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 Firstly, Landslide Susceptibility Maps of the study area were produced using Frequency Ratio 
and Modified Information Value models. Nine factors were defined and the Landslide 
Inventory Map was used to produce these maps. In the Landslide Susceptibility Maps obtained 
from the Frequency Ratio and Modified Information Value models, the total percentages of 
high and very high-risk areas were calculated as 10% and 15%, respectively. To determine the 
accuracy of the produced Landslide Susceptibility Maps, the success and the prediction rates 
were calculated using the receiver operating curve. The success rates of the Frequency Ratio 
and Modified Information Value models were 82.1% and 83.4%, respectively, and the 
prediction rates were 79.7% and 80.9%. In the second part of the study, the risk situations of 
125 km of forest roads were examined on the map obtained by combining the Landslide 
Susceptibility Maps. As a result of these investigations, it was found that 4.28% (5.4 km) of the 
forest roads are in very high areas and 4.27% (5.3 km) in areas with high landslide risk areas. 
In the last part of the study, as an alternative to forest roads with high and very high landslide 
risk, 9 new forest road routes with a total length of 5.77 km were produced by performing 
costpath analysis in with geographic information systems. 
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1. Introduction  
 

Disasters are essentially different types of events, 
whether natural, technological, or human-induced, that 
have adverse consequences in terms of physical, 
economic, and social losses. These events have a 
significant impact on societies by disrupting normal life 
and are beyond the capability of local interventions to 
prevent [1]. There are many disasters that affect life in 
the world, and landslides are one of these types of 
disaster. Landslide: commonly defined as the movement 
or sliding of material, typically consisting of soil, rock, or 
their mixture, on the surface, often leading to human 
casualties and property loss, is a prevalent type of natural 
disaster [2, 3]. 

According to data from the Emergency Events 
Database (EM-DAT), it was reported that 765 individuals 
lost their lives due to landslides in Türkiye from 1923 to 
2023, with a total of 14,740 people being affected by this 
calamity. Furthermore, an observation indicates that 
over half of the natural disasters occurring in Türkiye 
during the same period were geophysical in nature, 

incorporating landslides [4]. In addition, it was also 
found that Trabzon province, which includes the study 
area, was the first province in Türkiye in terms of the 
number of landslides with 38 fatalities and 336 fatalities 
in terms of the number of incidents and fatalities [5]. To 
reduce the devastation caused by landslides, it is crucial 
to identify the areas at risk of potential landslides [6, 7]. 

One of the map types commonly used to identify 
potential landslide areas is the landslide susceptibility 
map (LSM) [8-22]. A LSM is a type of map that generally 
defines the relative susceptibility of areas within a region 
to landslide hazards [23-26]. The use of this type of map 
by local governments and practitioners in activities for 
various purposes (route and appropriate site selection, 
etc.) will make it possible to reduce the destructive 
power of landslide disasters. 

Numerous scientific studies have investigated 
different methods for generation of LSMs. In [27] the 
models used to generate LSM were categorized into three 
different classes: based on physical, heuristics, and 
statistics. Physically depended on models employ 
mechanical rules to control slope stability. The most 

https://dergipark.org.tr/en/pub/ijeg
https://dergipark.org.tr/en/pub/ijeg
https://doi.org/10.26833/ijeg.1355615
https://orcid.org/0000-0002-6152-6351
https://orcid.org/0000-0003-4632-9349
https://dergipark.org.tr/en/pub/ijeg/issue/86286/1355615


International Journal of Engineering and Geosciences, 2024, 9(2), 147-164 
 

148 
 

important advantage of this model is that it can be used 
more efficiently than other models in cases where the 
data used to generate the LSM are missing or insufficient 
[27, 28]. In heuristic-based models, the factors used to 
produce the LSM are first identified. Each factor is then 
scored by experts by comparing it with other factors [28]. 
There are heuristic-based models such as the fuzzy logic 
approach [29-33] and the analytical hierarchy process 
[16, 30, 34-37]. Conversely, statistical models, intend to 
predict future landslide disasters by correlating previous 
landslides and the factors that triggered them. Logistic 
regression [38-44] frequency ratio (FR) method [16, 45-
49], information value (IV) model [7, 26, 36, 50, 51] and 
the modified information value (MIV) [32, 52] are among 
the statistical models employed during the generation of 
LSM. FR and MIV models, which are statistical-based 
methods, ensure that the accuracy of the produced map 
is more reliable and understandable compared to other 
methods [53]. Therefore, FR and MIV methods have been 
used in many studies [54-59,52,60]. 

In forested areas affected by landslides, another at-
risk element is forest roads [61-64]. Forest roads, which 
are the subject of the aim of the research, are the roads 
located in the forest area and allow the forests to be put 
into operation in a rational way by systematically 
penetrating every part of the forest. Forest roads are an 
important physical element for the implementation of 
forestry policies. In addition, these roads should be 
constructed in such a way as to cause the least damage to 
the stand, land and natural nature, and the maintenance, 
construction and transportation works of the roads 
should be investigated in a sensitive and detailed way to 
carry out the works at minimum cost [65]. The 
destruction of forest roads because of unplanned and 
disorganized design causes forestry activities to not be 
carried out in a healthy way and causes many 
environmental problems that affect social life and nature. 
Landslide disaster, which has a significantly more 
destructive effect in the region compared to other 
disaster types, has become one of the most important 
factors to be considered during the design and building 
of forest roads. Therefore, considering the LSMs of the 
region to produce forest road routes makes it possible for 
the forest roads to be healthy and long-lasting. 

The objective of this study is to determine alternative 
forest roads using the produced LSMs. To achieve this 
goal, firstly, LSMs of Tonya district were produced using 
FR and MIV methods and the performances of these 
methods were compared. In addition, unlike the previous 
scientific studies focused on developing LSM, this work 
investigated the landslide risk associated with the forest 
roads currently under the responsibility of the forest 
regional directorate. Lastly, this research is to create new 
routes for the forest road using costpath analysis. These 
routes will then be compared with the existing roads. 
This study offers an exemplary approach to developing 
optimal alternative routes for forest road in landslide-
prone areas. By designing forest road routes while 
considering LSM, it will be possible to prevention 
potential natural disasters caused by landslides in the 
future and support the successful implementation of 
forestry policies in a sustainable manner. 

2. Method 
 

2.1. Study area 
 

Based on the report compiled from extensive 
research conducted by the Provincial Disaster and 
Emergency Directorate, Trabzon province in Türkiye has 
experienced the highest number of landslides among all 
other provinces, with a total of 1673 occurring between 
1950 and 2019. In addition, considering the count of 
landslides that occurred in 2019, Trabzon ranks first 
with 102 landslides [66]. The most recent statistical data 
regarding landslide disasters at the provincial level is 
based on the year 2019. 

In this study, the town of Tonya in the Trabzon 
province was selected as the study area (Figure 1). The 
Tonya district, located within Trabzon, stands out as one 
of the prominent districts in terms of the frequency of 
landslide incidents and the number of people affected by 
these disasters. The study area contains very steep 
regions in terms of topography. Additionally, since the 
annual average precipitation value in the region is 
approximately 2200 mm, it has been observed that the 
region has a very high tendency towards landslide and 
rockfall disasters. When examining the lithological 
structure of the research area, it has been noted that the 
region mostly consists of volcanic and volcano-clastic 
units [67]. 

The altitude values of Tonya district, characterized by 
its steep terrain, range between 250 and 2350 m, with 
slope values varying between 0° to 80°. 

According to the 2020 data for Tonya district, which 
covers an area of 264 km2, the population density is 
13914. The region experiences a transitional climate, 
combining the characteristics of the Black Sea climate 
and continental climate. During the summer months, the 
temperature in the area reaches around 20°C, while in 
the winter months; it drops to approximately 6-7°C [68]. 

 
2.2. Workflow 

 
The process steps applied in this study were 

converted into a workflow chart as depicted in (Figure 2). 
Figure 2 summarizes the methodology in the article. 

The geological and geomorphological factors used in the 
production of the landslide susceptibility map and the 
landslide inventory map of the study area constitute the 
data production part of this study. The landslide 
inventory map is randomly divided into training (70%) 
and validation (30%) data. The production of landslide 
susceptibility maps of the study area using two different 
models constitutes the second stage of the study. Then, 
the verification phase of the landslide susceptibility maps 
produced was started. At this stage, the verification of the 
maps was carried out with the help of verification data 
randomly derived from the landslide inventory map. 
Then, the risk status of existing forest roads was 
examined using validated landslide susceptibility maps. 
Finally, alternative forest road routes were produced on 
the base map created by combining landslide 
susceptibility maps. 
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Figure 1. Study area. 

 

 
Figure 2. Workflow.
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2.3. Factors used in the production of LSM 
 
LSM is a type of map that illustrates the tendency of 

areas in a region for landslide disaster, divided into 
various classes. Type of map is generated based on the 
correlations between the landslide inventory map (LIM) 
and the factors that trigger the landslide [28, 35]. 

The production of a LSM is primarily based on the 
availability of a LIM. An LIM serves as a foundational map 
created for a specific region and at a particular scale. This 
map encompasses spatial data related to landslide 
disasters that have occurred in a region from the past to 
the present. The spatial information in the map includes 
details about the position and magnitude of the landslide 
events [16]. The precise and reliable generation of an LIM 
significantly influences the accuracy of all derived 

products from it. Therefore, it is crucial to establish a 
well-designed LIM specifically tailored for the area to 
achieve high level of correctness in the LSM.  

In this study, the utilized LIM was created through the 
digitization of reports obtained from comprehensive 
area surveys conducted by the General Directorate of 
Mineral Research and Exploration. As a result, the 
produced LIM for the study area encompasses 33 distinct 
landslide zones, covering a total surface area of 15.68 
km2 (Figure 3). 

Within the context of this application, the generated 
LIM is categorized into two distinct groups: training data 
and validation data. In this context, 23 landslide areas 
were arbitrarily determined as training data (70%) and 
10 landslide areas as validation data (30%) (Figure 3). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. LIM for the study area. 
 

The selection of the factors used in the production of 
the LSM is a significant research topic that directly affects 
the applicability and realism of the LSM. Since the 
parameters that trigger the landslide vary from region to 
region, the morphological, physical, geological, and 
meteorological characteristics of that region should be 
considered in the production of a LSM for a region [7]. 

In this study, nine main factors triggering landslide 
have been identified. These factors include slope, aspect, 
elevation, lithology, land use, distance to road, distance 
to drainage, curvature, and topographic wetness index 
(TWI). 

It is expected that the factors used in the LSM 
produced with the help of statistical-based models are 

independent of each other and therefore the correlations 
between them are weak [36]. Two main indices used in 
the determining this correlation are, Tolerance (TOL) 
and variance inflation factor (VIF), which are frequently 
employed in the scientific researches. If the TOL value 
exceeds 0.1 or the VIF value is below 10, it signifies that 
the factors employed in generation the LSM are mutually 
independent, indicating a lack of significant correlation 
among them [69, 70]. The TOL and VIF values of the 
factors employed in this research were obtained with the 
help of the R software, which is one of the statistical-
based software (Table 1). When the calculated TOL and 
VIF values of all factors were considered, it was observed 
that there was no strong relationship among the factors. 
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Table 1. Indicative values of factors. 
Factors VIF TOL 
Slope 1.5406 0.6491 

Aspect 1.0527 0.9499 
Elevation 1.4720 0.6793 
Land Use 1.1828 0.8455 
Lithology 1.0206 0.9798 

TWI 1.3261 0.7541 
Curvature 1.1203 0.8926 

Distance to drainage 1.1105 0.9005 
Distance to roads 1.4928 0.6699 

 
In this research, the factors employed in generating 

the LSM were prepared by utilizing a map with a scale of 
1: 25,000 and a contour interval 10 meters. This process 
was carried out through Topo to Raster analysis in the 
ArcGIS program and a high-resolution digital elevation 
model (DEM) with a resolution of 10 m x 10 m was 
created. Consequently, slope, aspect, elevation, TWI, and 
distance to drainage, which are utilized in the generation 
of the LSM, were created employing the DEM data 
through the utilization of ArcGIS software. 

Slope is considered one of the most important factors 
that can affect landslide disaster. Many scientific articles 
in the literature support the view that increasing the 
slope angle increases the susceptibility to landslide [71, 
72]. Slope, which is frequently used in the production of 
susceptibility maps, has been preferred as the main 
factor in many scientific studies produced today [29, 36, 
73, 74]. The slope factor produced for this study is 
divided into a total of 10 subclasses at 5° intervals 
(Figure 4c). Aspect is another important factor used in 
the production of LSMs. This type of disaster occurs on 
slopes with a certain orientation. Sunlight, drainage, and 
climatic effects of the regions facing different aspects of 
the land include differences. Therefore, the tendency 
levels towards landslide disasters of regions with 
different aspect values are also different [75]. The aspect 
produced for the research area is separated into 9 
different groups in total (Figure 4a). Elevation is another 
important factor used in the production of a LSM. The 
elevation value of a region is an important criterion that 
directly affects the gravitational potential energy in that 
region [76]. In this study, the elevation factor used in the 
production of the LSM was divided into a total of 10 
subclasses (Figure 4b). Lithology is another factor used 
in this study. The types of materials in the existing layers 
under the ground have different properties and types of 
movement from each other. Since the sliding movements 
and water permeability resistances of each material 
structure are different from each other, their effects on 
slope stability are also different [77]. The lithology map 
used was created using ArcGIS software, utilizing the 
geological map created at a scale of 1:25000 (Figure 4d). 
In the lithology map generated for the study area, there 
are 9 different soil types (Kru1, Kru2, Kru3, Kru4b, 
Kru5b, Kru5a, Gama2, Jlh, Ev). The outcropping units of 
the study area mostly consist of volcanic and volcano-
clastic units. The age of these units fallows a sequence 
from the Jurassic to the Late Cretaceous and ends with 
the Eocene. There are Eocene aged, units expressed as Ev 
consisting of basalt, andesite and pyroclasts and 
containing partly sandy limestone, and Gama2 units with 

granite, granodiorite, quartz diorite and dolerite 
structures. While Kru1, Kru2, Kru3, Kru4b, Kru5a, basalt, 
andesite, dacite, rhyodacite and pyroclasts from Late 
Cretaceous units, Kru5b has sandy reef limestone 
content. When the spatial dispersion of these units in the 
research area is analyzed, it becomes apparent that the 
Ev units have the highest frequency, comprising 
approximately 35% of the total. Curvature is another 
basic terrain factor used in the production of a LSM. This 
type of factor, defined as the slope angle or the amount of 
change in aspect, is divided into 3 classes: concave, flat 
and convex [77]. The factor in question was created using 
ArcGIS software with the DEM (Figure 4g). Land use is 
another factor commonly utilized in LSMs. Land use is a 
type of map in which land and soil are classified 
according to their capabilities, taking into account 
climatic characteristics. In this type of map, based on 
basic soil surveys, the soil is divided into eight classes. 
The first four classes include lands with land structure 
suitable for agriculture. On the other hand, the last four 
classes include the classes where there are pastures, 
forests and lands suitable for natural life, which are not 
suitable for agriculture. The first four and the last four 
classes are ordered according to their profile shape and 
slope level. Within the study area, four classes (I, IV, VI, 
and VII) have been identified (Figure 4f). The 
topographic wetness index (TWI) is an additional factor 
that measures the influence of water movement and 
accumulation on the terrain across the basin [78]. The 
TWI is commonly employed to assess the influence on 
hydrological processes. Calculation of this index is 
achieved through Equation 1. 

 

𝑇𝑊𝐼 =   𝑙𝑛 
𝑎

𝑡𝑎𝑛𝛽
 (1) 

 

Where a value represents the upward slope area at 
the unit point, and the tanβ value represents the slope 
angle at the point. This factor, which was produced using 
ArcGIS software with the help of DEM, was divided into 5 
subclasses in total in this study (Figure 4e). Another 
factor generated from the DEM is the distance to the 
drainage. This factor was generated using the 
hydrological analysis module, which is one of the spatial 
research tools provided in the ArcGIS software. The 
factor to drainage network was computed for the 
research area and separated into 10 subclasses. The 
maximum distance to the drainage network was 
determined as 2260 m (Figure 4h). The distance to the 
road factor is another important aspect considered in 
this study. The road network, often characterized by 
unplanned and haphazard construction, significantly 
influences the slope stability in the region. The road 
network was obtained from Open Street Map data and 
1:25,000 scale maps. Once the road network was 
established, the process of creating the distance map to 
the road network commenced. The ArcGIS software was 
employed to determine the distance from every pixel to 
the road network. The distance to the road factor was 
separated into 10 subclasses (Figure 4i). Using the 
ArcGIS software, all factors employed in the production 
phases of the LSM were converted into raster, ensuring a 
spatial resolution of 10 m. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 4. Factors used in LSM (a: aspect, b: elevation, c: slope, d: lithology, e: TWI, f: land use, g: curvature, h: distance 
to drainage, i: distance to road). 

 
2.4. Models used in the production of LSM 

 
Two different models, FR and MIV, were used in the 

production of LSMs of the study area. 

2.4.1. FR model  
 
Various approaches exist for predicting future 

landslides. The FR model employs a methodology that 
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seeks to establish a correlation between the factors 
influencing past landslides and those that may take place 
in times to come. The primary objective of the FR model 
is to estimate potential landslides by analyzing the 
factors that have triggered previous occurrences of 
landslides. By employing this approach, it becomes 
possible to gain a comprehensive understanding of the 
relationship among old landslide data and the probability 
of future landslide occurrences [28, 54, 55]. The FR 
model, which is one of the statistical-based approaches, 
has a simpler and more understandable structure 
compared to others. Moreover, the FR model is a reliable 
model type that is frequently used in the production of 
LSMs that require high accuracy and precision. For this 
reason, the FR model has been used in numerous 
scientific researches to produce LSMs. In this study, each 
of the factors affecting the landslide is divided into 
various subclasses. FR model values of each class were 
calculated with Equation 2. 

 

𝐹𝑟 =

𝑁𝑝𝑖𝑥(𝐿𝑖𝑗)

𝑁𝑝𝑖𝑥(𝐿)

𝑁𝑝𝑖𝑥(𝑆𝑖𝑗)
𝑁𝑝𝑖𝑥(𝑆𝑎)

 (2) 

 

In this context, Npix(Lij) signifies the count of pixels 

located within the landslide area belonging to the jth 
subclass of factor i, Npix(L) the all count of pixels within 

all landslide areas in the study area, and Npix(Sij) denotes 

the corresponding count of pixels. And finally, Npix(Sa)  

represents the all count of pixels. 
Factors with FR values higher than 1 are known to 

have better correlations with landslide areas than factors 
with FR values lower than 1 [28].  The sum of the FR 
values of each subclass is equal to the landslide 
susceptibility index (LSI). Equation 3 is used to calculate 
this index value. 

 

𝐿𝑆𝐼 = ∑ 𝐹𝑟𝑖

𝑛

𝑖=1

= 𝐹𝑟1 + 𝐹𝑟2 + 𝐹𝑟3 + ⋯ + 𝐹𝑟𝑛 (3) 

 
A high index value means that the region has a high 

tendency to landslide disaster. The LSI values calculated 
for the study area change among 3.00 and 14.11 (Table 
2). 

The FR model was utilized to create the LSM. The map 
was separated into 5 groups in total, considering the risk 
situation (Figure 5). 

 
2.4.2. MIV model  

 
One of the other statistical-based models frequently 

used in the literature is the MIV model. The MIV model is 
a type of model that is depend on information theory and 
works in accordance with a statistical data analysis 
method [79]. 

This model has an approach that considers the 
information values of the factors used in the production 
of the LSM. In this context, the information values of the 

subclasses of whole the factors used in the production of 
the sensitivity map were calculated with Equation 4. 

 

𝐼(𝐻, 𝑥𝑗) = 𝑙𝑛

𝑁𝑝𝑖𝑥(𝑆𝑗)
𝑁𝑝𝑖𝑥(𝑁𝑗)

∑ 𝑁𝑝𝑖𝑥(𝑆𝑗)
∑ 𝑁𝑝𝑖𝑥(𝑁𝑗)

      (4) 

 
Where, Npix(Sj) value symbolizes the total count of 

pixels falling on landslide areas in subclass j of all factors, 
and Npix(Nj) value represents the all count of pixels in 

subclass i of factors. In addition, the ∑ Npix(Sj) value 

symbolizes the whole number of pixels falling on the 
landslide areas, and the ∑ Npix(Nj) value symbolizes the 

all pixel area in the study area.  

The I(H, xj) value calculated because of the equation 

numbered 3 symbolizes the information value in the j 
subclass of the factors. 

The cumulative sum of the information values 
computed for the subclasses of all factors, as determined 
by Equation 4, equals the LSI. The specific formula is 
provided in Equation 5. 

 

𝐿𝑆𝐼 = ∑ 𝐼(𝐻, 𝑥𝑗)

𝑛

𝑗=1

 (5) 

 
A negative value of LSI means that likelihood of a 

landslide disaster to occur in the relevant region is low. 
A LSI value of zero indicates that the likelihood of a 
landslide disaster happening is average or moderate. 
Finally, a positive value of LSI means that the probability 
of a landslide disaster is above medium. 

The MIV for each subclass of the nine factors was 
determined by utilizing the landslide data from the 
training set and referring to the LIM (Table 2). The 
results obtained from the MIV model revealed a range of 
LSI values between 2.91 and 9.67. 

The LSM produced using MIV was separated into 5 
different groups in total, considering the risk situation 
(Figure 6). 

 
3. Results  
 

In line with the data obtained in Table 2, LSMs were 
generated employing both the FR and the MIV (Figure 5-
6). Each of the LSMs produced on different models is 
separated into 5 groups. 

The spatial and percentile distributions of the LSM 
produced using FR are 804.52 ha (4%), 1206.78 ha (6%), 
1206.78 ha (6%), 6637.29 ha (33%), and 10,257.63 ha 
(51%) (very high, high, medium, low and very low). The 
areal and percentage distributions of the LSM produced 
using MIV were calculated as 1206.78 ha (6%), 1810.17 
ha (9%), 4223.73 ha (21%), 6033.90 ha (30%) and 
6838.42 ha (34%). In light of these results, the areal and 
percentage distribution of high and very high classes in 
the LSMs created from the FR and MIV models are seen 
as 2011.30 ha (10%) and 3016.95 ha (15%), respectively 
(Figure 7). 
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Table 2. The FR and MIV values were calculated for the various factors. 

Factors Subclasses No. of pixels in domain 
Percentage of 

domain 
No. of landslide 

pixels 
Percentage of landslide FR MIV 

Elevation 

250-460 15,931        0.7958 381        0.2430 0.3054 0.3487 
460-670 69,396 3.4666 8702 5.5510 1.6013 1.6421 
670-880 202,706 10.1260 50,971 32.5143 3.2110 2.7893 

880-1090 352,580 17.6129 60,449 38.5603 2.1893 1.9431 
1090-1300 433,825 21.6714 27,395 17.4752 0.8064 0.9677 
1300-1510 459,035 22.9308 8211 5.2378 0.2284 0.3185 
1510-1720 297,923 14.8825 656 0.4185 0.0281 0.0590 
1720-1930 103,898 5.1902 0 0.0000 0.0000 0.0000 
1930-2140 40,919 2.0441 0 0.0000 0.0000 0.0000 
2140-2350 25,617 1.2797 0 0.0000 0.0000 0.0000 

Slope 

0-5 335,526 16.7610 22,208 14.1664 0.8452 0.9674 
5-10 104,899 5.2402 24,963 15.9238 3.0388 2.4013 

10-15 242,180 12.0979 54,410 34.7080 2.8689 1.9788 
15-20 301,487 15.0606 29,424 18.7695 1.2463 1.0370 
20-25 328,485 16.4092 13,262 8.4598 0.5156 0.7055 
25-30 305,965 15.2843 6219 3.9671 0.2596 0.4021 
30-35 213,039 10.6422 3668 2.3398 0.2199 0.2711 
35-40 110,780 5.5339 1709 1.0902 0.1970 0.3164 
40-45 41,041 2.0502 533 0.3400 0.1658 0.2253 
45-80 18,428 0.9206 369 0.2354 0.2557 0.2984 

Aspect 

Flat 390,321 19.4982 29,351 18.7229 0.9602 1.3092 
North 225,785 11.2789 33,997 21.6866 1.9228 1.5017 

Northeast 230,546 11.5168 30,017 19.1478 1.6626 1.2963 
East 176,522 8.8180 6232 3.9754 0.4508 0.8721 

Southeast 123,494 6.1691 1678 1.0704 0.1735 0.2673 
South 159,427 7.9641 1494 0.9530 0.1197 0.1933 

Southwest 240,937 12.0358 10,537 6.7215 0.5585 0.7042 
West 230,714 11.5252 20,146 12.8511 1.1150 1.0853 

Northwest 224,084 11.1940 23,313 14.8713 1.3285 1.1928 

Curvature 
<0 723,592 36.1465 57,730 36.8258 1.0188 0.9239 
0 542,316 27.0910 43,149 27.5246 1.0160 0.9410 

>0 735,922 36.7625 55,886 35.6495 0.9697 1.0498 

TWI 

0-5 579,624 28.9547 26,271 16.7582 0.5788 0.6214 
5-8 1,023,829 51.1447 96,262 61.4053 1.2006 1.0986 

8-11 214,909 10.7356 20,985 13.3863 1.2469 1.1849 
11-15 163,126 8.1488 11,280 7.1955 0.8830 0.9321 
15-25 20,342 1.0162 1967 1.2547 1.2348 1.1244 

Lithology 

Ev 729,115 36.4323 59,097 37.6978 1.0347 0.9572 
Gama2 120,665 6.0294 273 0.1741 0.0289 0.0897 

Jlh 27,885 1.3934 0 0.0000 0.0000 0.0000 
Kru1 284,953 14.2385 0 0.0000 0.0000 0.0000 
Kru2 272,579 13.6202 9175 5.8527 0.4297 0.5034 
Kru3 54,295 2.7130 3794 2.4202 0.8921 0.9593 

Kru4b 370,184 18.4973 20,575 13.1247 0.7095 0.7682 
Kru5a 124,283 6.2102 56,822 36.2466 5.8367 3.2799 
Kru5b 17,327 0.8658 7029 4.4838 5.1788 3.1080 

Distance to 
Drainage 

(m) 

0-225 494,398 24.5745 43,222 27.5712 1.1219 1.0672 
225-450 432,259 21.4859 32,462 20.7074 0.9638 1.1230 
450-675 393,813 19.5749 29,953 19.1069 0.9761 1.0566 
675-900 320,570 15.9342 24,903 15.8856 0.9969 1.0834 

900-1125 216,948 10.7836 17,905 11.4216 1.0592 0.8937 
1125-1350 105,726 5.2552 6952 4.4347 0.8439 1.1028 
1350-1575 35,604 1.7697 1349 0.8605 0.4862 0.6217 
1575-1800 9789 0.4866 19 0.0121 0.0249 0.1470 
1800-2025 1741 0.0865 0 0.0000 0.0000 0.0000 
2025-2265 982 0.0488 0 0.0000 0.0000 0.0000 

Distance to 
Roads (m) 

0-180 1,314,001 65.3137 13,2982 84.8289 1.2988 1.1834 
180-360 406,420 20.2015 14,669 9.3573 0.4632 0.6217 
360-530 169,054 8.4030 4500 2.8705 0.3416 0.3922 
530-710 75,094 3.7326 1704 1.0870 0.2912 0.3758 
710-880 30,522 1.5171 1534 0.9785 0.6450 0.7004 

880-1060 10,250 0.5095 792 0.5052 0.9916 1.1028 
1060-1240 3167 0.1574 584 0.3725 2.3665 2.0793 
1240-1410 1457 0.0724 0 0.0000 0.0000 0.0000 
1410-1590 1311 0.0652 0 0.0000 0.0000 0.0000 
1590-1770 554 0.0275 0 0.0000 0.0000 0.0000 

Land Use 

I 9938 0.4940 3214 2.0502 4.1504 2.7814 
IV 235,784 11.7199 126,479 80.6806 6.8841 3.1447 
VI 276,189 13.7282 12,197 7.7804 0.5667 0.6879 
VII 1,489,919 74.0579 14,875 9.4887 0.1281 0.2019 
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Figure 5. LSM generated by the FR model. 
 

 
Figure 6. LSM generated by the MIV model. 
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Figure 7. Percentage distributions of classes in the LSM for FR and MIV models. 

 
3.1. Validation of LSMs 
 

The accuracy of the generated LSM is a very 
important criterion in terms of the applicability and 
realism of the map. Therefore, testing the correctness of 
the generated LSM is a clear indication of how reliable 
the product produced is. 

There are many methods to check the accuracy of the 
LSM produced today. The receiver operating 
characteristic (ROC) curve and the area under the ROC 
curve (AUC) are widely employed and highly reliable 
techniques in the researches [18, 35, 80, 81]. In this 
context, the precision of the generated LSM was 
evaluated employing the ROC and AUC methods. The ROC 
curve consists of two axes (horizontal and vertical). The 
X-axis is the false positive rate, while the Y-axis is the true 
positive rate. The most basic criterion used in the 
analysis of the correctness of the LSM produced in this 
curve is the AUC value. A model with values between 0.5 
and 1 AUC is defined as a model type that is adequate in 
terms of accuracy [18]. 

The accuracy of the LSMs generated employing the FR 
and MIV models was evaluated employing the success 
rate and prediction rate methods. The AUC values of the 

FR and MIV models were computed employing the 
training data from the LIM, as part of the success rate 
analysis.  

The LSMs obtained from both models were 
overlapped with the training data and the degree of 
overlap of the layers was checked. Thus, the success rate 
percentages of both models were calculated. In this 
study, the success rates of the FR and MIV models were 
computed as 82.1% and 83.4%, respectively (Figure 8). 
Prediction rate method, on the other hand, is a type of 
method that is frequently used in estimating areas that 
are prone to landslide according to the success rate 
method. This type of method aims to test how accurately 
the produced LSMs identifies areas prone to landslides 
[28, 82]. The validation dataset, which constitutes 30% 
of the LIM and includes ten randomly determined 
landslide areas, was used to estimate the areas prone to 
landslides. In this context, the AUC values for the FR and 
MIV models are 79.7% and 80.9%, respectively (Figure 
9). As a result, although the MIV model was more 
successful than the FR model in detecting areas prone to 
landslides, it was observed that both models gave very 
good results in this study. 

 
 

 
Figure 8. Success rate curves for FR and MIV models. 
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Figure 9. Curves displaying the prediction rates for the FR and MIV models. 

 
3.2. Risk situations of forest roads and 

determination of new routes 
 

This section investigates the risk conditions of forest 
roads in the study area by employing LSMs generated 
through the utilization of FR and MIV models. Within the 
study area, there are approximately 125 km of forest 
roads present (Figure 10). 

In this context, forest roads overlapped with LSMs 
produced on two different models (Figure 11). The risk 
situations on the LSMs of forest roads were evaluated by 
dividing them into 4 classes. Considering the LSM 
produced on the FR model, it was determined that 9.5 km 
(7.6%) of the 125 km forest road is on high and very high-
risk areas. In the LSM created using the MIV model, this 
value is 11.85 km (9.5%). 

 

 
Figure 10. Available forest roads in the study area. 
 
The forest roads, which are in the risky classes in the 

 

LSMs produced through both models, pose a risk in terms 
of the healthy execution of the forestry policies 
implemented by the forest enterprises in that region. 
Therefore, it is significant for the continuity of forestry 
activities to be able to produce alternative forest road 
routes instead of the risky forest roads. In the process of 
generating alternative forest road routes, a single map 
derived from the combination of 2 different LSMs 
produced with the help of different models in this study 
was used as a base map. A single map derivation from 
two different LSMs produced on different models for the 
same region was performed with the overlap analysis in 
ArcGIS software (Figure 12). 

The risk situations of the available forest roads area 
were determined by considering the high and very high 
classes in the combined LSM shown in Figure 12. The 
lengths of the existing forest roads in both classes are 
given in Table 3. In addition, in the light of the evaluations 
made on the combined LSM, it has been determined that 
5.4 km of the 125 km forest roads are in the very high 
(4.28%) class and 5.3 km in the high (4.27%) class. 
Therefore, it has been observed that forest roads with a 
length of 10.68 km in regions with high and very high 
landslide risk carry a high risk in terms of landslides. 

It is necessary to produce new alternative forest road 
routes in order not to interrupt the forestry activities in 
the region, instead of the canceled forest road routes in 
regions with high and very high landslide risk. To achieve 
this objective, costpath analysis was performed utilizing 
the ArcGIS software. Costpath analysis is a type of 
analysis that aims to determine the most suitable route 
in terms of cost, considering criteria such as slope, 
mandatory point, restricted area. In this study, the base 
map produced because of overlaying the LSM combined 
with the slope map was used as an input for costpath 
analysis. The new forest road routes obtained because of 
the costpath analysis are presented in Figure 13. In 
addition, the quantity information regarding the new 
forest road routes in question are given in Table 4. In this 
study, 10.68 km of forest roads in the study area were 
canceled due to being on risky landslide areas, while new 
forest road routes of 5.77 km were produced with the 
help of costpath analysis in the GIS. 
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(a) (b) 

Figure 11. Representation of forest roads on produced LSMs (a: FR model, b: MIV model). 
 

Table 3. Forest roads in high and very high classes, 
canceled routes. 

Forest road 
number 

Forest road intersection 
with risk classes (m) 

Canceled 
route (m) 

Very High High 
1 - 344.35 344.35 
2 - 1128.34 1128.34 
3 - 176.56 176.56 
4 - 111.80 111.80 
5 - 415.15 415.15 
6 - 322.92 322.92 
7 187.78 22.91 210.69 
8 1590.82 - 1590.82 
9 150.64 - 150.64 

10 595.98 - 595.98 
11 964.14 - 964.14 
12 442.24 - 442.24 
13 438.12 - 438.12 
14 981.72 - 981.72 
15 - 159.16 159.16 
16 - 227.7 227.7 
17 - 185.56 185.56 
18 - 595.01 595.01 
19 - 241.82 241.82 
20 - 608.23 608.23 
21 - 794.63 794.63 

Total 5351.44 5334.14 10685.58 

 
4. Discussion 
 

The LSM for the study area was initially produced by 
[67]. The author aimed to create an LSM for the region 
using a method falling, within the cluster classifier 
category known as fuzzy adaptive resonance theory 
(FuzzyART-BURT). The production of the LSM involved, 
lithology, elevation, slope, aspect, stream power index 
and TWI data. The accuracy of the LSM resulting from the 

study was assessed with the area under the curve (ROC-
EAA) method. Following the validation analysis, the AUC 
value was calculated as 0.72, indicating the success of the 
generated LSM. 

 

 
Figure 12. Base map obtained by overlaying the LSMs 

produced on the FR and MIV models. 
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To validate the produced LSMs, ROC and AUC 
parameters were employed, comparing the performance 
of the FR and MIV models using ROC curves and AUC 
analysis. According to many scientific studies, a model 
with AUC values between 0.5 and 1 is considered 
adequate in terms of accuracy [18]. The computed AUC 
values for the success rate of the FR and MIV models 
were 82.1% and 83.4%, respectively. Additionally, the 
AUC values for the predicted rate were determined as 
79.7% and 80.9% for the FR and MIV models, 
respectively. As a result, although the MIV model 
outperformed the FR model in detecting areas prone to 
landslides, both models yielded excellent results. 

 

Table 4. New forest road routes generated with costpath 
analysis. 

New route name New route distance (m) 
A-B 673.84 
A-C 797.69 
D-E 375.16 
F-G 319.79 
I-J 648.36 
P-R 254.80 
K-L 614.65 
M-N 819.08 
O-Q 1262.99 
Total 5766.36 

 

 
Figure 13. New forest road routes map. 
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5. Conclusion  
 

LSMs of the research were generated for the 
research area using two different models, namely FR and 
MIV (Figure 5-6). Given the both models are statistically 
based, it has been frequently emphasized in the literature 
that the maps created from these models are more 
understandable [32, 52]. The LSMs were generated using 
nine factors (Figure 4) with the LIM serving as another 
input. There are 33 landslide areas recorded and 
processed on the LIM in study area (Figure 3). During the 
production of LSMs with the FR and MIV models, 70% of 
the landslide areas (23 landslide areas) were utilized for 
training the models, while the remaining 30% (10 
landslide areas) were employed for model validation 
purposes. The random division of landslide areas into 
training and verification classes, was performed based 
on percentages referenced in the previous sentence 
using existing literature for both the distribution type 
and the percentages [83-87]. The second phase of the 
study involved assessing the risk conditions of existing 
forest roads based on the LSMs. In the LSMs generated 
with the help of FR and MIV models, it was determined 
that 7.6% and 9.5% of the existing forest roads are 
situated on areas with high and very high landslide risk. 
Producing new alternative forest road routes instead of 
existing forest roads in high and very high risk areas will 
facilitate forestry activities in that region. In the final 
stage of the study, a total of 9 alternative forest road 
routes were produced instead of existing routes affected 
by landslide (Figure 13) (Table 4). Costpath analysis in 
ArcGIS software was applied in the process of generating 
these alternative optimum forest road routes. This type 
of analysis frequently used in the literature, determines 
the optimum route between the start and end points [88-
91]. As a result of the analysis, 10.68 km of existing forest 
roads in the study area were canceled due to their 
location in high risk landslide areas, while new forest 
road routes of 5.77 km were proposed. The newly 
determined routes play an important role in the healthy 
and systematic execution of forestry activities. For all 
that, the LSMs created with the two different models can 
serve as a base map for practitioners when the 
generating of new forest road routes or proposing 
alternative route solutions. 
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