were analyzed and corrected manually. All sequences were compared to other sequences in the EzBioCloud database (Yoon et al., 2017) as well as to GenBank of the NCBI website by the BLAST program (Altschul et al., 1990). MEGA X program was used for phylogenetic analysis (Tamura et al., 2013). Multiple alignments were performed with the option Clustal_W (Tamura et al., 2013). Phylogenetic dendrograms were created based on neighbor-joining (Saitou and Nei, 1987), maximumlikelihood (Felsenstein, 1981) and maximum-parsimony (Fitch, 1971) algorithms. The Jukes-Cantor (Jukes and Cantor, 1969) matrix was used as the phylogenetic distance matrix. Bootstrap analyzes of the obtained phylogenetic trees were performed with 1000 repetitions (Felsenstein, 1985). The 16S rRNA gene sequences of *Actinobacteria* isolates in this study were stored in the NCBI GenBank database.

3. Results

3.1. Physicochemical Properties of Soil Samples

Soil samples were taken by GPS from different localities (considering variables such as vegetation, soil type, topography, and parent material) of two different islands (Avşa; 36 km² and Marmara; 117 km², Balıkesir-South Marmara Islands) in the Marmara region included in the study (Table 3).

Soil No	Locality	Geographical coordinates
1	A	40°31'52.73"K
1	Avşa	27°30'39.60"D
n	Arres	40°31'39.91"K
2	Avşa	27°31'33.27"D
2	Auco	40°31'12.17"K
3	Avşa	27°32'3.82"D
4	Auco	40°30'49.52"K
4	Avşa	27°32'13.12"D
r	A	40°29'26.17"K
5	Avşa	27°32'5.83"D
6	A	40°29'11.66"K
0	Avşa	27°30'57.66"D
-		40°29'38.01"K
/	Avşa	27°30'23.03"D
0		40°30'18.95"K
8	Avşa	27°30'21.38"D
0		40°29'29.69"K
9	Avşa	27°29'11.73"D
10		40°28'22.47"K
10	Avşa	27°29'31.80"D
11		40°35'31.37"K
11	Marmara	27°33'7.013"D
10		40°35'44.498"K
12	Marmara	27°32'57.156"D
10	M	40°34'42.964"K
13	Marmara	27°34'18.318"D
14	M	40°35'42.677"K
14	Marmara	27°35'7.879"D
1 5	M	40°35'13.358"K
15	Marmara	27°36'29.398"D
10	M	40°36'32.803"K
16	Marmara	27°41'1.835"D
17	M	40°38'21.293"K
1/	Marmara	27°41'58.909"D
10	Manmana	40°38'59.093"K
10	Marmara	27°41'52.127"D

Black Sea Journal of Engineering and Science

Table 3. Locality and Geographical coordinates of soil samples

Physicochemical properties of soil samples such as electrical conductivity, amount of organic matter, moisture content, and lime content (CaCO3) were determined (Table 4-5).

Physicochemical analyzes of Marmara and Avşa soils are shown in Table 4-5. The pH values of Avşa soil samples generally vary between 4.67 and 6.90, while the pH values of Marmara soil samples generally vary between 4.98 and 7.93. Organic matter amount of Avşa soil samples varies between 0.36 and 2.74, while organic matter amount of Marmara soil samples varies between 0.44 and 1.95. These soils are also loamy-clay-sandy and have low moisture and organic matter ratios.

3.2. Morphological Analysis of Culturable *Actinobacteria*

As a result of soil isolation, a total of 400 isolates obtained from Marmara and Avşa Islands were divided into 40 color groups according to colony morphology and pigmentation characteristics (Kelly, 1964). After color grouping, 112 isolates were selected for 16S rRNA gene region analysis, taking into account features such as 10 different selective media, substrate mycelium, air mycelium and soil physicochemical properties, and phylogenetic analyzes were performed.

Among the actinomycete isolates, 18 strains were isolated on starch casein agar, 5 strains from Marine agar, 5 strains from R2A agar, 2 strains from SM3 agar, 2 strains from M1 agar, 15 strains from Humic acid vitamin agar, 23 strains from Gause agar, 20 strains from Czapek dox agar, 8 strains from Raffinose-Histidine agar, 14 strains from Sodium-Succinate agar and incubated at 28 °C for about 21 days (Table 6).

These results plainly showed that Gause agar was the most suitable medium for the isolation of *Actinobacteria* from islands and provided about 20% of the total isolates followed by Czapek dox agar (17%). In total, 112 culturable actinobacterial isolates were isolated from the ten different stations of the Islands: 32 isolates from the Marmara soil, 80 isolates from Avşa soil.

Black Sea J	ournal o	f Engin	eering	and	Science
-------------	----------	---------	--------	-----	---------

Sample code	EC	pH	%OC	%OM	%CaCO3	%Clay	%Silt	%Sand	Texture
Avsa 1	445,7	6,90	0,44	0,76	1,52	41,30	18,98	39,72	clay
Avşa 2	143,8	6,75	0,19	0,32	2,15	5,03	3,72	91,25	sand
Avşa 3	826,5	4,67	1,07	1,84	2,15	11,05	9,81	79,14	sand loamy
Avşa 4	782,3	6,63	0,87	1,50	1,43	19,17	13,94	66,89	sand loamy
Avşa 5	216,7	5,52	1,59	2,74	2,15	15,27	15,92	68,80	sand loamy
Avşa 6	98,1	6,18	0,23	0,40	2,15	7,04	9,86	83,09	sand loamy
Avşa 7	303,2	5,89	0,44	0,76	1,46	11,20	11,77	77,02	sand clay
Avşa 8	368,9	6,18	0,55	0,95	1,46	17,34	16,02	66,64	sand loamy
Avşa 9	254,0	5,89	0,21	0,36	1,52	41,24	16,64	42,12	clay
Avşa 10	227,9	6,30	0,94	1,62	1,44	6,98	9,70	83,33	sand loamy

Table 4. Physicochemical properties of soil samples taken from Avşa Island

EC = Electrical Conductivity, OM= Organic Matter, CaCO₃= Lime Quantities.

Table 5. Physicochemical properties of soil samples taken from Marmara Island	d
---	---

Sample code	EC	рН	%0C	%OM	%CaCO3	%Clay	%Silt	%Sand	Texture
M1	203,6	6,45	0,52	0,90	1,44	14,93	7,85	77,22	sand loamy
M2	363,3	7,48	0,72	1,25	3,67	19,33	32,30	48,36	loamy
M3	145,3	6,56	0,86	1,47	2,19	31,90	32,77	35,33	clay loamy
M4	220,7	4,98	0,30	0,51	1,45	15,46	41,42	43,12	loamy
M5	225,9	6,11	0,57	0,98	0,78	29,24	28,06	42,70	clay loamy
M6	144,4	7,05	1,13	1,95	1,43	12,93	19,92	67,16	sand loamy
M7	237,0	7,93	0,85	1,47	116,90	35,88	9,92	54,20	sand clay
M8	93,8	7,50	0,25	0,44	1,43	8,95	15,80	75,25	sand loamy

*EC = Electrical Conductivity, OM= Organic Matter, CaCO₃= Lime Quantities.

Table 6. Comparison of the isolation success of each culture media in function of the number of isolates/genera obtained.

Number	Name of medium	Isolates	Genera
1	Czapek-Dox Agar	20	6
2	Marine Agar	5	6
3	R2A Agar	5	3
4	Raffinose-Histidine Agar	8	6
5	Humic Acid-Vitamin Agar	15	6
6	M1 Agar	2	2
7	Gause Synthetic Agar	23	12
8	SM3 Agar	2	2
9	Sodium Succinate	14	5
10	Starch-Casein Agar	18	6

3.3. Biodiversity of Culturable Actinobacteria

As a result of 16S rRNA gene region nucleotide sequence analysis, 112 isolates were determined to be members of the *Actinobacteria* phylum. When 112 *Actinobacteria* members were examined; It was determined that the genera *Streptomyces* (36 isolates), *Nonomuraea* (17 isolates), *Nocardia* (11 isolates) and *Actinomadura* (11 isolates) were the dominant genera found in the island environments and the other strains belonged to the genera *Micromonospora* (6 isolates), *Kribbella* (6

isolates), *Mycolicibacterium* (2 isolates), *Microbispora* (7 isolates), *Saccharopolyspora* (3 isolates), *Jiangella* (1 isolates), *Rhodococcus* (2 isolates), *Actinopolymorpha* (3 isolates), *Geodermatophilus* (1 isolates),

Dactylosporangium (3 isolates), *Nocardioides* (1 isolates) and *Pseudonocardia* (2 isolates). Finally, results obtained in this study showed a very significant level of diversity with 16 different genera of *Actinobacteria* (Figure 2).

Figure 2. Distribution of Actinobacteria isolates by genus.

3.4. Phylogenetic Analysis of the Isolates

Phylogenetic trees based on 16S rRNA sequences were constructed to investigate the evolutionary relationships between the Actinobacteria isolates in this study and their closest taxonomic relatives. The molecular identification of isolates by amplification of 16S rRNA gene was done by using universal primers 518F, 800R and MG5F (Table 2). All the isolates of Actinomadura were found to be closely related to the genus Actinomadura and shared 16S rRNA gene similarity ranging from 98.19-100.00% (Figure 3). Isolates of the genera Microbispora, Kribbella, Jiangella, Nocardioides Actinopolymorpha, Geodermatophilus, Micromonospora, Dactylosporangium, Nocardia, Rhodococcus, Mycolicibacterium, Saccharopolyspora and Pseudonocardia were clustered together with their closest relatives (Figure 3, 4, 5, 6, 7). The phylogenetic tree, according to the neighbor-joining algorithm indicated that 17 strains were members of the genus Nonomuraea (Figure 8). Seventeen Nonomuraea isolates showed close 16S rRNA gene sequence similarity with the type strain of Nonomuraea, which are 97.78% and 99.79% (Table 7). Based on 16S rRNA gene sequence analysis, 37 isolates were identified as *Streptomyces* spp. The phylogenetic tree, according to the neighbor-joining algorithm, indicated that nineteen strains were members of the genus Streptomyces (Figure 9-10; Table 7). According to the 16S ribosomal RNA gene sequence analysis, 37 Streptomyces isolates showed close 16S rRNA gene sequence similarity to the Streptomyces type strains, which are 99.86% and 98.00%, respectively. The percentage of 16S ribosomal RNA gene sequence similarity of the isolates with their closest relatives is shown in Table 7.

Figure 3. Phylogenetic tree showing the relationship of the actinobacterial isolates in group *Actinomadura*, group *Microbispora*, and related type strains. Phylogenetic tree was based on the Neighbor-joining method using MEGA X software. Bootstrap values above 50% (for 1000 replications) are shown. The scale bar indicates 0.01 substitutions per nucleotide position.

Figure 4. Phylogenetic tree showing the relationship of the actinobacterial isolates in group *Kribbella*, group *Nocardioides*, group *Actinopolymorpha*, group *Jiangella*, group *Geodermatophilus*, and related type strains. Phylogenetic tree was based on the Neighbor-joining method using MEGA X software. Bootstrap values above 50% (for 1000 replications) are shown. The scale bar indicates 0.01 substitutions per nucleotide position.

Figure 5. Phylogenetic tree showing the relationship of the actinobacterial isolates in group *Micromonospora*, group *Dactylosporangium*, and related type strains. Phylogenetic tree was based on the Neighbor-joining method using MEGA X software. Bootstrap values above 50% (for 1000 replications) are shown. The scale bar indicates 0.01 substitutions per nucleotide position.

Figure 6. Phylogenetic tree showing the relationship of the actinobacterial isolates in group *Nocardia*, group *Rhodococcus*, group *Mycolicibacterium*, and related type strains. Phylogenetic tree was based on the Neighbor-joining method using MEGA X software. Bootstrap values above 50% (for 1000 replications) are shown. The scale bar indicates 0.01 substitutions per nucleotide position.

Figure 7. Phylogenetic tree showing the relationship of the actinobacterial isolates in group *Saccharopolyspora*, group *Pseudonocardia*, and related type strains. Phylogenetic tree was based on the Neighbor-joining method using MEGA X software. Bootstrap values above 50% (for 1000 replications) are shown. The scale bar indicates 0.01 substitutions per nucleotide position.

Figure 8. Phylogenetic tree showing the relationship of the actinobacterial isolates in group *Nonomuraea*, and related type strains. Phylogenetic tree was based on the Neighbor-joining method using MEGA X software. Bootstrap values above 50% (for 1000 replications) are shown. The scale bar indicates 0.01 substitutions per nucleotide position.

Figure 9. Phylogenetic relationships based on 16S rRNA sequences amongst 43 *Streptomyces* strains in relation to closely related validly described species. Phylogenetic tree was based on the Neighbor-joining method using MEGA X software. Bootstrap values above 50% (for 1000 replications) are shown. The scale bar indicates 0.02 substitutions per nucleotide position.

Figure 10. Phylogenetic relationships based on 16S rRNA sequences amongst 51 *Streptomyces* strains in relation to closely related validly described species. Phylogenetic tree was based on the Neighbor-joining method using MEGA X software. Bootstrap values above 50% (for 1000 replications) are shown. The scale bar indicates 0.01 substitutions per nucleotide position.

Table	7. Summary	of information of	on 16S rRNA seq	quence determination	of isolated strains
-------	------------	-------------------	-----------------	----------------------	---------------------

Number	Strain	Locality	Highest match	Similarity (%)
	1000			
1.	A2R2	Avşa	Actinomadura meridiana DLS-45 ¹	98.60 - 20/1426
2.	A2Z11	Avşa	Actinomadura litoris NEAU-AAG5	99.17 - 12/1438
3.	A4N17	Avşa	Actinomadura sporangiiformans NEAU-Jh2-5 ⁺	99.79 - 3/1440
4.	A4R1	Avşa	Actinomadura geliboluensis A8036 ⁺	100.00 - 0/1441
5.	A6Y11	Avşa	Actinomadura montaniterrae CYP1-1B ⁺	99.31 - 10/1440
6.	A7Y10	Avşa	Actinomadura maheshkhaliensis 13-12-50™	99.58 - 6/1417
7.	M1C40	Avşa	Actinomadura maheshkhaliensis 13-12-50™	99.08 - 13/1420
8.	M2N14	Marmara	Actinomadura litoris NEAU-AAG5 ⁺	99.03 - 14/1438
9.	M3G11	Marmara	Actinomadura macrotermitis RB68 ^T	99.86 - 2/1442
10.	M4C4	Marmara	Actinomadura rubteroloni dk386™	98.19 - 26/1438
11.	M4C15	Marmara	Actinomadura rupiterrae CS5-AC15 ^T	98.25 - 25/1427
12.	A2G18	Avşa	Actinopolymorpha cephalotaxi CPCC 202808™	99.44 - 8/1439
13.	M3Z15	Marmara	Jiangella aurantiaca 8K307 ^T	99.51 - 7/1441
14.	A1H9	Avşa	Geodermatophilus daqingensis WT-2-1 ^T	99.58 - 6/1443
15.	A2G12	Avşa	Dactylosporangium solaniradicis NEAU-FJL2 ^T	99.16 - 12/1437
16.	A5Y15	Avşa	Dactylosporangium solaniradicis NEAU-FJL2 $^{ extsf{T}}$	99.16 - 12/1437
17.	A9G13	Avşa	Dactylosporangium solaniradicis NEAU-FJL2 T	99.16 - 12/1437
18.	A5G2	Avşa	Pseudonocardia xinjiangensis AS 4.1538 $^{ au}$	97.74 - 30/1325
19.	A9X1	Avşa	Pseudonocardia hierapolitana PM2084 ^T	99.79 - 3/1443
20.	A1G3	Avşa	Saccharopolyspora endophytica YIM 61095 ^T	99.86 - 2/1445
21.	A6G7	Avşa	Saccharopolyspora hordei DSM 44065 T	99.86 - 2/1448
22.	M3H16	Marmara	Saccharopolyspora spongiae CMAA 1452™	98.75 - 18/1443
23.	A4G10	Avşa	Rhodococcus jostii DSM 44719 ^T	99.93 - 1/1440
24.	M2G8	Marmara	Rhodococcus pedocola UC12 ^T	99.93 - 1/1441
25.	M1H1	Marmara	Mycolicibacterium moriokaense CIP 105393™	99.10 - 13/1444
26.	M3G16	Marmara	Mycolicibacterium litorale CGMCC 4.5724 ^T	98.40 - 23/1442
27.	A5C12	Avşa	Kribbella jejuensis DSM 17305™	99.52 - 7/1447
28.	A7Z17	Avşa	Kribbella jejuensis DSM 17305™	99.52 - 7/1447
29.	A9H10	Avşa	Kribbella jejuensis DSM 17305™	99.52 - 7/1447
30.	M2C23	Marmara	Kribbella karoonensis Q41 [™]	99.45 - 8/1447
31.	M2N6	Marmara	Kribbella hippodromi S1.4 ^T	99.35 - 9/1389
32.	M3H14	Marmara	Kribbella jejuensis DSM 17305 ^T	99.52 - 7/1445
33.	A2C13	Avşa	Microbispora rosea subsp. rosea ATCC 12950 ^T	100.00 - 0/1443
34.	A2G13	Avşa	Microbispora clausenae CLES2 $^{\mathrm{T}}$	99.79 - 3/1443
35.	A2N5	Avşa	Microbispora bryophytorum NEAU-TX2-2 ^T	100.00 - 0/1443
36.	A3G11	Avşa	Microbispora rosea subsp. rosea ATCC 12950 ^T	100.00 - 0/1443
37.	A3N61	Avşa	Microbispora rosea subsp. rosea ATCC 12950 ^T	99.17 - 12/1443
38.	A5N16	Avşa	Microbispora rosea subsp. rosea ATCC 12950 ^T	100.00 - 0/1443
39.	M3G13	Marmara	Microbispora rosea subsp. rosea ATCC 12950 ^T	100.00 - 0/1443
40.	A1G4	Avşa	Micromonospora echinaurantiaca DSM 43904 ^T	99.24 - 11/1439
41.	A1G2	Avşa	Micromonospora tulbaghiae DSM 45142^{T}	100.00 - 0/1437
42.	A6H13	Avşa	Micromonospora taraxaci DSM 45885 T	99.65 - 5/1437
43.	A7H28	Avşa	Micromonospora halotolerans CR18 ^T	99.93 - 1/1429
44.	A9H25	Avşa	Micromonospora palomenae NEAU-CX1 ^T	99.93 - 1/1438
45.	M4H1	Avşa	Streptomyces aculeolatus NBRC 14824 T	99.72 - 4/1442
46.	A2Y11	Avşa	Nocardia nova NBRC 15556 ^T	99.79 - 3/1439
47.	A2Y13	Avşa	Nocardia nova NBRC 15556 ^T	99.86 - 2/1438
48.	A2Z1	Avşa	Nocardia nova NBRC 15556 ^T	99.86 - 2/1439
49.	A3S1	Avşa	Nocardia nova NBRC 15556 ^T	99.37 - 9/1439
50.	A4R2	Avşa	Nocardia salmonicida subsp. cummidelens R89 ^T	98.60 - 20/1425
51.	A6N21	Avşa	Nocardia nova NBRC 15556 [™]	99.30 - 10/1438
52.	A7X1	Avsa	Nocardia exalbida NBRC 100660 [™]	100.00 - 0/1441
53.	A9D5	Avsa	Nocardia sungurluensis CR3272™	, 99.24 - 11/1441
54.	M1N4	Marmara	Nocardia rhamnosinhila NRRI. B-24637 ^T	99.86 - 2/1439
55.	M1R2	Marmara	Nocardia ajpuzkoensis 234509 ^T	99.86 - 2/1441
56.	M3D2	Marmara	Nocardia ignorata NBRC 108230 ^T	99.72 - 4/1441
57.	A2C6	Avşa	Nonomuraea jabiensis A4036 ⁺	, 99.31 - 10/1442

Table 7. Summary of information on 16S rRNA sequence determination of isolated strains (continuing)

Number	Strain	Locality	Highest match	Similarity (%) Nucleotide difference
58.	A2C8	Avşa	Nonomuraea deserti KC310 T	98.96 - 15/1443
59.	A3D7	Avşa	Nonomuraea helvata IFO 14681 ^T	98.65 - 19/1409
60.	A4G9	Avşa	Nonomuraea maritima FXJ7.203™	99.51 - 7/1441
61.	A4Y9	Avşa	Nonomuraea maritima FXJ7.203™	99.72 - 4/1441
62.	A6C8	Avşa	Nonomuraea ceibae XMU 110 ^T	98.89 - 16/1437
63.	A7Y19	Avşa	Nonomuraea salmonea DSM 43678 ^T	97.49 - 36/1436
64.	A7Z8	Avşa	Nonomuraea terrae CH32 ^T	99.65 - 5/1441
65.	A7Z30	Avşa	Nonomuraea nitratireducens WYY166 ^T	98.89 - 16/1444
66.	M1N20	Marmara	Nonomuraea harbinensis NEAU-yn31 ^T	99.65 - 5/1447
67.	M1Y11	Marmara	Nonomuraea bangladeshensis $5-10-10^{T}$	99.79 - 3/1441
68.	M1C63	Marmara	Nonomuraea jabiensis A4036 ^T	99.17 - 12/1442
69.	M2Y2	Marmara	Nonomuraea rosea GW 12687 ^T	99.78 - 3/1375
70.	M2N22	Marmara	Nonomuraea jabiensis A4036™	98.82 - 17/1441
71.	M3C6	Marmara	Nonomuraea basaltis 160415 ^T	98.68 - 19/1443
72.	M3S6	Marmara	Nonomuraea endophytica YIM 65601 ^T	97.28 - 39/1434
73.	M3G17	Marmara	Nonomuraea endophytica YIM 65601 ^T	, 97.78 - 32/1444
74.	A3G1	Avsa	Nocardioides furvisabuli SBS-26(T)	, 98.57-20/1398
75.	A1G1	Avşa	Streptomyces gelaticus NRRL B-2928 ^T	, 99.03 - 14/1448
76.	A2H6	Avsa	Streptomyces hydroscopicus subsp. NBRC 13472 T	98.47 - 22/1442
77.	A2Z7	Avsa	Streptomyces mayteni YIM 60475^{T}	99.27 - 10/1378
78.	A3Y4	Avsa	Streptomyces mayteni YIM 60475 ^T	89.67 - 142/1374
79.	A4C1	Avsa	Streptomyces bobili NRRL B-1338 T	99.86 - 2/1448
80.	A4C12	Avsa	Streptomyces dagingensis NEAU-ZIC8 T	99.79 - 3/1450
81.	A4C20	Avsa	Strentomyces manaanisoli MK44 ^T	99.64 - 5/1405
82	A4D2	Avsa	Streptomyces avinellae Pol001 T	99.86 - 2/1422
83	A4N30	Avsa	Streptomyces aculeolatus NBRC 14824 T	99.51 - 7/1440
84	A5G4	Avsa	Streptomyces siovaensis NRRL B-5408 T	99 79 - 3/1451
85.	A5H14	Avsa	Strentomyces araminisoli IR-19 ^T	99.72 - 4/1446
86	A5H16	Avsa	Strentomyces cellostaticus DSM 40189 ^T	99 59 - 6/1448
87	A5N9	Avsa	Strentomyces lucensis NBRC 13056 ^T	9874 - 18/1426
88	A6C14	Avsa	Strentomyces Jusitanus NBRC 13464 T	98.67 - 19/1427
89	A6N8	Avsa	Streptomyces aculeolatus NBRC 14824 T	99 58 - 6/1440
90.	A6N11	Avsa	Streptomyces actuated us 15102 T	99.10 - 13/1447
91.	A6Y6	Avsa	Streptomyces aculeolatus NBRC 14824 T	98.75 - 18/1440
92	A7C3	Avsa	Streptomyces aculeolatus NBRC 14824 T	99 72 - 4/1442
93.	A7G1	Avşa	Streptomyces netropsis NBRC 3723 ^T	99.24 - 11/1445
94.	A7Y5	Avsa	Streptomyces aureocirculatus NRRL ISP-5386 ^T	99.52 - 7/1450
95.	A7H24	Avsa	Streptomyces rameus LMG 20326 T	99.10 - 13/1446
96.	A7Y24	Avsa	Streptomyces durhamensis NRRL B-3309 ^T	98.62 - 20/1448
97.	A7Z18	Avsa	Streptomyces manganisoli MK44 ^T	99.57 - 6/1405
98.	A9D4	Avsa	Streptomyces amphotericinicus 1H-SSA8 ^T	99.24 - 11/1449
99.	A9G32	Avsa	Streptomyces amphotericinicus 1H-SSA8 ^T	99.52 - 7/1449
100.	A9H12	Avsa	Streptomyces pseudovenezuelae DSM 40212^{T}	99.38 - 9/1450
101.	A9H13	Avsa	Streptomyces aldersoniae NRRL 18513 T	99.79 - 3/1420
102.	A9N8	Avsa	Streptomyces aureocirculatus NRRL ISP-5386 ^T	99.78 - 2/911
103.	A9N28	Avsa	Streptomyces aureocirculatus NRRL ISP-5386 ^T	99.52 - 7/1450
104.	M1C11	Marmara	Streptomyces aldersoniae NRRL 18513 ^T	99.51 - 7/1420
105.	M1C34	Marmara	Streptomyces aculeolatus NBRC 14824 ^T	99.86 - 2/1440
106.	M2Y3	Marmara	Streptomyces sulfonofaciens NBRC 14260 ^T	98.00 - 29/1448
107.	M3N14	Marmara	Streptomyces samsunensis M1463 ^T	99.86 - 2/1425
108.	M4C10	Marmara	Streptomyces filininensis NBRC 12860 ^T	99,24 - 11/1445
109.	M4N21	Marmara	Streptomyces rubidus $13C15^{T}$	98.58 - 20/1413
110.	M8H1	Marmara	Micromonospora neucetia DSM 43363 ^T	99.58 - 6/1437
111.	A2R8	Avsa	Actinopolymorpha singaporensis DSM 22024^{T}	99,51 - 7/1439
112.	M1G15	Marmara	Streptomyces hydrosconicus subsp. NBRC 13472 ^T	98.61 - 20/1442
			1 J JJ	

BSJ Eng Sci / Ahmet Ridvan TOPKARA and Kamil ISIK

4. Discussion

Actinobacteria have been isolated from many different habitats so far. Among these habitats, Island environments attract more attention in terms of their new species hosting potential. At the same time, culture media was an inflection point for the success in the number of isolates and genera. Pek Lim Chu et al identified 36 actinobacterial isolates based on 16S rRNA gene sequence analysis in a study from 15 soil samples collected at South Shetland Island. They used five different media during isolation. They concluded that 36 actinobacterial isolates were separated into a common and nine genus (Streptomyces) rare genera (Micromonospora, Micrococcus, Kocuria, Dermacoccus, Brachybacterium, Brevibacterium, Rhodococcus, Microbacterium and Rothia) (Lim et al., 2017).

According to a study conducted in 2021, 6 soil samples were taken from Sichang Island, Chonburi Province, Thailand and the culture-dependent method was employed to obtain *Actinobacteria* (Phongsopitanuna et al., 2021). A total of 55 culturable *actinobacteria* were isolated and 3 different genera (*Streptomyces, Nocardia* and *Saccharothrix*) were obtained by comparative analysis of partial 16S rRNA gene sequences. The dominant genus was *Streptomyces*, followed by *Nocardia*. Only humic acid vitamin (HV) agar was used during isolation.

In another study carried out in 2020, a total of 32 isolates were isolated from soil samples of different forest locations of Bisle Ghat and Virjapet situated in Western Ghats of Karnataka, India. The isolates were identified as species of *Streptomyces, Nocardiopsis,* and *Nocardioides* by cultural, morphological, and molecular studies. isolates were obtained on starch casein agar and Actinomycetes isolation agar (Siddharth et al., 2020).

In our study, 112 isolates were obtained as a result of isolation from the Islands using 10 different media. In the effort of isolating *Actinobacteria* from Islands, Gause Agar was the most efficient isolation medium and capable of recovering the highest diversity of *Streptomyces* and rare *Actinobacteria*. In this study, 20% of the *Actinobacteria* isolates were recovered from Gause Agar. Interestingly, all *Rhodococcus* and *Nocardioides* isolates were only recovered on Gause Agar, while *Streptomyces* isolates were recovered on 80 percent of the media used. This finding could relate to the natural ecological role of *Actinobacteria* in recycling and decomposition of organic materials in soils, and their prevalence distribution in humus-rich soils (Goodfellow and Williams 1983; Ventura et al., 2007).

Rare Actinobacteria are an important resource for the discovery of new antibiotics (Tiwari et al., 2012). Rare Actinobacteria are defined as certain types of Actinobacteria that are difficult to isolate. In our study, about 10 genera belonging to rare Actinobacteria members were obtained (Micromonospora, Actinomadura, Nonomuraea, Nocardia, Pseudanocardia,

Rhodococcus, *Kribbella, Dactylosporangium, Saccharopolyspora, Microbispora*). Considering these studies, it is seen that the genus and biodiversity of *Actinobacteria* strains obtained with the use of different media in isolation studies and the increase in the number of isolated samples increased.

In 2014, Kim et al suggested that a value of 98.65% 16S rRNA gene sequence similarity could be used as the threshold for differentiating two bacterial species. Based on this data, A7Z30, A2C8, M3C6, A6C8, A3D7 and M3G17 strains may be new species belonging to the genus Nonomuraea. These isolates had 98.96%, 98.68%, 98.89%, 98.65% and 97.78% 16S rRNA gene sequence similarity with the closest Nonomuraea type species, respectively. A2R2 and M4C4 strains showed close 16S rRNA gene sequence similarity, 98.60% and 98.19%, with the type strain of Actinomadura, A5G2 strain showed 97.74% 16S rRNA gene sequence similarity with Pseudanocardia type strain, M3G16 strain showed close 16S rRNA gene sequence similarity, 98.47% with the type strain of Mycolicibacterium, M2Y3 strain showed close 16S rRNA gene sequence similarity, 98.00% with the type strain of Streptomyces. 16S rRNA gene sequence similarity ratios of other species are given in the Table 7. In this study, the 16S rRNA gene similarity of the abovementioned isolates was lower than 98.65%, indicating that these isolates are candidates for a new species of actinobacterial taxa.

5. Conclusion

This research is the first to examine the diversity of *Actinobacteria* in the soils of "Marmara" and "Avşa" in Türkiye with the dilution plating method. In this study, a large number of *Actinobacteria* were effectively isolated and identified from two different islands. Our primary data based on the 16S rRNA gene revealed that the actinobacterial community is very diverse. In addition to the genera of *Actinobacteria* found in the two studied regions, some unknown members that do not belong to the class *Actinobacteria* were also identified.

According to the results of 16S rRNA gene region % similarity and nucleotide difference, Actinomadura sp. M4C4, Actinomadura sp. A2R2, Mycolicibacterium sp. M3G16, Nonomuraea sp. A7Z30, Nonomuraea sp. A2C8, Nonomuraea sp. M3C6, Nonomuraea sp. A6C8, Nonomuraea sp. A3D7, Nonomuraea sp. M3G17, Saccharopolyspora sp. M3H16, Pseudanocardia sp. A5G2, Nocardia sp. A4R2, Streptomyces sp. M2Y3, Streptomyces sp. A5N9, Streptomyces sp. A7Y24, Streptomyces sp. M4N21, Streptomyces sp. A6Y6, Streptomyces sp. A6C14 and Streptomyces sp. A2H6 isolates are thought to be most likely new species. In addition, all our new isolates may be important candidates for biotechnological applications.

After this work, a large number of new species were revealed, thus determining the diversity and distribution of *Actinobacteria* in island environments. Thereby,

BSJ Eng Sci / Ahmet Ridvan TOPKARA and Kamil ISIK

Islands were shown to be a valuable resource for *Actinobacteria* strains with a high rate of putative new and rare species.

Two aspects appear of primary importance in regard to the high degree of novelty and diversity of *Actinobacteria* found. First, the application of various culture media significantly increased the number of species and genera obtained. Second, the geographical isolation is considered to be of importance regarding the actinobacterial novelty found.

Author Contributions

The percentage of the author(s) contributions is presented below. All authors reviewed and approved the final version of the manuscript.

	A.R.T.	K.I.
С	50	50
D	50	50
S	50	50
DCP	50	50
DAI	50	50
L	50	50
W	50	50
CR	50	50
SR	50	50
РМ	50	50
FA	50	50

C=Concept, D= design, S= supervision, DCP= data collection and/or processing, DAI= data analysis and/or interpretation, L= literature search, W= writing, CR= critical review, SR= submission and revision, PM= project management, FA= funding acquisition.

Conflict of Interest

The authors declared that there is no conflict of interest.

Ethical Consideration

Ethics committee approval was not required for this study because of there was no study on animals or humans. The authors confirm that the ethical policies of the journal, as noted on the journal's author guidelines page, have been adhered to.

Acknowledgements

This study was supported by Ondokuz Mayıs University Scientific Research Projects Coordination Unit (BAPKOB) under the project number PYO.FEN.1904.21.006.

References

- Altschul SF, Gish W, Miller W. 1990. Basic local alignment search tool. J Mol Biol, 215: 403-410.
- Amin A, Ahmed I, Khalid N, Osman G, Khan IU, Xiao M, Li WJ. 2017. *Streptomyces caldifontis* sp. nov., isolated from a hot water spring of Tatta Pani, Kotli, Pakistan. Antonie van Leeuwenhoek, 110(1): 77-86.
- Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Daubin V, Me'digue C, Adney WS, Xu XC, Lapidus A, Parales RE, Detter C, Pujic P, Bruce D, Lavire C, Challacombe JF, Brettin TS, Berry AM. 2009. Complete genome of the cellulolytic thermophile

Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res, 19: 1033-1043.

- Buchholz-Cleven BEE, Rattunde B, Straub KL. 1997. Screening for genetic diversity of isolates of anaerobic Fe (II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst Appl Microbiol, 20(2): 301-309.
- Chaouch FC, Bouras N, Mokrane S, Zitouni A, Schumann P, Spröer C, Sabaou N, Klenk HP. 2016. *Streptosporangium becharense* sp. nov., an actinobacterium isolated from desert soil. International Journal of Systematic and Evolutionary Microbiology, 64(7): 2484-2490.
- Chun J, Goodfellow MA. 1995. Phylogenetic analysis of the genus *Nocardia* with 16S rRNA gene sequences. Int J Syst Bacteriol, 45(2): 240–245.
- Corretto E, Antonielli L, Sessitsch A, Compant S, Gorfer M, Kuffner M, Brader G. 2016. *Agromyces aureus* sp. nov., isolated from the rhizosphere of *Salix caprea* L. grown in a heavy-metal-contaminated soil. Int J Syst Evol Microbiol, 66(9): 3749-3754.
- Deng S, Chang X, Zhang Y, Ren L, Jiang F, Qu Z, Peng F. 2015. *Nocardioides antarcticus* sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol, 65(8): 2615-2621.
- El-Tarabily KA, Hardy GESJ, Sivasithamparam K, Kurtböke ID. 1996. Microbiological differences between limed and unlimed soils and their relationship with cavity spot disease of carrots (*Daucus carota* L.) caused by *Pythium coloratum* in Western Australia. Plant and Soil, 183(2): 279-290.
- El-Tarabily KA, Sivasithamparam K. 2006. Non-*streptomycete actinomycetes* as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biology and Biochemistry, 38(7): 1505-1520.
- Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17(6): 368-376.
- Felsenstein J. 1985. Confidence limits on phylogeny: an approach using the bootstrap. Evolution, 39: 783-791.
- Fitch WM. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Biol, 20(4): 406-416.
- Goodfellow M, Williams ST. 1983. Ecology of actinomycetes. Annu Rev Microbiol, 37: 189-216.
- Groth I, Vettermann R, Schuetze B, Schumann P, Sáiz-Jiménez C. 1999. Actinomycetes in karstic caves of northern Spain (Altamira and Tito Bustillo). Journal of Microbiological Methods, 36(1-2): 115-122.
- Hasegawa S, Meguro A, Shimizu M, Nishimura T, Kunoh H. 2006. Endophytic *Actinomycetes* and their interactions with host plants. Actinomycetologica, 20(2): 72-81.
- Huang X, Zhou S, Huang D, Chen J, Zhu W. 2016. *Streptomyces spongiicola* sp. nov., an Actinomycete derived from marine sponge. Int J Syst Evol Microbiol, 66(2): 738-743.
- Jukes TH, Cantor CR. 1969. Evolution of protein molecules. In: Munro HN, editor. Mammalian Protein Metabolism., Academic Press, New York, USA, pp: 21-132.
- Kämpfer P, Glaeser SP, Busse HJ, Abdelmohsen UR, Ahmed S, Hentschel U. 2015. *Actinokineospora spheciospongiae* sp. nov., isolated from the marine sponge *Spheciospongia vagabunda*. Int J Syst Evol Microbiol, 65(3): 879-884.
- Kelly KL. 1964. Color-name charts illustrated with centroid colors. Inter-Society Color Council-National Bureau of Standards, Supplement to NBS Circ. 533, Standard sample No. 2106, Chicago.
- Kim M, Oh HS, Park SC, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S

rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351.

- Koçak FÖ. 2019. "Identification of *Streptomyces* strains isolated from *Humulus lupulus* rhizosphere and determination of plant growth promotion potential of selected strains," Turkish Journal of Biology, 43(6):5.
- Kurane R, Suzuki T, Fukuoka S. 1984. Purification and some properties of a phthalate ester hydrolyzing enzyme from *Nocardia erythropolis*. Applied Microbiology and Biotechnology, 20(6): 378-383.
- Kurtboke I. 2000. Australian actinomycetes: An unexhausted source for biotechnological applications. Actinomycetologica, 14(2): 43-53.
- Kurtböke DI, Neller RJ, Bellgard SE. 2007. Mesophilic actinomycetes in the natural and reconstructed Antonie van Leeuwenhoek, 77(3-4): 399-405.
- Küster E. 1968. Taxonomy of soil Actinomycetes and Related organisms. In: Ecology of soil bacteria, Liverpool University Press, Liverpool, pp: 322-336.
- Küster E, Williams ST. 1964. Selection of media for isolation of streptomycetes. Nature, 202: 928-929.
- Lazzarini A, Cavaletti L, Toppo G, Marinelli F. 2000. Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek, 78(3-4): 399-405.
- Lane DJ. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E, Goodfellow M. Nucleic acid techniques in bacterial systematics, Wiley, New York, pp: 115-175.
- Lim CP, Hoon KC, Cheah YK. 2017. Actinobacteria from Greenwich Island and Dee Island: Isolation, diversity and distribution. Life Sciences, Medicine and Biomedicine, 1-1.
- Mincer TJ, Jensen PR, Kauffman CA, Fenical W. 2002. Widespread and persistent populations of a majör new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol, 68: 5005-5011.
- Montero-Calasanz MDC, Hofner B, Göker M, Rohde M, Spröer C, Hezbri K, Klenk H. P. 2014. *Geodermatophilus poikilotrophi* sp. nov., amultitolerant actinomycete isolated from dolomitic marble. BioMed Research International, 1-11.
- Phongsopitanun W, Kudo T, Mori M, Shiomi K, Pittayakhajonwut P, Suwanborirux K, Tanasupawat S. 2015. *Micromonospora fluostatini* sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol, 65(12): 4417-4423.
- Phongsopitanuna W, Sripreechasakb P, Sangvichienc E, Tanasupawat S. 2021. Diversity, antimicrobial activity, and susceptibility of culturable soil *actinobacteria* isolated from Sichang Island. ScienceAsia, 47: 673-681.
- Piao CY, Zheng WW, Li Y, Liu CX, Jin LY, Song W, Yan K, Wang XJ, Xiang WS. 2017. Two new species of the genus *Streptomyces: Streptomyces camponoti* sp. nov. and *Streptomyces cuticulae* sp. nov., isolated from the cuticle of Camponotus japonicus Mayr. Arch Microbiol, 199: 963-970.
- Prescott LM, Harley JP, Klein DA. 2002. Microbial taxonomy. In: Microbiology, The McGraw-Hill Companies, Inc. Boston, USA. 5th ed., pp: 421-449.
- Reasoner DJ, Geldreich EE. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol, 49(1):1-7.
- Röttig A, Atasayar E, Meier-Kolthoff JP, Spröer C, Schumann P, Schauer J, Steinbüchel A. 2017. *Streptomyces jeddahensis* sp. nov., an oleaginous bacterium isolated from desert soil. Int J Syst Evol Microbiol, 67(6): 1676-1682.
- Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4:406-425.
- Saygin H, Ay H, Guven K, Cetin D, Sahin N. 2019.

Desertiactinospora gelatinilytica gen. nov., sp. nov., a new member of the family *Streptosporangiaceae* isolated from the Karakum Desert. Antonie van Leeuwenhoek, 112(3):409-423.

- Sarıcaoğlu S, Işık K, Veyisoglu A, Saygın H, Çetin D, Güven K, Sproeer C, Klenk H, Şahin N. 2014. *Streptomyces burgazadensis* sp nov., isolated from soil. Int J Syst Evol Microbiol, 64: 4043-4048.
- Shirling EB, Gottlieb D. 1966. Methods for characterisation of *Streptomyces* species. International Journal of Systematic Bacteriology, 16(3): 313-340.
- Siddharth S, Vittal RR, Wink J, Steinert M. 2020. Diversity and Bioactive Potential of *Actinobacteria* from Unexplored Regions of Western Ghats, India. Microorganisms, 8(2): 225.
- Sujarit K, Kudo T, Ohkuma M, Pathom-Aree W, Lumyong S. 2016. *Streptomyces palmae* sp. nov., isolated from oil palm (*Elaeis guineensis*) rhizosphere soil. Int J Syst Evol Microbiol, 66(10): 3983-3988.
- Taechowison Tanaka YT, Omura S. 1993. Agroactive compounds of microbial origin. Annu Rev Microbiol, 47: 57-87.
- Také A, Inahashi Y, Ōmura S, Takahashi Y, Matsumoto A. 2018. *Streptomyces boninensis* sp. nov., isolated from soil from a limestone cave in the Ogasawara Islands. Int J Syst Evol Microbiol, 68(5): 1795-1799.
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGAX: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725-2729.
- Tan GYA, Ward AC, Goodfellow M. 2006. Exploration of *Amycolatopsis* diversity in soil using genus-specific primers and novel selective media. Syst Appl Microbial, 29: 557-569.
- Tanasupawat S, Phongsopitanun W, Suwanborirux K, Ohkuma M, Kudo T. 2016. *Streptomyces actinomycinicus* sp. nov., isolated from soil of a peat swamp forest. Int J Syst Evol Microbiol, 66(1): 290-295.
- Thawai C, Rungjindamai N, Klanbu TK, Tanasupawa TS. 2017. *Nocardia xestospongiae* sp. nov., isolated from a marine sponge in the Andaman Sea. International Journal of Systematic and Evolutionary Microbiology, 67(5):1451-1456.
- Tiwari K, Gupta RK. 2012. Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol, 32(2): 108–132.
- Trujillo ME, Idris H, Riesco R, Nouioui I, Igual JM, Bull AT, Goodfellow M. 2017. *Pseudonocardia nigra* sp. nov., isolated from Atacama Desert rock. International journal of systematic and evolutionary microbiology, 67(8): 2980-2985.
- Vickers JC, Williams ST, Ross GW. 1984. A taxonomic approach to selective isolation of *streptomycetes* from soil. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Bio- logical, biochemical and biomedical aspects of actinomycetes. Academic Press, London, 553-561.
- Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. 2007. Genomics of *Actinobacteria*: Tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev, 71:495-548.
- Veyisoglu A, Carro L, Cetin D, Guven K, Spröer C, Pötter G, Goodfellow M. 2016. *Micromonospora profundi* sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol, 66(11): 4735-4743.
- Wang HF, Zhang YG, Chen JY, Hozzein WN, Li L, Wadaan MA, Li WJ. 2014. Nesterenkonia rhizosphaerae sp. nov., an alkaliphilic actinobacterium isolated from rhizosphere soil in a saline-alkaline desert. Int J Syst Evol Microbiol, 64(12): 4021-4026.
- Waksman, SA. 1967. The Actinomycetes. A summary of current knowledge. The Actinomycetes. A summary of current

knowledge, 286.

- Weisburg WG, Barns SM, Pelletier DA, et al. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol, 173(2): 697–703.
- Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ. 1983. Numerical classification of *Streptomyces* and related genera. Microbiology, 129:6, 1743-1813.
- Wink J, Schumann P, Atasayar E, Klenk HP, Zaburannyi N, Westermann M, Kämpfer P. 2017. '*Streptomyces caelicus*', an antibiotic-producing species of the genus *Streptomyces*, and *Streptomyces canchipurensis* Li et al. 2015 are later heterotypic synonyms of *Streptomyces muensis* Ningthoujam et al. 2014. International Journal of Systematic and Evolutionary Microbiology, 67(3): 548-556.
- Yoon SH, Ha SM, Kwon S. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol, 67(5): 1613–1617.
- Zhang YQ, Chen J, Liu HY, Zhang YQ, Li, WJ, Yu LY. 2011. *Geodermatophilus ruber* sp. nov., isolated from rhizosphere soil of a medicinal plant. International Journal of Systematic and Evolutionary Microbiology, 61(1): 190-193.
- Zothanpuia Passari AK, Chandra P, Leo VV. 2017. Production of potent antimicrobial compounds from *Streptomyces cyaneofuscatus* associated with freshwater sediment. Front Microbiol, 8:68.
- ZoBell CE. 1941. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. Journal of Marine Resources, 4: 41-75.