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I. INTRODUCTION 

Unmanned aerial vehicles (UAVs) are aircraft that fly autonomously with an autopilot without human assistance 

[1]. UAVs have significant advantages such as minimal operating cost, reduced human error, and the ability to 

operate under hazardous conditions [2]. UAVs were first introduced during the Second World War and have 

progressed significantly over time [3]. In recent years, research and development studies of UAVs have attracted 

great attention not only for the military but also for civilian applications [4]. UAVs are preferred in many 

applications such as meteorological data collection, disaster monitoring, search and rescue activities, 

telecommunications, mapping, surveillance, payload deliveries (disposable load), reconnaissance, and attack [5–

10]. 

The primary feature desired from materials used in the aerospace industry is that they have low-weight and high 

strength. This is expressed by the term specific strength and is defined as the strength of the unit weight of the 

material. UAV components with high specific strength provide solutions to many situations such as longer flight 

distances, reducing emissions, and responding to safety requirements [11]. Successful development of UAVs 

depends on the production of low-cost and high-resilience platforms. Reducing the structural weight is one of the 

effective factors to improve the performance of UAVs and increase their disposable load (payload) capacity [10]. 

A R T I C L E  I N F O 
 

A B S T R A C T  

Article history: 
Received 5 September 2023 
Received in revised form 19 October 2023 
Accepted 18 November 2023 

Available online  

 In this study, different core structures are produced with polylactic acid (PLA) and carbon fiber reinforced 
PLA (CFR-PLA) filaments using a 3D printer with fused deposition modeling (FDM) technique. An 
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literature. Then, sandwich composites are produced by bonding carbon fiber-epoxy plates to the lower and 
upper surfaces of these core structures. The effect of carbon fiber reinforcement and core types on the 
mechanical properties of sandwich composites was investigated. The core structures produced with carbon 
fiber-reinforced PLA showed lower compressive strength but higher compressive modulus than those 
produced with pure PLA. Among the core structures, the designed structure showed the highest compressive 
strength with a value of 9.867 MPa, which is 32.18% and 54.36% higher than the honeycomb and square 
structure. While the flexural strength and flexural stiffness of the sandwich composites increased with carbon 
fiber reinforcement, the designed sandwich composite showed approximately 1.40 and 3.15 times the flexural 
strength of the honeycomb and square sandwich composites, respectively. 
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For this purpose, aviation designers aim to reduce the weight of the UAV. This encourages the researchers to 

develop stronger materials and better structural designs. 

Composite materials are formed as a result of combining two or more materials to obtain materials having new 

(desired) properties. These materials have many advantages such as high strength, low weight, high corrosion and 

chemical resistance, and high fatigue strength [12]. Therefore, composite materials have gradually replaced metals 

in the aerospace and UAV industries and are already frequently used [13, 14]. Using only strong materials is not 

sufficient to reduce the weight of the UAV. In this case, it is necessary to offer design improvements. Lattice 

structures are a good alternative to increase the specific strength of UAV components. Lattice structures are often 

geometrically complex and difficult to manufacture using traditional manufacturing techniques such as molding 

or milling [15]. Since lightweight structures with complex geometries are difficult and costly to produce using 

traditional fabrication methods, lattice structures can be directly printed by Additive Manufacturing (AM). 

AM helps to improve the aerodynamic and structural efficiency of UAVs with the design freedom feature it offers 

to users [3, 10]. AM is an innovative manufacturing technique where the final product is produced layer by layer 

using the CAD file directly [16, 17]. AM has many application areas such as aerospace, automotive, biomedical 

so on [18, 19]. Metals, polymers, ceramics, and composites are preferred as materials in Additive Manufacturing 

(AM) in aerospace applications [20–23]. Additive manufacturing methods such as Fused Deposition Modeling 

(FDM), Selective Laser Sintering (SLS), Stereolithography (SLA), Selective Laser Melting (SLM), and Electron 

Beam Melting (EBM) are used to produce UAV components [3]. FDM is the most widely used additive 

manufacturing method with some advantages [10, 24, 25]. FDM is based on the principle of melting a 

thermoplastic polymer filament in a printhead and extruding the molten material on a print bed. Many studies have 

been conducted in which critical parts of UAVs are manufactured using the FDM method. For example, Stratasys 

and Aurora Flight Sciences have produced the largest and fastest AM drone (UAV) using FDM [26]. Paskalya et 

al. have printed UAV wings from acrylonitrile-butadiene-styrene (ABS) material with FDM [27]. In another study, 

an optimized UAV landing gear was designed and manufactured using the FDM method [2]. There are many 

studies that use the FDM method to print UAV parts [3, 10, 28–30]. 

The most widely used thermoplastic filaments to manufacture UAV components with FDM are Acrylonitrile 

Butadiene Styrene (ABS), Polylactic Acid (PLA), Polyetherimide (ULTEM), Polyphenylene Sulfide (PPS), 

Polycarbonate (PC), Polyamide (Nylon), Polyethylene Terephthalate Glycol (PETG), etc. [31, 32]. These 

thermoplastic materials have relatively low strength and are often used in applications where strength is not very 

necessary. However, thermoplastic filaments are not suitable for applications where high stresses occur, such as 

landing gear. To increase the strength of the parts to be used in aerospace applications, it is necessary to strengthen 

the thermoplastic filaments with reinforcements [33]. FDM is one of the AM methods by which reinforced 

thermoplastics can be printed [34]. Thermoplastics used in FDM are reinforced with materials such as metal, 

graphene and carbon to increase the strength [29, 35, 36]. The most commonly used reinforcement is Carbon Fiber 

(CF), and Thermoplastic/CF filaments are often preferred in aviation and UAV applications [37–41]. 

Adding carbon fibers to thermoplastic filaments is generally made in two different ways as discontinuous (short) 

and continuous fiber. Research has generally focused on discontinuous fiber-reinforced composites because 

additive manufacturing of continuous fiber-reinforced composites involves some difficulties and is costly [42–44]. 

Short fiber-reinforced (discontinuous) FDM composites are formed by blending the thermoplastic polymer with 
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milled or chopped fibers. Then, the blending is extruded to form filaments, which are the raw materials of the 

FDM method. Fibers are typically shorter than the nozzle diameter to avoid clogging [45, 46]. The majority of 

fibers used in AM composites are milled fibers and have a fiber length of fewer than 150 μm [47]. 

While short fiber-reinforced polymer composites produced by AM offer significant performance improvements 

compared to pure polymers (PLA, ABS, PETG), the maximum mechanical properties achieved with short fiber-

reinforced composites are severely limited compared to continuous fiber polymer composites [30]. There are 

several reasons why the mechanical properties obtained by additive manufacturing of short fiber reinforced 

filaments are unsatisfactory. The first reason is that milled fibers are not effective enough to increase strength, as 

the fiber length of milled fibers is well below the value that provides optimum mechanical properties. In addition, 

it is known that the addition of fiber fillers will change the polymer rheology and therefore increase the void 

fraction in composites produced by AM [46]. Finally, mechanical properties are negatively affected when the 

interfacial bonds between the fiber and the thermoplastic matrix are not strong enough. As a result, the strength of 

3D printed specimens is adversely affected due to defects such as high void content, poor interlayer bonding, and 

inhomogeneous fiber distribution [48–52]. For all these reasons, it has been observed that the specimens produced 

with CF-reinforced filament generally do not marginally increase the strength of those produced with pure 

polymer, and in some cases reduce it [47, 51, 53]. 

Sandwich materials, which are among the most valuable structural engineering materials of the composite material 

industry, are frequently used in aerospace and other industry fields for the advantages they offer such as low 

weight, high strength, and low production costs [54]. Typically sandwich structures consist of high-strength face 

sheets on the outer surfaces and the core with low weight in the middle. The core is mostly subjected to shear 

stresses while the face sheets on the surface are subjected to tensile and compression stresses [55]. The use of 

lightweight sandwich structures in UAVs provides better acceleration and lower fuel consumption by reducing the 

structural weight [56]. The most common traditional materials used in the core of lightweight sandwich structures 

are foam and balsa [57, 58]. Recently, researchers prefer functionally adjustable lattice structures as core materials 

in sandwich composites instead of traditional core materials after the recent developments in AM [59]. The desired 

functional properties in sandwich structures can be adjusted by changing the design or material of the cell structure. 

The studies show that various cellular structures such as honeycomb, gyroid, truss, diamond, kagome, octet, and 

hybrid are used as cores in sandwich composites [53, 60–64]. Therefore, the flexural and compressive properties 

of sandwich composites with different 3D-printed core structures developed for unmanned aerial vehicles were 

investigated in this study.  Three different lattice structures were used as the core of the sandwich composite to 

achieve this goal: honeycomb, square, and original design. Sandwich composite specimens were created by 

affixing CF face sheets to a lattice-structured core made of PLA and CFR-PLA materials. The mechanical 

properties of sandwich structures were investigated in terms of cell topology and reinforced filaments. 

 

II. EXPERIMENTAL METHOD / TEORETICAL METHOD 

2.1 Materials 

In this study, two different filaments, polylactic acid (PLA) and 15% carbon fiber reinforced- PLA (CFR-PLA), 

were used. PLA filaments were purchased from Filament Dünyası (Turkey) and Sunlu brand CFR-PLA filament 
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was used. The diameter of the filaments is 1.75 mm. For each test, it was produced with both PLA and CFR-PLA 

in three designs. In the production of sandwich composites, plain woven carbon fabric with a density of 245 gr/m2 

was used as a reinforcement element on the lower and upper surfaces of the core structures. These carbon fabrics 

were provided by BAYKAR Technology (Turkey). EPORES 11564 epoxy and EPOHARD 13486 hardener were 

purchased from Omnis Kompozit (Turkey). 

 

2.2 Design of core structures  

In this study, 3 different core structures were produced by the FDM method using Creality Ender 3 Pro printer. In 

addition to the honeycomb and square structure used in the literature [9, 64, 65], a new design has been developed. 

The designed core structure has unit cells consist of 2 types of quadrilateral shapes which includes an inner 

rhombus supporting an outer rectangle (Figure 1). The short side, long side, and wall thicknesses of a unit of the 

core structure were preferred as 10 mm, 20 mm, and 0.5 mm, respectively. The height of the cell was chosen as 

15 mm. Honeycomb and square structures were drawn in the same dimensions by using SolidWorks so that the 

designed core structure could be compared with traditional honeycomb and square structures. The length of one 

unit honeycomb cell in the honeycomb structure and the edge length of one unit cell of the square structure are 10 

mm. 

 

 

Figure 1. Image of the designed core structure 

 

2.3 The manufacturing process of core structures 

Honeycomb, square, and designed core structures were fabricated using a 3D printer (Creality Ender 3 Pro). These 

structures were produced with both PLA and CFR-PLA filaments. Processing parameters are given in Table 1. To 

begin, the geometry of the specimens was drawn in SolidWorks and exported as an STL file. The transferred 

geometry was opened in the Cura software and the appropriate parameters were entered and the specimens were 

printed on a 3D printer. Figure 2 shows the images of the core structures printed. The honeycomb, square, and 

newly designed core structure are denoted by the letters H, S, and D, respectively. In addition, the word CFR was 

added to these core structures produced with PLA filaments containing carbon fiber. For example, the abbreviation 

S-CFR-PLA refers to the square core structure produced with carbon fiber reinforced PLA filament, and H-PLA 

shows the honeycomb core structure produced with neat-PLA filament. 
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Table 1. The 3D printing process parameters 

Printing Parameters PLA CFR-PLA 

Extruder temperature (℃) 225 220 

Bed temperature (℃) 80 80 

Layer thickness (mm) 0.2 0.2 

Infill density (%) 100 100 

Flow rate (%) 105 95 

Printing speed(mm/s) 50 50 

Filament diameter (mm) 1.75 1.75 

 

  

Figure 2. Images of (a) H-PLA, (b) H-CFR-PLA, (c) S-PLA, (d) S-CFR-PLA, (e) D-PLA, and (f) D-CFR-PLA specimens 

2.4 Manufacturing of sandwich composites 

The sandwich composite specimens produced consist of three components: core structure, face sheets, and 

adhesive. For the production of the lower and upper face sheet layers, woven carbon fabric was used as a 

reinforcement, and epoxy resin was used as a matrix material. The production steps of sandwich composite 

specimens are shown in Figure 3. For the specimens to be easily separated from the surface, vacuum nylon was 

laid on the floor and 4 layers of carbon fiber were placed on top of each other (Figure 3a). On each layer, carbon 

fiber was wetted with an epoxy-hardener mixture (100:34 by weight) with the help of a brush. Then, a core 

structure was placed on top of the carbon fiber and 4 layers of carbon fiber were laid on top of this core structure 

(Figure 3b). Afterward, the specimens were covered with vacuum nylon and a heavy plate was placed on top and 

left to cure for 2 days. Figure 3c shows the side view of the sandwich composite specimens obtained at the end of 

the production stages. 
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Figure 3. Production steps of sandwich composite specimens: (a) placement of carbon fabrics in the lower part of the core structure, (b) 

placement of carbon fabrics in the upper part of the core structure, and (c) sandwich composites produced. 

 

2.5 Test Procedure 

2.5.1 Compression test 

A compression test was applied to each core structure specimen consisting of two different filament materials 

(PLA and CRF-PLA) and three different designs (honeycomb, square, and design). The tests were performed with 

Shimadzu brand AG-X-plus model mechanical device having a load capacity of 250 kN according to ASTM 

C365–03 standard [66]. Dimensions of compression test specimens are 77x77x15 mm (length, width, and height). 

All tests were performed at a crosshead speed of 1 mm/min. During the test, the compressive load was increased 

until the maximum load that the specimens could carry, then decreased, and a visible deformation was obtained 

on the specimen along the height where the cell walls were compressed, and the results were recorded. The 

compressive strength (𝜎𝜎𝑐𝑐) and compressive modulus (𝐸𝐸𝑐𝑐) values of the core structures were calculated with the 

following equations using the load and deflection data obtained from the test: 

 

σc=P/A                                                                                                                                         (1)
            

Ec= ΔP*t
Δh*A

                                                                                                                                                                          (2) 

 

where P, A, ΔP, Δh, and t show compressive load (N), cross-sectional area (mm2), the is the load increment in the 

elastic part of the compressive curve (N), the deflection increment corresponding to ΔP (mm), and core thickness 

(mm), respectively. At least 5 compressive test specimens were tested for each set and average values were used. 

 

2.5.2 Flexural test 

Three-point bending tests were carried out on the sandwich composites formed by adding a face sheet layer made 

of carbon fiber and epoxy to the lower and upper sides of the core structures. Tests were performed on sandwich 

composites with SHIMADZU - AGS-X (250kN) device according to ASTM C 393–00. Specimen dimensions 
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were 120×60×15 mm (length, width and height). The test speed and span length, which is the length between the 

two end supports, were 0.75 mm/min and 80 mm, respectively.  

The flexural strength (σf) values of the sandwich specimens were calculated with the following equations according 

to ASTM C 393–00:  

 

𝜎𝜎𝑓𝑓 = 𝑃𝑃𝑃𝑃 2𝑡𝑡(𝑑𝑑 + 𝑐𝑐)𝑏𝑏⁄                                                                                                                                                (3) 

 

where P, L, t, d, c, and b indicate flexural load (N), span length (mm), facing thickness (mm), sandwich thickness 

(mm), core thickness (mm), and sandwich width (mm), respectively. Also, the bending stiffness values of 

specimens were calculated by dividing the maximum bending force by the bending deflection at that load. 

 

III. RESULTS AND DISCUSSIONS 

Firstly, compression tests of 3 different core structures produced using PLA and CFR-PLA filaments were carried 

out. Then, bending tests of sandwich composites produced using these core structures were performed. The 

acquired results are presented and assessed in the following subsections. 

 

3.1 Compressive test results  

The compression properties of core structures are affected by various factors such as filament type, shape, and 

dimensions of the unit cell, and FDM process parameters [67–69]. The compressive properties of specimens with 

different filaments (PLA and CFR-PLA) and core structures (honeycomb, square, and design) are obtained from 

compression tests and the specimens properties are compared to each other. During the test, the specimens were 

compressed by applying force, as can be seen in Figure 4a. Also, Figures 4b and 4c show images of the specimens 

after testing.  

 

 

Figure 4. Image of a specimen in the compressive test (a), images of (b) S-PLA and (c) S-CFR-PLA specimens after the compressive test  
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Compressive test results of 3D printed specimens are summarized in Table 2. For each specimen set (H-PLA, H-

CFR-PLA, S-PLA, S-CFR-PLA, D-PLA, D-CFR-PLA) at least five tests were conducted, the results were 

averaged, and the ultimate compressive strength, compressive strain at peak load, compressive modulus are listed. 

Compressive-strain curves of the three types of specimens are illustrated in Figure 5. When the stress-strain curves 

of the specimens are examined, it is seen that three different regions occur under compression loading. In the first 

region, a linear curve was observed until the maximum stress value was reached with the applied compressive 

force. The strain in this region is elastic. In other words, when the applied force is removed, the core structure 

returns to its original shape. The second region includes plastic yielding and ends by plateau stress. In this region, 

the stress value remains approximately constant for a long time, while the strain continues to increase. The constant 

stress value in this region is called plateau stress. The strain in the second region is plastic. If the structures continue 

to be compressed, the cell walls will be crushed and come into contact with each other, leading to a rapid increase 

in stress. This region is referred to as the densification region [70–73]. The core structures containing carbon fiber 

reinforced-PLA filament showed lower compressive strength than those containing pure PLA filament (Figures 

6a and 6b). D-PLA showed the highest compressive strength value of 9.867 MPa. Compared to H-PLA and S-

PLA, D- PLA compressive strength is approximately 32.18% and 54.36% higher, respectively.  Saleh and his team 

printed diamond, gyroid, and primitive cell structures using both PLA and CF-reinforced PLA through the FDM 

method, investigating the impact of CF reinforcement on the mechanical properties of different core structure. The 

specimens produced with CF-PLA exhibited lower compressive strength compared to those produced with PLA. 

Among structures printed with both PLA and CF-PLA, the highest compressive strength was observed in 

specimens with a diamond cell structure, followed by Gyroid and Primitive cell structures. It was noted that Gyroid 

and Primitive cell structures deformed uniformly, allowing for consistent load-bearing. Additionally, it was 

mentioned that deformation became more uniform with an increase in relative density and a decrease in cell size 

[73] .This was attributed to the high surface area and improved material distribution, which enhanced the contact 

between walls and minimized the empty spaces between them. 

 

Table 2. Compressive test results of core structures 
Specimens Ultimate compressive strength 

(MPa) 
Compressive strain at peak load 

 (ɛ) 
Compressive modulus 

 (MPa) 

H-PLA 7.465 ± 0.13 0.0581 ± 0.0058 167.088 ± 6.03 

H-CFR-PLA 5.688 ± 0.26 0.0436 ± 0.0041 173.605 ± 5.30 

S-PLA 6.392 ± 0.24 0.0429 ± 0.0052 164.803 ± 2.05 

S-CFR-PLA 5.093 ± 0.17 0.0411 ± 0.0024 168.613 ± 4.58 

D-PLA 9.867 ± 0.28 0.0611 ± 0.0066 169.728 ± 1.26 

D-CFR-PLA 6.050 ± 0.13 0.0568 ± 0.0023 180.127 ± 4.51 

 

However, core structures produced with CFR-PLA filament showed higher compressive modulus than those 

produced with pure PLA. The high elastic modulus of carbon fiber has increased the elastic modulus of core 

structures [72, 74]. In the study conducted by Mei et al., specimens printed with carbon fiber reinforced PLA 

showed higher compression modulus but lower compression strength than those printed with pure PLA. The 

following are the explanations given for the decrease in compressive strength of the specimens: Low compressive 

strength of the carbon fiber, agglomeration of the carbon fiber, and faults that may occur during the 3D printing 
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process [72]. In addition, buckling and layer separation may occur with the application of compressive force to the 

specimens produced by the FDM method, and this causes a decrease in the compressive strength [13, 75].  

 

 

Figure 5. Compressive stress-strain curve of core specimens 

 

 

Figure 6. Ultimate compressive strength (a) and compressive modulus (b) of core structures 

 

3.2 Flexural test results  

Bending tests of sandwich composites, which were formed by bonding carbon fabric with epoxy to the lower and 

upper surfaces of different core structures produced by the FDM method, were carried out. Figure 7a shows a 

sandwich composite specimen subjected to bending force using a mechanical tester. After the bending test, cracks 

were observed in the core layer of all specimens in general (Figure 7b). These cracks occurred close to where the 
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bending force was applied (near the middle of the specimen). The bending test results of sandwich composites are 

summarized in Table 3. At least 5 tests were performed for each composite set (H-PLA, H-CFR-PLA, S-PLA, S-

CFR-PLA, D-PLA, D-CFR-PLA) and the results were averaged. The force-deflection data of the composites were 

recorded during the test and facing bending stress and flexural stiffness values were calculated using these data.  

 

 

Figure 7. Image of a sandwich specimen; (a) in the flexural test, (b) after the flexural test 

 

 

Table 3. Flexural test results of sandwich composites 
Specimens Maximum load 

            (N) 
Flexural strength  

(MPa) 
Flexural stiffness  

(N/mm) 

H-PLA 1242.081 ± 27.92   44.233 ± 0.99 638.516 ± 51.88 
H-CFR-PLA 1627.286 ± 147.36   57.951 ± 5.25 1120.400 ± 111.44 
S-PLA 2171.066 ± 192.29   77.317 ± 6.85 1419.400 ± 92.93 
S-CFR-PLA 2372.672 ± 136.37   80.926 ± 4.86 1506.336 ± 101.95 
D-PLA 4177.550 ± 250.67 144.618 ± 6.96 2472.244 ± 109.16 
D-CFR-PLA 4846.821 ± 165.07 183.137 ± 3.84 3261.775 ± 94.39 

 

 

Flexural load-deflection curves of sandwich composite specimens are given in Figure 8. Typically, the sandwich 

specimens exhibited a linear elastic region until they reached the point of maximum force. In all three core 

structures, composites containing carbon fiber-reinforced PLA filament showed higher flexural strength and 

flexural stiffness than those produced with pure PLA filament (Figures 9a and 9b). Among the composite 

specimens, H-PLA showed the lowest flexural strength and stiffness with values of 44.232 MPa and 638.516 

N/mm, respectively. In the case of H-CFR-PLA, the flexural strength and flexural stiffness are 57.951 MPa and 

1120.4 N/mm, respectively. S-CFR-PLA showed approximately 4.47% and 6.12% greater values of flexural 

strength and stiffness than S-PLA. D-CFR-PLA showed the highest flexural strength and stiffness with values of 

183.137 MPa and 3261.775 N/mm, respectively. In a study by Liao et al., composite specimens were produced 

with PA12 filaments containing carbon fiber in different additive ratios (0, 2, 4, 6, 8, and 10%) by the FDM method 

and their mechanical properties were investigated. They stated that the flexural strength increased as the amount 
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of carbon fiber increased, and the composite containing 10% by weight carbon fiber-PA12 showed 251.1% higher 

flexural strength than the composite produced with pure PA12 filament [76]. Similar results were observed in 

articles [67, 77, 78]. 

 

  

Figure 8. Flexural load- deflection curve of sandwich composite specimens 

 

 

 

Figure 9. Flexural strength (a) and flexural stiffness (b) of sandwich composite specimens 

 

IV. CONCLUSIONS 

Stronger and lighter three-dimensional parts are produced by depositing the materials layer by layer using the 

additive manufacturing (AM) method. Among the AM methods, the most widely used one is the fused deposition 

modeling (FDM) method. In this study, it is aimed to produce different core structures that can be used in 

unmanned aerial vehicles (UAVs) by using the FDM method. For this purpose, a new structure was developed as 

an alternative to the honeycomb and square structures frequently encountered in the literature. Firstly, honeycomb, 
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square and designed structures were 3D printed with both PLA and carbon fiber-reinforced PLA filaments and 

then, sandwich composites were produced by adding carbon fiber fabric-epoxy to the lower and upper surfaces of 

these core structures. Experimental studies were carried out to investigate the effects of carbon fiber addition to 

PLA filaments on the mechanical properties of different lattice structures. The lattice structures containing carbon 

fiber reinforced-PLA filament showed lower compressive strength than those without reinforcement and the 

highest compressive strength was seen in the designed structure with a value of 9.867 MPa. D-PLA exhibited 

32.18% and 54.36% higher tensile strength than H-PLA and S-PLA, respectively. In the flexural test results, it 

was observed that the flexural strength and stiffness values of the sandwich composites increased with the addition 

of 15 wt% carbon fiber reinforcement in the PLA filament. With the carbon fiber reinforcement, the flexural 

strengths of the sandwich composites containing honeycomb, square and designed lattice structures increased by 

approximately 31.01%, 4.67%, and 26.63%, respectively. In the subsequent studies, the aim is to produce various 

core structures using filled-filaments and investigate their mechanical properties. It will be recommended to use 

sandwich composites produced from these core structures in UAVs. 
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