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Performance comparison of different clustering methods for manufacturing cell 

formation  

Sinem Büyüksaatçı Kiriş*1 , Fatih Tüysüz2 

ABSTRACT 

This study refers to cell formation, which is the fundamental and important stage of cellular manufacturing 

system design. Three widely used methods that are K-means clustering algorithm, average-linkage 

clustering algorithm and fuzzy clustering using expectation maximization algorithm for cell formation 

problem are studied. A real life application of these methods for the design of cylinder department of a 

construction equipment manufacturer is performed. The performance of each applied algorithm is evaluated 

according to intracellular voids, intracellular processing intensity and intercellular transportation measures. 

The application results indicate that K-means clustering algorithm, which is the most widely applied and 

most known one of classical clustering algorithms, is still an effective method for cell formation. 

Keywords: Cellular Manufacturing, Cell Formation, K-Means Algorithm, Average Linkage Clustering 

Algorithm, Expectation Maximization Algorithm  

İmalat hücresi oluşturulması için farklı kümeleme yöntemlerinin performans 

karşılaştırması 

ÖZ 

Bu çalışma, hücresel imalat sistemi tasarımının temel ve önemli aşaması olan hücre oluşturmaya 

değinmektedir. Çalışmada hücre oluşturma uygulamalarında yaygın olarak kullanılan üç yöntem; k-

ortalamalar kümeleme algoritması, ortalama bağlantılı kümeleme algoritması ve beklenti maksimizasyonu 

algoritmasını kullanan bulanık kümeleme algoritması incelenmektedir. Bir inşaat ekipmanı üreticisinin 

silindir bölümünün tasarımı için bu yöntemlerin gerçek hayat uygulaması gerçekleştirilmiştir. Uygulanan 

her algoritmanın performansı hücre içi boşluklar, hücre içi işlem yoğunluğu ve hücreler arası taşıma miktarı 

ölçütlerine göre değerlendirilmektedir. Uygulama sonuçları, klasik kümeleme algoritmalarından en çok 

bilinen ve en yaygın olarak uygulanan k-ortalamalar kümeleme algoritmasının hücre oluşturma için hala 

etkili bir yöntem olduğunu göstermektedir. 

Anahtar Kelimeler: Hücresel imalat, Hücre oluşturma, K-ortalamalar algoritması, Ortalama bağlantılı 

kümeleme algoritması, Beklenti maksimizasyonu algoritması  
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1. INTRODUCTION 

Global competition, changing market conditions 

and variability in customer demands, which are 

causing shorter product life cycles, force 

manufacturing firms to more focus on flexibility 

and productivity to be able sustain in such an 

environment. Group Technology (GT) that was 

introduced by Mitrofanov [1] is a theory of 

management based on the principle that similar 

things should be done similarly [2]. Cellular 

manufacturing (CM), which is the implementation 

of group technology, is an important modern 

manufacturing alternative to achieve mid-volume 

and high-variety production [3]. CM is a hybrid 

system, which takes the advantage of flexibility of 

job shops and efficiency of flow shops [3][4]. 

Design of CM systems is a three-step process that 

consists of cell formation, intracellular layout and 

cell layout [5]. Cell formation (CF), which can also 

be called as part-machine grouping problem, is the 

fundamental and crucial step of CM system 

design. CF requires forming part families 

according to their processing similarities, grouping 

machines into manufacturing cells and assigning 

part families to cells [6]. The objective of CF is 

forming manufacturing cells, which are 

independent of other cells. In other words, the 

transfer between the cells are tried to be minimized 

so that each part family is finished within the cell 

it is assigned, which is quite difficult to be 

achieved in real life applications. 

This study handles CF problem and presents three 

methods that are K-means clustering algorithm, 

average-linkage clustering algorithm and fuzzy 

clustering using expectation maximization 

algorithm. These three efficient and easy to use 

algorithms are applied for the same problem and 

their performances are compared according to 

three performance measures, which are 

intracellular voids, intracellular processing 

intensity and intercellular transportation criteria. 

The organization of the paper can be summarized 

as follows. CF problems and performance 

measures for CF with a brief literature review will 

be introduced. Then, the methods used in the study 

will be explained and the applications of these 

methods together with performance measures will 

be given. Finally, results and conclusions will be 

presented. 

2. CELLULAR MANUFACTURING 

SYSTEMS (CMS) 

Cellular manufacturing, an application of the 

philosophy of "group technology", seeks to 

achieve efficiency in production by taking 

advantage of similarities between parts. In other 

words, the goal of this system is to get more output 

with less costs and better quality in shorter time. In 

a cellular manufacturing system, the cell is 

composed of part families and similar machine 

groups [7]. The purpose of cell formation is to 

create separated machine groups in which parts are 

processed with maximum interactions than the 

other cells. 

The well-known benefits of the cellular 

manufacturing systems are given below [8][9]: 

 Material handling is reduced: In the CMS, 

the part is processed in a cell. Thus, material 

handling is reduced due to the simplified 

workflow. 

 Production time is shortened: By using the 

advantage of flow type production in the 

CMS, the production period of parts can be 

reduced. 

 The setup time is reduced: Since similar parts 

are grouped in CMS, similar configurations 

are required for these parts, which help to 

reduce the setup time. With the development 

of flexible manufacturing systems, automatic 

tool changers reduce the setting, reduce the 

machining time and produce high quality 

products at low cost. 

 Batch size can be minimized: Since the 

adjustment period in the CMS is greatly 

reduced, making small parties is economical. 

 The number of parts in the system is reduced: 

The number of parts in the system and the 

amount of in-process stock will be lower 

because the production time is reduced in the 

CMS. 

 The delivery time is determined correctly: 

The competence of the cell to produce 

predefined quantity of a part ensures that 

delivery time is determined more accurately 

and reliably. 

 Machine usage is reduced: The effective 

capacity of the machine is increased due to 

the reduction of the setup times, which leads 

to a lower use. 

 The return on investment is fast: The costs of 

lost production and resettlement of the 

machines can be easily recovered from 
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inventory, efficient usage of machines, labor 

and materials. 

 It saves labor: Due to the utilization level of 

the cell is low; it is possible to assign a 

worker to more than one machine to lead 

better utilization of the workforce. 

 Quality procedure works easily: Parts move 

from one station to another as single units or 

small parts in CMS. Hence parts are fully 

processed in a small area, the return of 

production is fast and the process can be 

stopped to find out what the error is. 

 Field acquisition: Due to the reduction in the 

number of parts in the system, significant 

amounts of usable space for adding new 

machines and expanding can be gained. 

In addition to its many benefits, CMS has also 

some weaknesses and objectionable aspects: 

 Difficulties in identifying family members: 

The creation of family members and the 

assignment of machines to cells may not 

always be easy. Part families determined by 

considering their designs may not be suitable 

from the point of view of production 

operations. 

 Challenges of balancing workload among 

cells: Balancing workflow within a cell is 

more difficult than balancing an assembly 

line. The parts can follow different orders in 

the cell, which requires different machines 

and processing times. Wrongly balanced 

cells can be very inefficient. It is very 

important to balance workload among the 

cells in CMS. 

 Employees need to be trained: The training 

of employees for different tasks is costly, 

time consuming, and requires collaboration 

among employees. 

 Additional costs incurred by reorganization: 

In CMS, multiple small machines are 

preferred to single large machines. It may be 

necessary to purchase additional cells for the 

same type of machines. In addition, the cost 

of the idle plant due to the relocation of the 

machines can also be high. 

2.1. Cell Formation (CF) 

The most important problem encountered in the 

design of CMS is cell formation. This problem, 

also referred as part-machine group analysis, 

influences the basic structure of the CMS and the 

whole layout. 

Cell formation is concerned with determining the 

part families and the machine groups on which 

these parts are to be produced [10]. The basic 

assumption in CF is that the part families can only 

be produced in certain machines or machine 

groups. For this, the existence of relations between 

parts and machines is investigated. This 

relationship is called as routing [11]. When the 

relationships are determined, the parts are 

separated into the part families in which all the 

parts in the part family are produced in the same 

machine groups. What is required here is that as 

much processing as possible is carried out on the 

machines in which the parts within the desired 

families are assigned and the interaction between 

the cells is minimized. Once the part families are 

determined, the machines that the part families 

will be processed, are also grouped. 

The success of the CF problem depends on 

considering the constraints that exist in the actual 

production environment. The most important 

constraints to consider in CF are as follows 

[12][13]:  

 Available capacity of machines must not be 

exceeded.  

 Safety and technological requirements must 

be met. The machines that can create 

dangerous interaction with each other must 

be physically farther away. 

 Number of machines in a cell and number of 

cells must not exceed an upper bound. 

 Inter-cell and intra-cell cost of handling 

material between machines must be 

minimized. 

 Machine utilization rate must be as high as 

possible.  

 Machine purchase and operating costs must 

be minimized. In CMS, the machines and 

equipment on the hands are placed to the 

cells in the most appropriate way. When 

necessary, new machinery and equipment are 

purchased. 

 Work-in-process inventory costs must be 

minimized. 

2.2. Cell Formation Methods 

During the decades, many research papers have 

been done in literature about CF methods. Some of 

them have been introduced the classification of 

these methods. King and Nakornchai [14] 

examined the methods for grouping parts and 

associated machines in four subdivisions: 
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similarity coefficient methods, set theoretic 

methods, evaluative methods and other analytical 

methods.  

Wemmerlöv and Hyer [11] divided the CF 

methods into two major groups based on the main 

data as either part attributes or machine routings. 

The latter branch for machine routings is further 

classified into three divisions, i.e. approaches that 

identify firstly the machine groups, approaches 

that identify firstly the part families, and the 

approaches that identify part families and machine 

groups simultaneously.  

Selim et al. [10] categorized these approaches into 

five subsections that are descriptive procedures, 

cluster analysis, graph partitioning, artificial 

intelligence and mathematical programming. 

 

 

Adenso-Dı́az et al. [15] classified the approaches 

as hierarchical, simultaneous and iterative. They 

also considered the use of information about the 

sequence of operations or not in their 

classification. Another issue they marked for their 

classification is use of a machine-process plans 

binary incidence matrix or a machine-operation 

processing time matrix.   

Papaioannou and Wilson [6] presented a detailed 

review about the evaluation of cell formation 

problem methodologies. They firstly categorized 

the approaches under three main headings: 

informal methods, part coding analysis methods 

and production-based methods. Then the 

production-based methods are classified as cluster 

analysis, graph-partitioning approaches, 

mathematical programming methods, heuristic 

and metaheuristic algorithms and artificial 

intelligence methodologies. 

According to previous research papers, the CF 

methods can be summarized as shown in Figure 1 

[7]. 

 

Figure 1. Classification of cell formation methods 
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2.3. Performance Measures 

In literature, there have been a variety approaches 

that used the performance measures for 

appropriate machine/part clustering. Mosier [16] 

focused on four performance measures in their 

study, which are simple matching measure, 

generalized matching measure, product moment 

correlation coefficient measure and intercellular 

transportation measure.  

Shafer and Meredith [17] compared the numerous 

cell formation techniques by using three 

companies’ data with regard to average flow time, 

maximum flow time, average distance travelled, 

number of extra-cellular operations, average work-

in-process (WIP) parts, maximum WIP and 

longest average queue.  

Chu and Tsai [18] compared the rank order 

clustering algorithm, the direct clustering 

algorithm and the bond energy algorithm using the 

four performance measures: 1) total bond energy, 

2) percentage of exceptional elements, 3) machine 

utilization and 4) grouping efficiency.  

Morris and Tersine [19] presented a simulation 

model for layout choice, which examines the 

impact of changes in setup time, transfer time, 

material handling speed and flow within cell. They 

used mean throughput time and mean level of 

work-in-process (WIP) inventory as performance 

measures for their observations. 

Miltenburg and Zhang [20] presented a 

comprehensive comparison of nine clustering 

methods. The final solutions were evaluated by 

using three independent measures that are 

grouping measure, clustering measure and bond 

energy measure.  

Burgess et al. [21] compared the traditional job 

shop environment with the cellular manufacturing 

unit by different simulation combinations. They 

computed the ratio of actual flow time to optimum 

flow time and the ratio of machine delay time to 

optimum flow time for performance evaluation. 

Rogers and Shafer [22] gave a detailed review and 

critique for the performance measures that were 

used in literature for comparing cell formation 

procedures. They categorized the performance 

measures into four subgroups: part volumes and 

sequencing not considered, part volumes 

considered, part sequencing considered and both 

part volumes and sequencing considered.  

Sarker [23] provided information for different 

measures such as grouping efficiency, grouping 

efficacy, weighted grouping efficacy, grouping 

index, grouping capability index, and grouping 

measure. Sarker (2001) also introduced a new 

performance measure that is called doubly 

weighted grouping efficiency measure. This new 

measure showed better performance than some of 

the existing measures in order to capture both 

inter-cell and intra-cell movements in cellular 

manufacturing system. 

Keeling et al. [24] examined optimal machine and 

part grouping for several problems from the 

literature using grouping genetic algorithm. 

Through their application, they investigated the 

impact of four efficiency measure that are 

grouping efficacy, grouping index, grouping 

capability index, doubly weighted grouping 

efficiency on various factory measures, such as 

flow time, wait time, throughput, machine 

utilization etc.  

3. MATERIALS AND METHODS 

In this study, the design of the cylinder department 

is dealt with in a new facility of a company that 

manufactures construction equipment that is taken 

from [25]. It is desired to see which of the different 

cell formation methods will be more suitable for 

the cylinder department. For this purpose, k-means 

clustering algorithm, average linkage clustering 

method and fuzzy clustering method with 

expectation maximization algorithm are applied to 

machine-part matrix of this department to obtain 

first clusters. Subsequently, clusters were tried to 

reach more understandable and stable machine-

parts clusters by applying rank order clustering 

method. During the execution of the algorithms, 

attention has been paid to the formation of three 

cells and the prioritization of machine groups. The 

performance of the results was then assessed 

according to the intracellular voids, intracellular 

processing intensity and intercellular 

transportation criteria. 

The machine-part matrix consisting of 12 

machines and 19 parts, obtained for use in the 

study, is given in Table 1. The 1's on the table 

indicate that the part is processed on that machine 

whereas 0’s indicate that is not. 
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Table 1. Machine-parts matrix for cylinder department  

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 

M1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

M2 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 

M3 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 

M4 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 

M5 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 

M6 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

M7 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 

M8 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 

M9 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 

M10 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 

M11 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 

M12 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 

 

 

Details of the methods used in this study are given 

below. 

3.1. K-Means Clustering Algorithm  

K-Means clustering algorithm, which is the most 

commonly used and known one of classical 

clustering algorithms, was developed by J. 

MacQueen [26]. The general logic of the algorithm 

is to divide a data set consisting of n data objects 

into K sets that is given as an input parameter. The 

goal is to maximize the intra-cluster similarities of 

the clusters obtained at the end of the partitioning 

process while minimizing the inter-cluster 

similarities. Cluster similarity is measured by the 

mean value of the distances between the center of 

gravity of the cluster and other objects in the 

cluster. The cluster similarity is defined as Eq. 1 

[27].  

                               𝐽(𝑐𝑘) = ∑ ‖𝑥𝑖 − 𝜇𝑘‖2

𝑥𝑖∈𝑐𝑘

                          (1) 

where 𝜇𝑘 is the center of gravity of the kth cluster, 

𝑥𝑖 is the data object (𝑖 = 1,2, … 𝑛). The objective 

function of the K-Means clustering algorithm is as 

follows: 

                                𝐽(𝐶) = ∑ ∑ ‖𝑥𝑖 − 𝜇𝑘‖2

𝑥𝑖∈𝑐𝑘

𝐾

𝑘=1

                   (2) 

The higher the value of the objective function 

indicates that the objects in the cluster are far from 

the cluster center. Likewise the lower value is the 

indicator that the objects are closer to the cluster 

center. 

The steps of the K-Means clustering algorithm are 

given below: 

Step 1: Initial cluster centers are chosen randomly 

or by various methods according to the given 

cluster number of K.  

Step 2: Calculate the distance of each object to 

cluster centers and assign it to that cluster where it 

is closer. 

Step 3: After all objects have been assigned, 

recalculate the new cluster centers in the direction 

of the objects included in that cluster. 

Step 4: Repeat steps 2 and 3 until the cluster 

assignments of objects have not changed. 

3.2. Average-Linkage Clustering Algorithm 

Average Linkage Clustering (ALC) algorithm is 

one of the algorithms based on similarity 

coefficient. The selected similarity coefficient and 

the methodology used in the clustering process 

play an important role for accuracy of the final 

clusters. In this study the "Jaccard Similarity 

Coefficient" is used in ALC algorithm. 

Calculation of the Jaccard similarity coefficient is 

given in Eq. 3 [28]. 

            𝑆𝑖𝑗 =
𝑐

(𝑎 + 𝑏 − 𝑐)
                 0 ≤ 𝑆𝑖𝑗 ≤ 1                  (3) 

where 𝑆𝑖𝑗 is the Jaccard Similarity Coefficient 

between machine 𝑖 and machine 𝑗, 𝑐 is the number 

of parts processed both machine 𝑖 and machine 𝑗, 

𝑎 and 𝑏 are the number of parts processed machine 

𝑖 and machine 𝑗, respectively. 

The steps of the ALC algorithm are as follows 

[9][29]: 

Step 1: Calculate the similarity coefficients for all 

machine pairs and then create the similarity 

matrix. 

Step 2: Group the two objects (two machines, a 

machine and a machine group or two machine 
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group) with the highest similarity coefficient. 

Step 3: Update the similarity coefficient matrix 

according to Eq. 4. 

                                      𝑆𝑡𝑣 =
∑ ∑ 𝑆𝑖𝑗𝑗∈𝑣𝑖∈𝑡

𝑁𝑡 × 𝑁𝑣

                           (4)   

where 𝑁𝑡 is the number of machines in group 𝑡, 

and 𝑁𝑣 is the number of machines in group 𝑣.  

Step 4: Go to step 5 if all the machines are grouped 

into a single machine group or predetermined 

number of machine groups has been obtained. 

Otherwise go back to step 2. 

Step 5: Assign each part to the cell. 

3.3. Fuzzy Clustering Using Expectation 

Maximization Algorithm 

Expectation maximization (EM) algorithm, which 

works with the maximization principle of 

similarity, was first introduced by Dempster et al. 

[30]. The algorithm shows the probability that an 

object belongs to one of the existing clusters using 

probabilistic criteria rather than using definite 

distance criteria. At each iteration the EM 

algorithm first finds an optimal lower bound and 

then maximizes this bound to obtain an improved 

estimate. Hence the algorithm includes two steps 

that are called E-step (expectation-step) and M-

step (maximization-step) respectively [31]. 

In the context of fuzzy clustering, an EM algorithm 

starts with an initial set of parameters and iterates 

until the cluster centers converge or the change is 

sufficiently small. Each iteration also consists of 

two steps [32]. 

E-step: Objects are assigned to clusters according 

to the existing fuzzy clusters or parameters of 

probabilistic clusters. In this step, the membership 

degree of each point in each cluster is calculated 

with Eq. 5. 

𝑤𝑜,𝑐𝑗
=

1

𝑑𝑖𝑠𝑡(𝑜, 𝑐𝑗)
2

1
𝑑𝑖𝑠𝑡(𝑜, 𝑐1)2 +

1
𝑑𝑖𝑠𝑡(𝑜, 𝑐2)2 + ⋯ +

1
𝑑𝑖𝑠𝑡(𝑜, 𝑐𝐾)2

 

 

                                    𝑗 = 1,2, … . , 𝐾                                         (5)          

where 𝑑𝑖𝑠𝑡() is Euclidean distance, 𝑜 is any point, 

𝑐𝑗 is cluster center and 𝐾 is set of clusters. This 

means if the distance of the point to the cluster 𝑗 is 

small, the membership degree of that point to the 

cluster 𝑗 should be high. 

M-step: Find the new clusters or the parameters 

that will maximize the expected probability or the 

sum of error squares. The equation used in that 

step is given below. 

              𝑐𝑗 =
∑ 𝑤𝑜,𝑐𝑗

2 𝑜𝑒𝑎𝑐ℎ 𝑝𝑜𝑖𝑛𝑡 𝑜

∑ 𝑤𝑜,𝑐𝑗
2

𝑒𝑎𝑐ℎ 𝑝𝑜𝑖𝑛𝑡 𝑜

        𝑗 = 1,2, … . , 𝐾          (6) 

3.4. Rank Order Clustering Method 

Rank order clustering (ROC) method is one of the 

most common methods for generating cells that 

take the machine-part matrix as input. The 

computational simplicity of the ROC method plays 

a big role in its preference. First developed in 1980 

by the King, the ROC method has changed over 

time in such a way that the shortcomings are 

removed. In this study, the original state of the 

method is used and the steps are as follows [33]: 

Step 1: Assign weights for each column of the 

initial matrix starting from the rightmost column. 

The assignment weights are twice as high as the 

previous one. If number of columns is represented 

by 𝑚, each column by 𝑗 and its weights by 𝑊, Eq. 

7 calculates weight. 

                                               𝑊𝑗 = 2𝑚−𝑗                                    (7) 

Step 2: Write the sum of the column weights 

corresponding to the inputs "1" in the rows in lines. 

The sum of the weights is calculated with Eq. 8. 

                                𝑇𝑊𝑖 = ∑ 2𝑚−𝑗𝑎𝑖𝑗

𝑚

𝑗=1

                                  (8) 

where 𝑖 is rows, 𝑗 is columns, 𝑎𝑖𝑗 is binary (0,1) 

entries of matrix. 

Step 3: Sort rows by top down so that 𝑇𝑊𝑖 values 

are decreasing. 

Step 4: Assign the weights to the sorted rows from 

bottom to top so that each one is twice as big as the 

bottom one. The number of rows is represented by 

𝑛. 

                                                𝑊𝑗 = 2𝑛−𝑖                                   (9) 

Step 5: Write the sum of the row weights 

corresponding to the inputs "1" in the columns in 

lines. The sum of the weights is calculated as 

follows. 

                              𝑇𝑊𝑗 = ∑ 2𝑛−𝑖𝑎𝑖𝑗

𝑛

𝑗=1

                                  (10) 

Step 6: Sort columns from left to right so that 𝑇𝑊𝑗 

values are decreasing. 

Step 7: It is checked whether block-diagonal 

structure is formed. If not, go to step 1 and repeat 

the algorithm. After a certain number of iterations 

of the algorithm, the result is the same as the 

previous iteration. This indicates that the best 
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solution is achieved according to the ROC 

algorithm and stop. 

4. RESULTS AND DISCUSSION 

The K-Means algorithm is used first and the given 

machine-part matrix is allocated to the appropriate 

cells with paying attention to the formation of the 

three cells and the grouping of the machines.  

The initial machine cells for the K-means 

algorithm are determined as follows: 

Cell 1: M1, M2, M3, M4 

Cell 2: M5, M6, M7, M8 

Cell 3: M9, M10, M11, M12 

As a result of the iterations carried out in EXCEL 

in line with this initial information, the cells, the 

machines placed in the cells and the parts 

processed by these machines are given in Table 2. 

Table 2. Cells, machines and parts for K-Means clustering algorithm 

CELLS MACHINES PARTS 

1 M1, M4, M6 P1, P2, P5, P6, P8, P11, P12, P14, P17 

2 M2, M3, M5, M7, M8, M9, M12 P2, P5, P6, P9, P11, P12, P15, P17, P18 

3 M10, M11 
P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, 

P17, P18, P19 

After the formation of these cells, rank order 

clustering method is carried out in each of the 

cells for more regular structure in the machine-

part matrix.  

Matrix structures of each cell with the K-Means 

algorithm are shown in Table 3, 4 and 5 

respectively. 

Table 3. The machine-part matrix for cell 1 with the K-Means clustering algorithm 

 P1 P8 P14 P2 P6 P12 P5 P11 P17 

M4 1 1 1 1 1 1    

M1 1 1 1    1 1 1 

M6 1 1 1    1 1 1 

Table 4. The machine-part matrix for cell 2 with the K-Means clustering algorithm 

 P9 P15 P18 P2 P6 P12 P5 P11 P17 

M2 1 1 1 1 1 1    

M3 1 1 1 1 1 1    

M7 1 1 1 1 1 1    

M8 1 1 1 1 1 1    

M9 1 1 1 1 1 1    

M12 1 1 1 1 1 1    

M5 1 1 1    1 1 1 

Table 5. The machine-part matrix for cell 3 with the K-Means clustering algorithm 

 P3 P4 P7 P10 P13 P16 P19 P1 P5 P8 P11 P14 P17 P2 P6 P9 P12 P15 P18 

M11 1 1 1 1 1 1 1 1 1 1 1 1 1       

M10 1 1 1 1 1 1 1       1 1 1 1 1 1 
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As seen in Table 3, P1, P8 and P14 coded parts 

must be supplied together with the machines. 

When P2, P6 and P12 parts are processing on 

machine M4, the assignment of parts P5, P11 and 

P17 to machines M1 and M6 will minimize the idle 

conditions of the machines. In the cell 2, 

minimizing the idle conditions of the machines is 

done as follows: P9, P15 and P18 coded parts must 

be given to all machines as a group.  

P2, P6 and P12 must be given as a group to all 

machines except the M5, and the M5 machine 

must process the P5, P11 and P17 coded parts. 

The cells, the machines placed in the cells and the 

parts processed by these machine generated by the 

application of the average linkage clustering 

algorithm are given in Table 6. 

Table 6. Cells, machines and parts for average linkage clustering algorithm 

CELLS MACHINES PARTS 

1 M1, M6, M11 P1, P3, P4, P5, P7, P8, P10, P11, P13, P14, P16, P17, P19 

2 M2, M3, M7, M8, M9, M10, M12 P2, P3, P4, P6, P7, P9, P10, P12, P13, P15, P16, P18, P19 

3 M4, M5 P1, P2, P5, P6, P8, P9, P11, P12, P14, P15, P17, P18 

 

After the formation of these cells, rank order 

clustering method is carried out in each of the cells 

for more regular structure in the machine-part 

matrix.  

 

 

Matrix structures of each cell with the average-

linkage clustering algorithm are shown in Table 7, 

8 and 9 respectively. 

 

Table 7. The machine-part matrix for cell 1 with the average-linkage clustering algorithm 

 P1 P5 P8 P11 P14 P17 P3 P4 P7 P10 P13 P16 P19 

M11 1 1 1 1 1 1 1 1 1 1 1 1 1 

M1 1 1 1 1 1 1        

M6 1 1 1 1 1 1        

Table 8. The machine-part matrix for cell 2 with the average-linkage clustering algorithm 

 P2 P6 P9 P12 P15 P18 P3 P4 P7 P10 P13 P16 P19 

M10 1 1 1 1 1 1 1 1 1 1 1 1 1 

M2 1 1 1 1 1 1        

M3 1 1 1 1 1 1        

M7 1 1 1 1 1 1        

M8 1 1 1 1 1 1        

M9 1 1 1 1 1 1        

M12 1 1 1 1 1 1        

Table 9. The machine-part matrix for cell 3 with the average-linkage clustering algorithm 

 P1 P2 P6 P8 P12 P14 P5 P9 P11 P15 P17 P18 

M4 1 1 1 1 1 1       

M5       1 1 1 1 1 1 

 

For fuzzy clustering using expectation 

maximization algorithm, three random cluster 

centers were determined to form three clusters: 

 

Center of Cluster 1: M7 

Center of Cluster 2: M4 
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Center of Cluster 3: M11 

Then, the distances of each point to these centers 

and the probabilities of each point being included 

in the clusters are calculated. 

 

 

 

The cells, the machines placed in the cells and the 

parts processed by these machine resulting from 

repeated iterations of the fuzzy clustering using 

expectation maximization algorithm are given in 

Table 10. 

 
Table 10. Cells, machines and parts for fuzzy clustering using expectation maximization algorithm 

CELLS MACHINES PARTS 

1 M2, M3, M7, M8, M9, M12 P2, P6, P9, P12, P15, P18 

2 M10 P2, P3, P4, P6, P7, P9, P10, P12, P13, P15, P16, P18, P19 

3 M1, M4, M5, M6, M11 P1, P3, P4, P5, P7, P8, P10, P11, P13, P14, P16, P17, P19 

 

After the formation of these cells, rank order 

clustering method is carried out in each of the 

cells for more regular structure in the machine-

part matrix. Matrix structures of each cell with 

fuzzy clustering using expectation maximization 

algorithm are shown in Table 11, 12 and 13 

respectively. 

 

Table 11. The machine-part matrix for cell 1 with the fuzzy clustering using expectation maximization algorithm 

 P2 P6 P9 P12 P15 P18 

M2 1 1 1 1 1 1 

M3 1 1 1 1 1 1 

M7 1 1 1 1 1 1 

M8 1 1 1 1 1 1 

M9 1 1 1 1 1 1 

M12 1 1 1 1 1 1 

 

Table 12. The machine-part matrix for cell 2 with the fuzzy clustering using expectation maximization algorithm 

 P2 P3 P4 P6 P7 P9 P10 P12 P13 P15 P16 P18 P19 

M10 1 1 1 1 1 1 1 1 1 1 1 1 1 

Table 13. The machine-part matrix for cell 3 with the fuzzy clustering using expectation maximization algorithm 

 P1 P8 P14 P2 P6 P12 P5 P11 P17 P3 P4 P7 P10 P13 P16 P19 P9 P15 P18 

M4 1 1 1 1 1 1              

M11 1 1 1    1 1 1 1 1 1 1 1 1 1    

M1 1 1 1    1 1 1           

M6 1 1 1    1 1 1           

M5       1 1 1        1 1 1 

Following the creation of the individual machine-

part matrices by three algorithms, the 

performance of the algorithms was evaluated 

according to the intracellular voids, intracellular 

processing intensity and intercellular 

transportation criteria. 

The intracellular voids are the input of "0" in the 

formed cells and means that part is not processed 

in that machine. This is not desirable in the cells 

because it reduces the utilization of the machines 

and it is targeted that the least possible number of 

voids occurs while cells are being created. The 

numbers of intracellular voids of each cell 
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obtained from the three algorithm results are given in Table 14. 

 

Table 14. The numbers of intracellular voids obtained from used algorithms 

 
The numbers of intracellular voids 

Cell 1 Cell 2 Cell 3 TOTAL 

K-Means Clustering Algorithm 

Average-linkage clustering algorithm 

Fuzzy clustering using expectation maximization algorithm 

9 

14 

0 

21 

42 

0 

12 

12 

58 

42 

68 

58 

As shown in Table 14, the K-means clustering 

algorithm is more advantageous in terms of 

intracellular voids than the other two methods. 

In machine-parts matrices, each part is not 

processed on every machine. This causes the 

resulting cells to vary in process intensity. 

Intracellular processing intensity is calculated by 

the following equation. 

                                       𝐻 =
𝑥

𝑤
                                              (11) 

where 𝐻 is intracellular processing intensity, 𝑥 is 

total number of operations in the cell and 𝑤 is the 

total number of elements in the cell. The 

intracellular processing intensities obtained by 

Equation 11 are presented in Table 15. 

Table 15. The numbers of intracellular processing intensities obtained from used algorithms 

 
The intracellular processing intensities 

Cell 1 Cell 2 Cell 3 AVERAGE 

K-Means Clustering Algorithm 

Average-linkage clustering algorithm 

Fuzzy clustering using expectation maximization algorithm 

0.667 

0,641 

1 

0.667 

0,538 

1 

0.684 

0,5 

0,411 

0,673 

0,560 

0,804 

As seen in Table 15, with fuzzy clustering using 

expectation maximization algorithm, the 

machines in the cells are working with a higher 

average. 

During the formation of cells, it may not be 

possible to produce each part in a single cell. 

Therefore, the parts that need to be processed in 

different cells will have to go through. During 

these movements a transport cost arises. Thus, 

when the cells are being created, it is aimed that 

the part will be released from the cell where it 

started to be processed. The intercellular 

transportations resulting from the three applied 

algorithms are given in Table 16. 

 

Table 16.The numbers of intercellular transportations obtained from used algorithms 

 The number of intercellular transportations 

K-Means Clustering Algorithm 

Average-linkage clustering algorithm 

Fuzzy clustering using expectation maximization algorithm 

18 

19 

19 

1041

S.B. Kiriş, F. Tüysüz /Performance comparison of different clustering methods for manufacturing cell formation

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21 (5), 1031~1044, 2017



 

 

5. CONCLUSION 

In this study, CF that is the fundamental and 

important step in the design of CM system is 

investigated. Three methods, which are K-means 

clustering algorithm, average-linkage clustering 

algorithm and fuzzy clustering using expectation 

maximization algorithm for CF problem are 

studied. A real life application of these methods for 

the design of cylinder department of a construction 

equipment manufacturer is performed. The 

performance of each applied algorithm is 

evaluated according to 3 performance measures 

that are intracellular voids, intracellular processing 

intensity and intercellular transportation criteria. 

According to the results, average-linkage 

clustering algorithm gives the least performance 

with respect to the three performance measures. K-

means clustering algorithm performs best with 

respect to intracellular voids and intercellular 

transportation criteria in terms of average. Fuzzy 

clustering using expectation maximization 

algorithm is the best with respect to intracellular 

processing intensity measure in terms of average. 

Although K-means algorithm is behind fuzzy 

clustering using expectation maximization 

algorithm according to intracellular processing 

intensity measure, as it can be seen in Table 15, it 

gives a more balanced cell formation. It can be 

concluded that K-means clustering algorithm 

which is the most widely applied and known one 

of classical clustering algorithms is still an 

effective method for CF. Since there have been 

developed many methods and techniques in 

literature for CF problem, for further research, the 

comparison of these methods with respect to 

developed performance measures can be a 

promising area for both better understanding the 

strengths and weaknesses of these methods and for 

developing a common approach to CF problem. 
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