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1. Introduction 
In many different fields of research, including medicine, 

economics and survival analysis, the log-logistic 

distribution is widely used. The log-logistic distribution 

can be obtained by applying a logarithmic transform to 

the logistic distribution. Similar to how the log-normal 

and normal distributions have a relation to one another, 

the log-logistic distribution has a relation to the logistic 

distribution. The log-logistic distribution looks similar to 

the log-normal distribution in terms of shape but with 

heavier tails. Burr distribution was introduced by Burr 

(1942) and log-logistic distribution is considered a 

special case of the Burr distribution family in 

Tadikamalla (1980) study. The log-logistic distribution's 

properties and characteristics were studied for the first 

time in 1963 (Shah & Dave, 1963). Systems of frequency 

curves are produced by applying three simple 

transformations to the logistic distribution (Tadikamalla 

and Johnson, 1982). Both the studies of Ali and Khan 

(1987) as well as Balakrishnan and Malik (1987) 

examined the use of moments of ordered statistics for 

estimating the unknown parameters of the log-logistic 

distribution. The initial application was to model the 

distribution of income and wealth (Fisk, 1961), and this 

distribution was used for modeling stream flow rates too 

(Shoukri et al., 1988). Kantam and Srinivasa (2002) in 

their study regarded maximum likelihood estimators 

(MLEs) of the scale parameter when its shape parameter 

already exists and derived the modified maximum 

likelihood estimation (MLE) of this distribution. A 

Bayesian approach is applied to estimate the parameters 

of the log-logistic distribution and compared with the 

MLEs of the Abbas and Tang (2016) study. Regarding the 

estimation of the parameters of any distribution, there 

are several statistical methods that can be used. The 

maximum likelihood (ML) estimation method is the most 

popular method due to its great efficiency and well-

known asymptotic characteristics for parameter 

estimators when compared to all other statistical 

approaches (Yuan and Schuster, 2013). One of the most 

commonly used techniques for calculating the MLEs of 

the parameters is the Newton-Raphson algorithm which 

is a gradient-based search algorithm. The fundamental 

issue with this technique is the requirement for the 

second derivatives for all iterations (Kus and Kaya, 

2006). In order to avoid such restrictions another kind of 

classical iterative technique can be employed, such as the 

Nelder-Mead (NM) algorithm, that doesn't require the 

gradient information of the fitness function. However, all 

classical algorithms start from a randomly selected initial 

point and continue moving to the solution iteratively 

until the optimum solution is obtained, but the solution 

may remain at the local optimum with a lack of guarantee 

that the final result is globally reached (Pratihar, 2012). 
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The application of non-classical algorithms, such as meta-

heuristic algorithms, is more desirable for solving 

advanced problems, especially when conventional 

algorithms fail, to avoid such difficulties. In addition, 

meta-heuristic algorithms, which are more flexible, 

simple, and derivation-free, ensure global convergence 

(Sreenivas and Kumar 2015). Recently, several 

distributions' parameters have been estimated using 

meta-heuristic algorithms, including an efficient new one 

known as the whale optimization algorithm (WOA) that 

was used by Mohammed (2021), Mohammed and 

Elmasry (2023), Al-Mhairat and Al-Quraan (2022), and 

many others in the literature. This study's main objective 

is to demonstrate the log-logistic distribution's usability 

in various fields and to estimate its scale and shape 

parameters. The main concern raised by this study is that 

explicit solutions to the likelihood equations do not exist 

for the log-logistic distribution. This issue is resolved by 

using iterative numerical techniques based on the NM 

algorithm as a conventional technique and the WOA as a 

meta-heuristic algorithm representing a non-

conventional technique. The main contribution of this 

work is a comprehensive Monte-Carlo simulation study 

to compare and analyze the two optimization techniques 

and to provide the estimator's values for the log-logistic 

distribution parameters based on the WOA and NM 

algorithms. The remaining sections of this work will be 

arranged as follows: The log-logistic distribution and its 

basic properties are addressed in Section 2. The ML 

estimation method for both NM and WOA is discussed in 

Section (3). In Section (4), an extensive Monte-Carlo 

simulation study is performed to compare the 

performance of the parameter estimators. In Section (5), 

two real-world dataset applications are implemented. 

The study presents several conclusions in Section (6). 

 

2. Log-logistic Distribution 

If we have two random variables, X and Y, whose 

relationship is represented by Equation 1: 
 

𝑌 = 𝛽 ln (
𝑋

𝛼
) , 𝛽 >  0, 𝛼 >  0,    (1) 

 

where β is the shape parameter and α is the scale 

parameter, and Y is distributed logistically with the 

following (Equation 2) probability density function (pdf), 
 

𝑔(𝑦) =
𝑒𝑦

(1 + 𝑒𝑦)2
 , 𝑦 ∈ 𝑅.   (2) 

 

Then X follows a two parameter log-logistic distribution, 

X~log-logistic (α, β), with the following (Equation 3) 

probability density function (pdf),  
 

𝑓(𝑥; 𝛼, 𝛽) =
(
𝛽
𝛼
)(
𝑥
𝛼
)
𝛽−1

[1 + (
𝑥
𝛼)
𝛽
]
2  ,

𝑥 > 0, 𝛽 >  0, 𝛼 >  0. 

(3) 

 

X's cumulative distribution function (Equation 4) (cdf) is: 

𝐹(𝑥; 𝛼, 𝛽) =
1

1 + (
𝑥
𝛼
)
−𝛽

 (4) 

 

The plots of the log-logistic distribution for different 

values of β with fixed value of α =2 are shown in Figure 1. 

The log-logistic distribution's kth moment exists only 

when k is less than β, and its general equation is given in 

Equation 5: 
 

𝐸(𝑋𝑘) = 𝛼𝑘𝐵 (1 −
𝑘

𝛽
 , 1 +

𝑘

𝛽
) =  

𝛼𝑘 (
𝑘𝜋
𝛽
)

sin (
𝑘𝜋
𝛽
)

 (5) 

 

where B is the beta function. By using equation 5, The 

mean and variance of the random variable X can be 

calculated as follows (Equation 6-7): 
 

𝐸(𝑋) =
𝛼𝜋

𝛽sin (
𝜋
𝛽
)
 , 𝛽 > 1 

(6) 

 

𝑉𝑎𝑟 (𝑋) = 𝛼2

(

 
2 (
𝜋
𝛽
)

sin (
2𝜋
𝛽
)
 − 

(
𝜋
𝛽
)
2

𝑠𝑖𝑛2 (
𝜋
𝛽
)
)

  , 𝛽 > 2 (7) 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Log-logistic pdf for different parameter values 

for different values of β with fixed value of α =2 

 

3. Maximum Likelihood Estimation 

This method relies on identifying the values that 

maximize the likelihood function to its maximum; often, 

the logarithm of the likelihood function is used in order 

to simplify the calculations. The log-likelihood (𝑙𝑜𝑔 𝐿) 

function is provided in Equation 8 to estimate the 

unknown parameters for the log-logistic distribution in 

this study. 
 

log 𝐿(𝛼, 𝛽) = 𝑛𝑙𝑜𝑔(𝛽) − 𝑛𝛽𝑙𝑜𝑔(𝛼)

+ (𝛽 − 1)∑𝑙𝑜𝑔(𝑥𝑖)

𝑛

𝑖=1

− 2∑𝑙𝑜𝑔 [1 + (
𝑥𝑖
𝛼
)
𝛽

]     

𝑛

𝑖=1

 

(8) 

 

The partial derivatives corresponding to the considered 

parameters are obtained and set to zero to estimate the 

likelihood parameters of the 𝑙𝑜𝑔 𝐿 function for the log-

logistic distribution. The likelihood equations are given 

as in Equation 9 and 10: 
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𝜕 𝑙𝑜𝑔 𝐿(𝛼, 𝛽)

𝜕𝛼
=
𝑛𝛽

𝛼
+
2𝛽

𝛼
∑(

𝑥𝑖
𝛼
)
𝛽

𝑛

𝑖=1

+ [1 + (
𝑥𝑖
𝛼
)
𝛽

]

−1

= 0 

(9) 

 

and 
 

𝜕 𝑙𝑛 𝐿(𝛼, 𝛽)

𝜕𝛽
=
𝑛

𝛽
− 𝑛𝑙𝑜𝑔(𝛼) +∑𝑙𝑜𝑔(𝑥𝑖)

𝑛

𝑖=1

 

− 2∑(
𝑥𝑖
𝛼
)
𝛽

𝑙𝑜𝑔 (
𝑥𝑖
𝛼
)[1

𝑛

𝑖=1

+ (
𝑥𝑖
𝛼
)
𝛽

]

−1

= 0 

(10) 

 

Since the likelihood equations include nonlinear 

functions, as shown by equations (9) and (10), it is 

unlikely to find explicit solutions to them. Therefore, to 

solve these equations and obtain ML estimates for α and 

β, iterative numerical techniques are required. WOA and 

NM are two highly efficient algorithms that are used in 

this study as numerical techniques for estimating the 

likelihood estimators for the log-logistic distribution, and 

they are briefly introduced in the next few subsections. 

3.1. Whale Optimization Algorithm (WOA) 

The WOA is a new intelligent meta-heuristic algorithm 

that was developed by Mirjalili and Lewis (2016), in their 

study. It is modeled after the imitation of the humpback 

whale's bubble-net hunting technique, which involves 

creating a circle of bubbles around the prey and 

narrowing it or approaching the target in a spiral pattern 

while performing a random search, as discussed in Rana 

et al. (2020) as well as Hu et al. (2016) studies. Encircling 

the prey, the bubble-net attack mechanism, and the 

search for prey are the main three phases of this 

algorithm, and each phase is mathematically modeled 

(Yan et al., 2018). The population of humpback whales 

starts their search through a multi-dimensional search 

space, and their initial positions at the first iteration are 

represent the initial solutions in WOA. For mathematical 

modeling, there are many significant parameters should 

be known first, such as the following: 

 Parameter (a), which is an essential parameter, 

declines linearly for each iteration from 2 to 0. The 

Equation 11 to obtain this parameter is: 
 

𝑎 = 2 ∗ (1 −
𝑡

𝑇𝑚𝑎𝑥
) (11) 

 

where t, is the current iteration and Tmax is the total 

number of iterations.  

 A and C coefficient vectors, whose equations 12 and 

13 are: 
 

𝐴 =  2𝑎 ∗  𝑟1 − 𝑎 (12) 
 

𝐶 =  2 ∗  𝑟2 (13) 
 

where r1 and r2 are random vectors ranging in the 

closed interval [0,1]. 

 Parameter (b), which is a constant that determines 

how the logarithmic spiral is shaped, Parameter (l) is 

a number chosen at random from the range [-1, 1], 

and parameter, p is a chance probability that can be 

any value between 0 and 1, to give an equal chance of 

encircling or spiraling movements of whales.  

The fitness value for the main study's model, represented 

by the 𝑙𝑜𝑔 𝐿 function (8), is used to evaluate each whale 

position, and the best position is then determined and 

stored. When P<0.5 and |A|<1, the currently in progress 

whale's position is updated using the following Equations 

14 and 15: 
 

𝐷 =  |𝐶. 𝑋𝑝(𝑡) − 𝑋(𝑡)| (14) 
 

𝑋(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴 ∗ 𝐷 (15) 
 

where the current vector's position at iteration t is 

represented by X (t), and when iterating to the tth time, 

the best solution's position vector  is Xp(t). 

However, in case |A|>1, one of the whales is picked at 

random, and the position is updated by applying the 

Equations 16 and 17 follow as: 
 

𝐷 =  |𝐶. 𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑋(𝑡)| (16) 
 

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝐴 ∗ 𝐷 (17) 
 

where Xrand is the position vector of any whale picked at 

random from the current whale population. On the other 

hand, the following Equations 18 and 19 update the 

position of the current whale when P>0.5: 
 

𝐷′ = |𝑋𝑝(𝑡) − 𝑋(𝑡)| (18) 
 

𝑋(𝑡 + 1) = 𝐷′𝑒𝑏𝑙𝑐𝑜𝑠(2𝜋𝑙) + 𝑋𝑝(𝑡) (19) 
 

where D' indicates the distance between both the ith 

whale and the available current best whale position  

(prey). Every iteration of WOA involves checking the 

updated whale's position to make sure it remains within 

the boundaries of the search space. The final solution 

positions indicate the values of WOA estimators, and this 

process continues until it reaches the final iteration 

needed to achieve convergence. Figure 2 shows the 

WOA's flowchart. 

3.2. Nelder-Mead (NM) 

The NM algorithm is a widely used deterministic search 

technique for locating optimal approximations of a 

fitness function in a space of multiple dimensions. It had 

been founded by the study of John Nelder and Roger 

Mead (1965). The NM algorithm depends on creating a 

geometric simplex figure with 𝑛 + 1 vertex for n-

dimensional problems. In this study, the function that 

needs to be minimized is 𝑓 (𝜃) =  − log 𝐿(𝜃), where 𝜃 =

 (𝛼, 𝛽)  ∈  𝑅 × 𝑅+. At each vertex, the fitness value 𝑓(𝜃) 

is calculated and put in ascending order as 𝜃1, 𝜃2, 𝜃3, and 

then a mechanism for generating a new simplex by 

replacing the vertex that has the highest fitness value is 

done by applying four main operators. These operators 

are: 
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Yes 

No 

No 

Update the current whale 

position by Encircling 

prey method using 

equations 14 and 15 

Update the current whale 

position by Exploration 

method using equations 16 

and 17 

Is  
t <Tmax 

Stop 

t = t +1 

Yes 

Yes 

If  
|A| < 1 

Else if  
|A| ≥1 

Update the current whale 

position by Spiral method 

using equations 18 and 19 

Yes 

If  
P<0.5 

Else if  
P≥1 

Start 

Initialize population (whales) and 
parameters values (a, A, C, Tmax ) 

Calculate the fitness value for each 

whale by using the study function 

no. 8, and determine the best whale 

position value 

No 

No 

No 

Print Result 

Yes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. WOA flowchart. 
 

 Reflection, for generating reflection points 𝜃𝑟 , which 

is defined as 𝜃𝑟  =  𝜃0  +  𝛼 (𝜃0  −  𝜃3), where 𝜃0is the 

centroid, and 𝛼 is the reflection coefficient. When 

𝑓(𝜃1) ≤  𝑓(𝜃𝑟) ≤ 𝑓(𝜃2) then 𝜃3 is replaced with 𝜃𝑟 .  

 Expansion, for generating the expansion point 𝜃𝑒and 

its related equation 𝜃𝑒  =  𝜃0  +  𝛾 (𝜃𝑟  −  𝜃0), where 𝛾 

is the expansion coefficient. The use of expansion 

points happens when 𝑓(𝜃𝑟) < 𝑓(𝜃1) then 𝜃3 is 

replaced with 𝜃𝑒  if not, 𝜃0 is replaced with 𝜃𝑟  

 Contraction, for generating the contraction point 𝜃𝑐 , 

which is defined as 𝜃𝑐  =  𝜃0  +  𝜌 (𝜃3  − 𝜃0), where ρ 

is the contraction coefficient. The use of expansion 

points happens when 𝑓 (𝜃2) ≤  𝑓(𝜃𝑟), and if f(θc) <

 f(θ3) then a new simplex is generated with θ3 is 

replaced with θc but if 𝑓(𝜃𝑐) > 𝑓(𝜃3) then the initial 

points will be shrinked by applying this equation 

𝜃𝑖  =  𝜃𝑖 + 𝛽 (𝜃𝑖  −  𝜃1) to all 𝑖 𝜖 {2,3} 

This process is continuing until the convergence 

requirements are satisfied. According to many studies in 

the literature 𝛼, 𝛾,  𝜌, and 𝛽 are taken 1, 2, 1
2
, and 1

2
 , 

respectively. The studies by Everitt (1984), Shamir 

(1987), Gao & Han (2012), and Kucukdeniz & Esnaf 

(2018) in the literature provide more information. 
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4. Monte-Carlo Simulations Study 
In order to evaluate the efficiency of the ML estimator 

values for the model parameters using the WOA 

algorithm with the corresponding ML estimators using 

the NM algorithm, the numerical results from the Monte 

Carlo simulation study for various sample sizes are 

presented in this section of the paper. Matlab R2021a 

software is used to perform the computations for the 

simulation study. Every Monte Carlo simulation run is 

repeated 2,000 times. The scale parameter α remains 

constant at 1.0, but the shape parameter β is taken to be 

1, 1.5, and 2, for a variety of sample sizes n that are 

assumed to be 10, 20, 30, 50, 100, 250, and 500. The 

range [0, 20] is chosen as the search space (SS) for the 

parameters, and as a result, 7×4×2000 = 56000 unique 

samples are produced. The simulations' final results for 

the shape and scale parameters are indicated by the 

symbols �̂� and �̂�,  respectively. The simulated mean, bias, 

variance, mean square error (MSE), and deficiency (Def) 

values provided by the equations 20-24 below are used 

in order to compare and evaluate the performance of the 

estimators (Equation 20-24).  
 

𝑀𝑒𝑎𝑛 (�̂�) =
∑ �̂�𝑖
𝑛
𝑖

𝑛
 (20) 

 

𝐵𝑖𝑎𝑠(�̂�) = 𝐸(�̂�) −  𝜃 (21) 
 

𝑉𝑎𝑟(�̂�)  =  
1

𝑛 − 1
∑(𝜃�̂� −𝑀𝑒𝑎𝑛 �̂�)

2
𝑛

𝑖=1

 (22) 

 

𝑀𝑆𝐸(�̂�) = 𝑉𝑎𝑟(�̂�) + (𝐵𝑖𝑎𝑠(�̂�))
2

 (23) 

 

𝐷𝑒𝑓(�̂� , �̂�) =  𝑀𝑆𝐸(�̂�) +𝑀𝑆𝐸(�̂�) (24) 
 

 

where, θ = (α , β)  ∈ R×R+. The resulting simulated values 

of mean, bias, MSE, and Def for �̂� and �̂�are given in 

Tables 1-3. In contrast to the NM algorithm, the 

simulated values demonstrate that the WOA produces 

the best performance. The values of the shape estimator 

�̂� when α = 1 and β = 1, have the least bias values for the 

NM technique, in accordance with the simulated results, 

with the exception of when the sample size is large (n = 

500), in which case the WOA produces the least biased 

results as shown in Tables 1. However, tables 2 and 3 

show that in all other remaining cases, the WOA produces 

the least biased results for �̂� and �̂�. In terms of MSE 

values, Tables 1-3 demonstrate that when α = 1 and β = 1, 

simulated MSE values for �̂� that belong to the NM 

algorithm are better than the WOA for all n values; 

otherwise, MSE values for the WOA outperform the NM 

algorithm in all other cases for �̂� and �̂� estimators. The 

WOA shows excellence performance according to the Def 

criteria with the smallest values in contrast to the NM 

algorithm for all cases. All of this allows us to say that the 

WOA is an efficient algorithm for estimating the shape �̂� 

and scale �̂� parameters for log-logistic distributions, and 

as a result of the NM algorithm's deficiency criterion 

values, it is inefficient for this distribution. 

 

Table 1. Simulated mean, bias, variance, MSE, and Def values for the ML estimators �̂� and �̂�. 

  �̂�    �̂�    

𝑛      Method 

𝛼 = 1, 𝛽 = 1 

Mean Bias MSE  Mean Bias MSE Def 

10 WOA  1.2775 0.1537 0.2307  0.9861 0.2690 0.2692 0.4999 

NM  1.2285 0.1301 0.1823  0.5500 0.9439 1.1464 1.3288 

20 WOA  1.1874 0.0517 0.0868  0.9256 0.1133 0.1188 0.2056 

NM  1.1473 0.0386 0.0603  0.3715 0.7593 1.1542 1.2145 

30 WOA  1.1575 0.0303 0.0551  0.8987 0.0728 0.0830 0.1382 

NM  1.1241 0.0214 0.0368  0.2971 0.7316 1.2257 1.2625 

50 WOA  1.1474 0.0166 0.0384  0.8977 0.0401 0.0506 0.0889 

 NM  1.1187 0.0134 0.0275  0.2272 0.7250 1.3222 1.3497 

100 WOA  1.1315 0.0079 0.0252  0.8861 0.0197 0.0326 0.0578 

 NM  1.1081 0.0068 0.0185  0.1800 0.6466 1.3190 1.3375 

250 WOA  1.1474 0.0166 0.0384  0.8977 0.0401 0.0506 0.0889 

 
NM  1.1187 0.0134 0.0275  0.2272 0.7250 1.3222 1.3497 

500 WOA  1.1141 0.0015 0.0145  0.8805 0.0041 0.0184 0.0329 

 NM  1.0908 0.0029 0.0111  0.0207 0.6256 1.5846 1.5957 
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Table 2. Simulated mean, bias, variance, MSE, and Def values for the ML estimators �̂� and �̂�. 

  �̂�    �̂�    

𝑛      Method 

𝛼 = 1, 𝛽 = 1.5 

Mean Bias MSE  Mean Bias MSE Def 

10 WOA  1.8014 0.3007 0.3915  1.0390 0.1628 0.1643 0.5558 

NM  1.6377 0.3465 0.3654  0.5746 0.7754 0.9564 1.3218 

20 WOA  1.6600 0.1016 0.1272  1.0042 0.0666 0.0666 0.1938 

NM  1.4703 0.1383 0.1392  0.3761 0.7409 1.1302 1.2694 

30 WOA  1.6122 0.0592 0.0718  0.9968 0.0427 0.0427 0.1145 

NM  1.4140 0.0927 0.1001  0.2665 0.7246 1.2627 1.3627 

50 WOA  1.5932 0.0342 0.0429  0.9899 0.0264 0.0265 0.0694 

 NM  1.3913 0.0691 0.0809  0.2288 0.6914 1.2861 1.3670 

100 WOA  1.5695 0.0160 0.0209  0.9824 0.0122 0.0125 0.0333 

 NM  1.3706 0.0494 0.0661  0.2015 0.6473 1.2850 1.3511 

250 WOA  1.5629 0.0060 0.0100  0.9805 0.0051 0.0054 0.0154 

 
NM  1.3688 0.0424 0.0597  0.1837 0.6156 1.2820 1.3416 

500 WOA  1.5564 0.0031 0.0063  0.9813 0.0024 0.0028 0.0091 

 NM  1.3386 0.0378 0.0638  0.0752 0.5913 1.4466 1.5104 

 

Table 3. Simulated Mean, Bias, Variance, MSE, and Def values for the ML estimators �̂� and �̂�. 

  �̂�    �̂�    

𝑛      Method 

𝛼 = 1, 𝛽 = 2 

Mean Bias MSE  Mean Bias MSE Def 

10 WOA  2.3451 0.5763 0.6954  1.0284 0.0831 0.0840 0.7793 

NM  2.0404 0.7601 0.7617  0.5743 0.6409 0.8221 1.5838 

20 WOA  2.1536 0.1758 0.1993  1.0196 0.0396 0.0400 0.2394 

NM  1.8372 0.3546 0.3811  0.4727 0.6469 0.9250 1.3061 

30 WOA  2.1083 0.1100 0.1217  1.0072 0.0265 0.0265 0.1483 

NM  1.7689 0.2832 0.3366  0.4049 0.6334 0.9876 1.3242 

50 WOA  2.0673 0.0612 0.0657  0.9984 0.0150 0.0150 0.0807 

 NM  1.6866 0.2318 0.3300  0.3023 0.6292 1.1160 1.4460 

100 WOA  2.0483 0.0300 0.0323  0.9986 0.0076 0.0076 0.0398 

 NM  1.6543 0.1981 0.3176  0.2666 0.6149 1.1528 1.4703 

250 WOA  2.0356 0.0107 0.0120  0.9976 0.0030 0.0030 0.0150 

 
NM  1.6459 0.1718 0.2972  0.2711 0.5909 1.1223 1.4195 

500 WOA  2.0245 0.0054 0.0060  0.9985 0.0014 0.0014 0.0074 

 NM  1.6363 0.1636 0.2958  0.2589 0.5837 1.1329 1.4288 

 

5. Applications 
For the sake of illustration of the practical applicability of 

this model, two real datasets with various sample sizes 

are modeled using the log-logistic distribution in this 

section. Well-known criteria concerning log-likelihood 

values, the Akaike Information Criterion (AIC), and the 

corrected AIC (AICc) are used for comparing the 

modeling performance of the log-logistic distribution 

with the performance of several other different 

distributions, which include Gamma, Weibull, Lognormal, 

Nakagami, Inverse Gaussian, logistic, Normal, Rayleigh, 

and Extreme Value distributions. Anderson et al. (1998) 

provided in their study more information on these 

criteria and how they are utilized in practice. 

Mathematically, these criteria are represented in 

Equaition 25 and 26: 
 

𝐴𝐼𝐶 = 2𝑃 − 2 𝑙𝑜𝑔 𝐿 (25) 
 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑃(𝑃 + 1)

𝑛 − 𝑃 − 1
 (26) 

 

where the likelihood function, the number of 

observations, and the total number of model parameters 

are represented by 𝑙𝑜𝑔 𝐿, n, and p, respectively. When the 

probability model has the aforementioned criteria with 

lower values than other probability distributions, it is 

said to be the best-fit model. 

5.1. Dataset  

5.1.1. Remission time of bladders cancer patients 

To demonstrate the implementation of the log-logistic 

distribution, the remission time of bladder cancer 

patients' dataset is used. Its 128 observations were 

originally analyzed by Lee and Wang in their study 

(2003) and used by other studies such as the study of 

Lemonte and Cordeiro (2011), the studies of Aldeni et al. 

(2017) as well as Ijaz et al. (2020) and Zea et al. (2012). 

The values of this dataset are as follows: 0.080, 0.200, 
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0.400, 0.500, 0.510, 0.810, 0.900, 1.050, 

1.190,1.260,1.350, 1.400, 1.460, 1.760, 2.020, 

2.020,2.070, 2.090, 2.230, 2.260, 2.460, 2.540, 2.620, 

2.640, 2.690, 2.690, 2.750, 2.830, 2.870, 3.020,3.250, 

3.310,3.360, 3.360, 3.480, 3.520, 3.570, 3.640, 3.700, 

3.820,3.880, 4.180, 4.230, 4.260, 4.330, 4.340, 4.400, 

4.500, 4.510, 4.870, 4.980, 5.060, 5.090, 5.170, 5.320, 

5.320, 5.340, 5.410, 5.410, 5.490,5.620, 5.710, 5.850, 

6.250, 6.540, 6.760, 6.930, 6.940, 6.970, 7.090, 7.260, 

7.280, 7.320, 7.390, 7.590, 7.620, 7.630, 7.660, 7.870, 

7.930,8.260, 8.370, 8.530, 8.650, 8.660, 9.020, 9.220, 

9.470, 9.740, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 

11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 

13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 

17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 

25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 

79.05. Table 4 provides descriptive statistics, including 

sample size (n), minimum (min), mean, mode, median, 

maximum (max), variance (S2), skewness (γ1), and 

kurtosis (γ2). 

Table 5 compares the modeling performance of the log-

logistic distribution to that of other well-known 

distributions using the 𝑙𝑜𝑔 𝐿, AIC, and AICc criteria. 

The findings in Table 5 demonstrate that, in terms of the 

criteria taken into consideration, the log-logistic 

distribution's performance provides a better fit than 

other distributions. 

5.2.2. A relief times (in minutes) of 20 patients 

receiving an analgesic 

A relief time dataset of 20 patients receiving an analgesic 

was provided by Gross and Clark in their study (1975) 

and used in other statistical literature such as the studies 

of Shanker et al. (2016), Shukla (2019), and Marthin and 

Rao (2020). The dataset values are given as: 1.1, 1.4, 1.3, 

1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 

2.3, 1.6, 2. The descriptive statistics for this dataset are 

displayed in Table 6 and Table 7 shows the results 

obtained after fitting this data to the log-logistic 

distribution model and comparing them to other 

distributions according to the chosen criteria. 

 

Table 4. The descriptive statistics for the remission time of bladders cancer patient’s data. 

n Min Mean Mode Median Max S2 γ1 γ2 

128 0.08 9.3656 2.02 6.3950 79.05 1.1042 3.2866 18.4831 

 

Table 5. Parameter estimates, 𝑙𝑜𝑔 𝐿, AIC and AICc, values for bladders cancer patient’s data. 

 �̂� �̂� �̂� 𝑙𝑜𝑔 𝐿 AIC AICC 

Log-logistic - 6.0887 1.7254 411.4575 826.9150 827.011 

Gamma - 7.9877 1.1725 413.3680 830.7360 830.832 

Weibull - 9.5607 1.0478 414.0870 832.1740 832.27 

Lognormal 1.7535 1.0773 - 415.0960 834.1920 834.288 

Nakagami - 197.2770 0.37420 426.6020 857.2040 857.3 

I-G - 9.3656 3.3820 440.3050 884.6100 884.706 

logistic 7.5857 4.4825 - 456.6650 917.3300 917.426 

Normal 9.3656 10.5083 - 486.2020 976.4040 976.5 

Rayleigh - 9.9317 - 491.2660 986.5320 986.628 

E-V 15.8369 19.1518 - 549.1570 1102.3140 1102.41 

I-G= inverse gaussian t, E-V = extreme value. 

 

Table 6. The descriptive statistics for the relief times of 20 patients receiving an analgesic data. 

n Min Mean Mode Median Max S2 γ1 γ2 

20 1.1 1.9 1.7 1.7 4.1 0.4958 1.7197 5.9241 

 

Table 7. Parameter estimates, 𝑙𝑜𝑔 𝐿, AIC and AICc, values for bladders cancer patient’s data. 

 �̂� �̂� �̂� -ln L AIC AICC 

Log-logistic  - 1.7525 5.8895 16.4766 36.9532 37.65908 

I-G - 1.9000 18.6978 16.7723 37.5446 38.25048 

Lognormal 0.5893 0.3185 - 16.7806 37.5612 38.26708 

Gamma - 0.1965 9.6695 17.8186 39.6372 40.34308 

Nakagami - 4.0810 2.3478 19.1701 42.3402 43.04608 

logistic 1.7905 0.3390 - 19.2433 42.4866 43.19248 

Weibull - 2.1300 2.7870 20.5864 45.1728 45.87868 

Normal 1.9000 0.7041 - 20.8627 45.7254 46.43128 

Rayleigh - 1.4285 - 22.4788 48.9576 49.66348 

E-V 2.2913 0.9163 - 26.7927 57.5854 58.29128 

I-G= inverse gaussian t, E-V = extreme value. 
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The findings demonstrate that, in terms of modeling 

performance, the log-logistic distribution is better than 

all other distributions. 

 

6. Conclusion 
In this study, estimation of the shape and scale 

parameters of the log-logistic distribution is considered. 

The ML estimates of the log-logistic distribution 

parameters via two iterative algorithms which are NM 

and WOA are obtained and then their performances 

compared to each other with respect to bias, MSE and Def 

criteria by conducting a Monte Carlo simulation study. 

Simulation results show that the WOA is more efficient 

than NM iterative algorithm in terms of these criteria in 

all cases. Two real datasets are employed to fit the log-

logistic distribution, and the results demonstrate high 

performance for the log-logistic distribution in 

comparison with many well-known statistical 

distributions. 
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