
AURUM  SAĞL I K  B İ L İML E Rİ  DE RGİ Sİ   

AURUM  J OURNAL  OF  HE AL T H SCI E NCE S  

 

Cilt  6 ,  Sayı  2  |  Y az 2 02 4  

Vol ume  6 ,  No 2  |  Summe r 2 0 24  
 

91 
 

TRANSFER LEARNING IN SEVERITY CLASSIFICATION IN 

ALZHEIMER'S : A BENCHMARK COMPARATIVE STUDY ON 

DEEP NEURAL NETWORKS 

Seda KIRTAY1, Muhammed Tayyip KOÇAK2 
1Electrical And Electronics Engineering, Marmara University, Turkey, seda.kirtay@marmara.edu.tr 

( https://orcid.org/0000-0003-2415-9131) 

 2Software Engineering, Istanbul Health and Technology University, Turkey, 

muhammed.kocak@istun.edu.tr 

( https://orcid.org/0000-0003-2276-2658) 

Received: 05.09.2023 
Accepted: 27.05.2024 

Published: 31.07.2024 

*Corresponding author 

Research Article 
pp.91-108 

 

Abstract 

Alzheimer's disease has become a condition of the brain that progresses over time and impacts a significant number of 
individuals worldwide. Early diagnosis, timely intervention and management of this disease process are very important 
in Alzheimer's disease. With regard to this study, we propose a transfer learning based early detection approach for 
Alzheimer's disease using Moderate Demented, Mild Demented, No Demented and Very Mild Demented classification 
sets. The proposed approach utilizes transfer learning based on the use of a deep neural network model that has been 
trained to extract features from brain imaging data. To evaluate the performance in transfer learning, a dataset of 6,400 
images from brain MRI scans is augmented using data augmentation techniques and used in various convolutional 
neural network models the like VGG-19, Resnet-50, DenseNet-121, Inception-V3, VGG-16. The results are planned to 

show that these models achieve high sensitivity, specificity and high accuracy in detecting early signs of Alzheimer's 
disease. The study also emphasizes these advantages of using transfer methods of learning for early Alzheimer's 
detection by comparing it with various other deep learning models. The findings of this research suggest that transfer 
learning-based approaches can aid in the early detection of Alzheimer's disease., which affects millions of people, and 
offer a practical solution to classify cognitive impairment. With the proposed approach, it is shown that by helping 
clinicians to detect individuals at risk of Alzheimer's at an early stage, it will be possible to provide timely intervention 
and, in fact, better patient care. In terms of more effective applicability in clinical applications, the proposed approach 
can be applied to different and larger datasets and populations to make improvements and provide convenience to 

clinicians and patients. The best success rate of the models we used is achieved on the VGG19, RESNET50 KNN model 
with 99 percent. 

Keywords: Deep learning, transfer learning, alzheimer, disease classification 

 

1. Introduction 

Alzheimer's disease, which is incurable neurodegenerative deterioration that is ongoing condition that impairs 

memory, cognition, and conduct. It is actually especially widespread cause of dementia in elderly adults and has a 

substantial impact on both individuals and society. According to Gaugler et al (Alzheimer's Association, 2016), there 

are an estimated There are currently 5.8 million Alzheimer's disease patients in the US, and this figure is projected 

to increase to 13.8 million by 2050. Alzheimer's disease prevalence is also rising globally, posing immense 

challenges to society (Ribe & Lovestone, 2016; Qiu, Kivipelto, & Von Strauss, 2022). 

Alzheimer's disease affects not only those affected by it, but also their caregivers and society as a whole. Caregivers 

of Alzheimer's disease patients experience significant burden and stress, which can result in adverse health outcomes 

(Hayajneh & Shehadeh, 2014; Scott, 2013). Estimates range from $290 billion to $1 trillion annually in the United 

States alone (Alzheimer's Association, 2016) for the cost of Alzheimer's disease care. This cost encompasses both 

direct and indirect costs, such as decreased productivity and caregiver burden. 
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The consequences of Alzheimer's on society extend beyond monetary costs. Additionally, it has substantial social 

and affective effects on individuals, families, and communities. Alzheimer's disease patients and those who care for 

them may experience social isolation, stigma, and diminished quality of life as a result of the disease (Alzheimer's 

Association, 2016; Ribe & Lovestone, 2016; Qiu, Kivipelto, & Von Strauss, 2022). In addition, the rising Dementia 

and Alzheimer's disease have a high prevalence has increased the need for resources and assistance for those 

impacted persons and the relatives of those individuals. 

The influence of Alzheimer's on individuals, caregivers, and society is significant. The increasing prevalence of the 

disease and its associated costs and burden emphasize the need for continued research and assistance for those 

affected and their families. It is necessary to conduct a thorough evaluation of treatment efficacy (Winblad et al., 

2001) by evaluating the effects of treatment on persons suffering from Alzheimer's disease, in addition to the effects 

their condition has on caregivers and society as a whole. 

Early and accurate Alzheimer's disease diagnosis is essential for effective treatment and care. As to the Alzheimer's 

Organization, early identification helps those suffering from Alzheimer's disease along with their loved ones to 

access support services, plan for the future, and make educated decisions regarding treatment and care. Individuals 

with Alzheimer's disease who are diagnosed early have the opportunity to participate in clinical trials and research 

studies, which can contribute to the development of novel treatments and therapies. Importantly, getting a diagnosis 

of Alzheimer's disease early enables patients to begin therapy at the earliest possible point in the disease's 

progression. Alzheimer's disease currently lacks a definitive cure, but pharmacological and non-pharmacological 

interventions exist that can effectively alleviate symptoms and impede the advancement of the disease. The efficacy 

of these treatments is highest when they are applied at an early stage of the disease's progression, prior to the 

occurrence of substantial cerebral damage. In addition to the benefits for Alzheimer's disease patients, early 

diagnosis has significant advantages for caregivers and society as a whole. Early diagnosis enables caregivers to 

plan for the future and gain access to support services, thereby reducing caregiver burden and tension. Additionally, 

early diagnosis permits the allocation of resources and funding for research and support services, which can help 

reduce the economic and social burden of Alzheimer's disease on society (Alzheimer's Association, 2016; Ribe & 

Lovestone, 2016; Qiu, Kivipelto, & Von Strauss, 2022; Hayajneh & Shehadeh, 2014; Scott, 2013; Winblad et al., 

2001; Korolev, Safiullin, Belyaev, & Dodonova, 2017; Islam & Zhang, 2018). 

Brain MRI imaging have become a valuable classification tool for Alzheimer's disease. MRI imaging can detect 

structural changes in the brain, such as hippocampal atrophy, associated with Alzheimer's disease (Platero, Lin, & 

Tobar, 2019). Several studies (Korolev, Safiullin, Belyaev, & Dodonova, 2017; Platero, Lin, & Tobar, 2019; Zhan 

et al., 2015) have demonstrated the efficacy of using MRI imaging and machine learning algorithms to classify 

Alzheimer's disease. These studies demonstrate that techniques of deep learning, that include convolutional neural 

networks, can classify comparing Alzheimer's disease to mild cognitive impairment and normal controls with high 

precision (Korolev, Safiullin, Belyaev, & Dodonova, 2017; Islam & Zhang, 2018). MRI scans can also be used to 

monitor disease progression and identify biomarkers for Alzheimer's disease early detection (Zhan et al., 2015). 
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Early and accurate Alzheimer's disease diagnosis is essential for effective treatment and care. Using brain MRI scans 

as a classification tool for Alzheimer's disease can aid in early disease detection and monitoring. This can lead to 

enhanced patient outcomes and quality of life for Alzheimer's disease patients and their caregivers. 

In conclusion, brain MRI imaging have become a valuable classification instrument for Alzheimer's disease. 

Alzheimer's disease can be distinguished from moderate cognitive impairment and normal controls with a high 

degree of precision using machine learning algorithms and deep learning techniques. MRI scans can also be used to 

monitor disease progression and identify biomarkers for Alzheimer's disease early detection. The use of brain MRI 

imaging as a classification tool for Alzheimer's disease can aid in early detection and monitoring of the disease, 

leading to enhanced patient outcomes and quality of life for Alzheimer's disease patients and their caregivers. 

2. Conceptual Framework and Literature 

2.1.  Transfer Learning 

 
Transfer learning is a prevalent paradigm in deep learning in which models trained on standard datasets can be 

efficiently adapted to subsequent tasks. It has been utilized in numerous disciplines, technologies such as natural 

language processing, voice recognition, computer vision etc are examples. Transfer learning enables the reuse of a 

previously trained model for a new problem, which is extremely useful in data science given that the majority of 

real-world problems lack the millions of data points required to train these complex models (He, Zhou, Ma, Berg-

Kirkpatrick, & Neubig, 2021). 

2.2. MRI Image Conversion to Feature Vectors 

MRI is a potent diagnostic instrument which used to be obtain images of the body's internal organs. An MRI creates 

images of organs, tissues, and bones using a strong magnetic field and radio radiation. It is a non-intrusive harmless 

procedure that produces high-resolution images regarding the internal structures of the human body's anatomy. MRI 

is a commonly employed diagnostic tool for a range of medical conditions, encompassing injuries to the brain and 

spinal cord., malignancies, joint and bone issues, and cardiovascular diseases. Magnetic resonance imaging (MRI) 

has been shown to be a valuable tool for healthcare professionals in facilitating precise diagnoses and devising 

efficacious treatment strategies for their patients (Wang et al., 2017; Varuna Shree & Kumar, 2018; 

Vlaardingerbroek & Boer, 2013). 

MRI images Converting into feature vectors enables a vast array of sophisticated analysis and insights. By utilizing 

methods like preprocessing, feature extraction,ROI selection, normalization,vector representation, and optional 

feature selection, clinicians and researchers may extract pertinent data from MRI scans and accelerate breakthroughs 

in fields such as medical imaging, disease diagnosis, and drug development (Zulkoffli & Shariff, 2019; Higaki, 

Nakamura, Tatsugami, Nakaura, & Awai, 2019). 

There have been many studies on the conversion of MRI images into feature vectors. Moreover, these citations 

illustrate how MRI images can be converted into feature vectors using different machine learning methods. Based 

on the feature vector of MRI images, (Sreeja & Mubarak, 2022) designed a Hounsfield unit (HU) conversion model 
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using a fuzzy clustering algorithm for image segmentation and an adaptive neuro-fuzzy algorithm. Using MRI data 

and support vector machines (SVMs), (Xu et al., 2021) predicted the survival of glioblastoma patients. The creation 

of a feature vector was documented in reference (Kavitha, Shini, & Priya, 2022), which involved the utilization of 

diverse statistical texture analyses on brain lesions that were extracted from an MRI image. A study on pediatric 

neuro-oncology conducted at multiple centers employed a support vector machine (SVM) that was trained using 3D 

textural attributes derived from conventional MRI, as documented in reference (Fetit et al., 2018). The authors 

employed morphometric similarity mapping to derive various anatomical indices from individual cortical regions. 

Subsequently, they calculated the Pearson product moment correlation coefficient between each pair of MRI feature 

vectors for the respective regions. (Tian et al., 2020) In their study, the authors utilized a discrete wavelet packet 

transform in conjunction with Tsallis entropy and a generalized eigenvalue proximal support vector machine 

(GEPSVM) to develop an innovative computer-aided diagnosis (CAD) system for the differentiation of abnormal 

brains from healthy brains in MRI scans. This approach represents a novel contribution to the field of medical 

imaging analysis. The article referenced as (Sun, Morris, & Babyn, 2009) presents an extension of the optimal linear 

transformation (OLT) method, originally developed for magnetic resonance imaging (MRI), to functional magnetic 

resonance imaging (fMRI). The purpose of this extension is to improve the performance of conventional fMRI 

analysis techniques in identifying stimulation. The authors of reference (Chan, Chen, Wang, & King, 2019) 

employed a learning-by-example methodology to perform voxel segmentation and classification in in vivo cancer 

imaging. Specifically, a support vector machine (SVM) was trained to classify voxels based on the labels obtained 

from the clustering phase. The aforementioned studies showcase the capacity of machine learning methodologies in 

transforming MRI images into feature vectors that can be effectively utilized in diverse applications such as disease 

diagnosis and treatment approaches. 

2.3. Machine Learning Algorithm 

On the basis of a set of features or characteristics, algorithms that use machine learning for classification utilize them 

to foresee the class or grouping of a given input. These algorithms are extensively utilized in numerous disciplines, 

which include natural language processing, image detection and speech recognition, and the detection of fraud. 

Among the most prevalent machine learning algorithms for classification are statistical technique; Random Forest, 

Naive Bayes, K-Nearest Neighbors and Support Vector Machines (Mahesh, 2020a; Ayodele, 2010; Singh, Thakur, 

& Sharma, 2016).  

The Random Forest algorithm is a type of collective learning approach that involves the creation of numerous 

decision trees during the training phase. The output of this algorithm is determined by the mode of the classes in the 

case of classification or the mean prediction in the case of regression, as determined by the individual trees (Gray et 

al., 2013). The decision tree is a graphical tool that represents decisions and their corresponding outcomes in a tree-

like structure. The nodes depicted in the aforementioned graph signify an occurrence or determination, whereas the 

boundaries denote the norms or circumstances governing the decision. Each arboreal structure is comprised of 

interconnected nodes and branches. According to reference (Mahesh, 2020b), nodes in a classification group 

represent attributes, and each branch represents a potential value for the corresponding node. The Support Vector 

Machines (SVM) technique is a supervised machine learning approach that can be utilized for classification or 
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regression tasks. Support Vector Machines (SVMs) are capable of generating a hyperplane or a series of hyperplanes 

that are suitable for classification in a space with a large number of dimensions (Awad & Khanna, 2015). The Naive 

Bayes algorithm is a statistical technique that utilizes Bayes' theorem to estimate the likelihood of a specific category 

based on the existence or non-existence of specific features (Saritas & Yasar, 2019). The K-Nearest Neighbors 

(KNN) algorithm is utilized for classification of a new data point, which relies on a group of its K-Nearest Neighbors 

in the area of features (Guo et al., 2003). The algorithms have versatile applications in classification tasks, and the 

selection of an appropriate algorithm is contingent upon the problem's characteristics and the data at hand. 

3.  Materials Method 

3.1. Data Set 

Alzheimer's disease is a progressive neurodegenerative disorder affecting millions of people worldwide. Early 

diagnosis, timely intervention, and management of this disease process are very important in Alzheimer's disease. 

In this study, we propose a transfer learning-based early detection approach for Alzheimer's disease using the 

moderate demented, mild demented, no demented, and very mild demented classification sets. In this context, the 

dataset obtained through Kaggle website consists of 6400 images in total. In the data set we obtained, the images in 

the train and test sections were combined and applied on the basis of random selection. The distribution of the images 

in the dataset is shown in Table 1. 

Table 1. Dataset distribution of images by alzheimer class. 

Data set percentage distribution rates 

Non-

Demented 

Very Mild 

Demented 

Mild 

Demented 

Moderate 

Demented 

50% 35% 14% 1% 

 

In the course of the initial development of machine learning models, the data set is split into the training data set and 

the test data set, and this is a vital concern for the process of learning as well as the evaluation of the model. 

A training set is a segment of data that the machine learning algorithm is going to utilize within the training process. 

The machine learning algorithm learns relationships and patterns according to the data in the set used for training. 

The training set is the data collection utilized to develop and optimize the model. The set of tests is a distinct data 

set utilized to evaluate the efficacy of the model. This dataset is used to ascertain how the model performs on actual 

world data. The test set is used to evaluate the accuracy, precision, or other performance metrics of the model. The 

allocation of the data set is usually conducted in a randomized fashion. A certain percentage of the data set (typically 

70%–80%) is utilized as the training set, while the remaining percentage (usually 20%–30%) is allocated as the test 

set. This procedure of separation provides a distinct data set that is used to evaluate the extension ability of the 

model. In short, if the data set is being utilized, it is split into two distinct portions: the "training set" and the "test 

set". The training set is used to train and optimize the model's parameters, whereas the test set is the data set assigned 

to assess the performance of the predictive algorithm. 
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Figure 1. MRI images randomly selected from the dataset. 

Figure 1 depicts a set of MRI images arbitrarily selected from the Alzheimer dataset. The images is jpeg format and 

represent various segments or views of the brain obtained via magnetic resonance imaging (MRI) technology. These 

images are essential for identifying multiple neurological disorders while examining the structures of the brain. The 

randomly chosen group of MRI images guarantees an assortment of the dataset and assists with training and 

evaluating machine learning algorithms for tasks that include image categorization, division, or identifying 

abnormalities in brain scans. In this investigation, a selection of brain scan images was used to classify Alzheimer's 

disease. A dataset was utilized. The dataset includes a total of 6,400 unique images. Each image depicts a distinct 

person at various phases of Alzheimer's disease progression and is labelled with one of four categories:  

Mild Dementia: 896 images in this category show people with mild dementia. 

Moderately Dementia: The category with the fewest images, 64, represents individuals with moderate dementia. 

Non-Dementia: This category contains 3,200 images depicting individuals without dementia symptoms. This 

category consists of 2,240 individuals with a very moderate form of dementia. This consists of images. 

Compared to the Mildly Demented and Moderately Demented categories, we observe that the dataset's distribution 

is asymmetrical. It should be noted that more images were discovered in the Non-Dementia and Very Mild Dementia 

categories. This imbalance can be identified during classification model training and evaluation. can result in some 

complications. Understanding the distribution of images within various categories is crucial for evaluating the 

representativeness and correctly interpreting classification results. 

3.2. Performance metrics 

3.2.1. F1 Score 

The F1-score is a performance evaluation metric utilized in the field of machine learning to quantify the balance 

between precision and recall. The measure in question is the harmonic mean of the precision and recall metrics of 
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the model. This metric is deemed to be balanced as it takes into account both precision and recall. The F1-score is 

calculated according to the following formula: 

Precision refers to the proportion of accurate positive forecasts produced by the model, while recall pertains to the 

proportion of true positive cases in the dataset. The F1-score is a useful metric in the context of imbalanced datasets, 

where one class has a substantially larger number of instances than the other. Under such circumstances, the 

dependability of the model's performance as an indicator of accuracy may be compromised due to potential bias 

towards the majority class. The F1-score is deemed to be a more precise measure of a model's performance as it 

takes into account both precision and recall (Huang et al., 2015). 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙) / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙) (1) 

Equations 1 shows that F1 score formulas. The score for F1 is typically applied to binary classification tasks, but it 

can also be applied to multi-class classification tasks by calculating the F1-score for each class and then averaging 

them. In conclusion, the F1-score is a valuable performance evaluation metric in machine learning that provides a 

balanced evaluation of the model's precision and recall. It is especially valuable for unbalanced datasets and can be 

applied to multiclass classification tasks. 

3.2.2. Recall 

In machine learning, recall is a performance evaluation metric that measures the proportion of true positives among 

all positive instances in the dataset. Also called sensitivity or true positive rate. Calculating recall is as follows: 

Equation 2: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) (2) 

During which true positives are the number of instances correctly classified as positive and false negatives are the 

number of instances incorrectly classified as negative when they are actually positive. Recall is especially useful in 

situations where the identification of positive instances is crucial, such as medical diagnosis and fraud detection. In 

such situations, a high recall is desired, as it indicates that the model correctly identifies the majority of positive 

instances despite producing some false positives. 

However, it should be noted that a high recall rate may result in a significant number of false positives, which may 

pose challenges in specific use cases. Achieving a more thorough assessment of the model's performance necessitates 

the consideration of additional performance evaluation metrics, such as precision and F1-score, in conjunction with 

recall. Recall is a valuable metric for evaluating performance in machine learning, as it quantifies the ratio of true 

positives to genuine positive instances. The utilization of this technique proves to be particularly advantageous in 

situations where the accurate identification of affirmative occurrences holds paramount importance. However, it is 

recommended to supplement this metric with other evaluation criteria to obtain a more all-encompassing assessment 

of the model's performance, as suggested by reference (Acevedo, Jiménez-Valverde, Lobo, & Real, 2012). 
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3.2.3. Precision 

In machine learning, recall is a performance evaluation metric that measures the percentage of true positives among 

all positive instances in the dataset. Also called sensitivity or true positive rate. Recall is especially useful in 

situations where the identification of positive instances is crucial, such as medical diagnosis and fraud detection. 

Calculating precision is as follows: Equation 3: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) (3) 

An elevated recall shows that the predictive model correctly identifies the majority of positive instances in the 

dataset, whereas a low recall demonstrates that many positive instances are being missed (Sujatha & Mahalakshmi, 

2020). 

3.2.4. Confusuion Matrix 

The confusion matrix is employed as a means of evaluating the effectiveness of a machine learning algorithm. The 

confusion matrix is a quantitative depiction of the correspondence between anticipated and observed classifications. 

In the matrix, the actual class is denoted by each row, while the predicted class is denoted by each column. The 

matrix displays the count of correct and incorrect forecasts produced by the model for every category. 

3.3. Procedure 

 

Figure 2. Procedure for alzheimer classification. 

Figure 2 shows a process step consisting of the paths we have followed. These steps are, respectively: 

Data preprocessing: Several pre-processing steps were undertaken to enhance the quality and compatibility of the 

data prior to classifying the images. Included in these stages are the following: All images were resized to a standard 

224x224 pixel resolution. Resizing guarantees compatibility with the pre-trained models employed for feature 

extraction. 

Classification

Feature 
Selection And 

Dimension 
Reduction

Feature 
Extraction

Data 
Preprocessing

Image 
Dataset
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Normalisation: To facilitate optimal model performance and convergence, the pixel values of the images were 

normalised to a specific range (e.g., [0, 1]). 

Using Pretrained Models for Feature Extraction: Using several pre-trained deep learning models, transfer learning 

was used to extract informative features from brain scan images. For feature extraction, the VGG19, ResNet50, 

InceptionV3, DenseNet121, and EfficientNet models were utilized.  The pre-trained model was used to extract 

meaningful features from each image. The images were processed by the model, and the output of the final 

convolutional layer was used as a representation of feature vectors. This process transformed high-dimensional 

images into concise and informative representations of their features. 

Data Partitioning: The dataset was separated into training and test sets so that classification models could be 

accurately evaluated. A common division ratio of 80:20 was employed, with 80% of the data reserved for model 

training and 20% for testing and performance evaluation. In order to assure impartial evaluations, stratified sampling 

was used to divide the data. By conserving the original class distribution in both the training and test sets, this 

technique avoids imbalance issues during model training and evaluation. 

Selection of Features and Dimensionality Reduction: To reduce the dimensionality of the extracted features and 

mitigate the risk of overfitting, dimension reduction techniques such as Principal Component Analysis (PCA) were 

utilized. The training set was subjected to PCA by selecting the most pertinent components that encapsulate the 

majority of the data's variance. Depending on the investigation, the number of selected components can fluctuate; 

different values were tested, and for this study, 2000 components were chosen. 

Using specified features from each pre-trained model, K-Nearest Neighbours (KNN), Support Vector Machines 

(SVM), Gaussian Naive Bayes (GNB), Decision Tree Classifier, Random Forest classifiers were trained and 

assessed. For each classifier, specific steps were followed: 

Training data consisting of selected features obtained after dimensionality reduction were used to train each 

classifier. 

• The classifiers were adapted to the training data by learning the underlying patterns and relationships 

between features and their corresponding Alzheimer's disease classes. 

• Once the classifiers were trained, they were evaluated using the previously separated test data. The test data 

was fed to the trained classifiers to predict class labels. 

• Performance metrics such as accuracy, precision, recall and F1-score were calculated to evaluate the 

classification performance of each model. 

• Furthermore, confusion matrices were constructed to visualise the distribution of predicted classes and to 

identify misclassifications or biases in the models' predictions. 
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4. Result and Discussion 

In this study, the KNN, SVM, Decisiontree, Randomforest, and GaussianNB algorithms are used to evaluate the 

efficacy of various deep learning models such as ResNet50, VGG, DenseNet121, EfficientNet, and InceptionNet; 

the evaluation metrics and confusion matrices are depicted in Figures 3-7.  

Several evaluation metrics, including accuracy, F1 score, recall, and precision, are used to determine the efficacy of 

our proposed method. Confusion matrices were generated to obtain insight into the model's predictive capabilities 

and to identify potential misclassification areas. 

Figure 3 illustrates the confusion matrices and evaluation metrics generated by the ResNet50 architecture and KNN 

algorithm. The confusion matrices demonstrate the efficacy of the model by comparing the distribution of predicted 

classes to the distribution of actual classes, with diagonal elements representing instances that were correctly 

classified. It is observed that its rate of accuracy is 0.97. 

The accuracy, F1 score, and recall metrics for each ResNet50 architecture SVM model are displayed in Figure 4. 

These metrics assess classification performance quantitatively. The accuracy metric represents the overall correct 

classification rate, whereas the F1 score evaluates the model's ability to correctly classify positive and negative 

examples by incorporating both precision and recall. The recall metric measures the model's ability to accurately 

recognize all positive examples. By comparing these metrics across various models, we can determine which 

architecture provides the highest levels of precision and diagnostic capability. It is evident that its accuracy rate is 

0.98. It is observed that its rate of accuracy is 0.98. 

Figure 5 demonstrates the accuracy, F1 score, recall, and confusion matrix for the ResNet50 architecture 

GaussianNB model. It has been determined that its accuracy rate is 0.61. 

The accuracy, F1 score, and recall measurements, as well as the confusion matrix, for the ResNet50 architecture 

Decisiontree model are displayed in Figure 6. It is observed that its accuracy is 0.69. 

Figure 7 depicts the accuracy, F1 score, and recall measurements, as well as the confusion matrix, for the 

Randomforest model based on the ResNet50 architecture. It is observed that its rate of accuracy is 0.88. 

The evaluation metrics and visualisations presented in this study provide a comprehensive analysis of the 

performance of ResNet50, VGG, DenseNet121, EfficientNet, and InceptionNet architectures in the classification of 

Alzheimer's disease severity. These findings contribute to our comprehension of the strengths and limitations of 

each model, aiding in the development of more accurate and reliable Alzheimer's disease diagnostic instruments. 
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Figure 3. Resnet 50 KNN algorithm confusion matrix and performance metric. 

   

Figure 4. Resnet 50 SVM algorithm confusion matrix and performance metric. 

 

 

  

Figure 5. Resnet 50 GaussianNB algorithm confusion matrix and performance metric. 
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Figure 6. Resnet 50 Decision tree algorithm confusion matrix and performance metric. 

 

 

 

Figure 7. Resnet 50 random forest algorithm confusion matrix and performance metric. 
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Figure 8. Algorithm models accuracy comparision. 

Figure 8 shows the performance of different deep learning models such as ResNet50, VGG, DenseNet121, 

EfficientNet, and InceptionNet with accuracy ratios obtained using KNN, SVM, decision tree, random forest, and 

GaussianNB algorithms. The best accuracy ratios for the KNN model are densenet121 and resnet50. For the SVM 

model, the best accuracy ratio is RESNET50 with 0.98. For Random Forest, Resnet50 was 0.88 with accuracy, while 

for GaussianNB and Decision Tree, it was RESNET50 with 0.61 and 0.69, respectively. 

 

Figure 9. Algorithm models accuracy means. 
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Figure 10. Architectures accuracy means. 

Figure 9 shows the performance of ResNet50, VGG, DenseNet121, EfficientNet, and InceptionNet deep learning 

models with mean accuracy ratios obtained using KNN, SVM, decision tree, random forest, and GaussianNB 

algorithms. This figure shows the best mean accuracy is KNN algorithm as like show in the figure 0,94 accuracy. 

Figure 10 shows the performance of with mean accuracy ratios obtained using KNN, SVM, decision tree, random 

forest, and GaussianNB algorithms with using ResNet50, VGG, DenseNet121, EfficientNet, and InceptionNet deep 

learning models. This figure shows the best mean accuracy is transfer learning algorithm is Resnet50 as like show 

in the figure 11 0,8226 accuracy. 

Investigation on the same dataset in literature, Mggdadi et al. (Mggdadi et al., 2021) obtained a maximum accuracy 

of 49.9% with the Adam optimizer and 70.3% with the VGG16 model.  Acharya et al. (Acharya, Mehta, & Singh, 

2021) reported accuracy rates of 88.89% with CNN, 85.07% with VGG-16, 75.25% with ResNet50, and 95.70% 

with Modified AlexNet. Assmi et al. (Assmi, Elhabyb, Benba, & Jilbab, 2024) observed overall accuracy rates for 

models that VGG-19 (92.86%), VGG-16 (92.83%), Inception-V3 (91.04%), Xception (90.57%), ResNet-50 

(85.99%), and DenseNet169 (88.64%). 

5. Conclusion and Recommendations 

Transfer learning is used in this investigation to derive features from brain MRI images. For Alzheimer's stage 

classification, these features were used to train and assess traditional machine learning algorithms such as Support 

Vector Machines (SVM) and K-Nearest Neighbors (KNN). Our objective was to assess the efficacy of transfer 

learning in conjunction with these algorithms for the classification of dementia using brain MRI data. 

Utilizing brain MRI images to classify dementia stages, our experimental analysis revealed that transfer learning 

significantly enhances the performance of both SVM and KNN classifiers. The extracted features capture crucial 

patterns and information, allowing classifiers to achieve greater accuracy, precision, recall, and F1 scores than when 

using raw image data. 
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VGG19 and ResNet50 consistently outperformed the other architectures, obtaining superior precision, recall, and 

F1 scores across most classes. EfficientNetB7 and EfficientNet0 also demonstrated promising performance, 

particularly when paired with SVM and Random Forest classifiers. InceptionV3 demonstrated average performance, 

whereas GaussianNB struggled to provide precise classifications across all architectures. It is essential to note, 

however, that the performance of these models can be affected by the extent and quality of the dataset as well as the 

characteristics of the population under study. To determine the generalizability of these results, additional research 

and validation on larger and more diverse datasets are required. 

In conclusion, our research emphasizes the promising potential of deep learning models for the classification of 

dementia using brain MRI images. The superior performance of these models opens up new avenues for the 

development of accurate and trustworthy dementia diagnostic instruments. Continued advances in deep learning 

techniques and access to larger datasets will enhance the accuracy and clinical applicability of these models. 
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