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Abstract. Representing physical processes by introducing fractional derivatives in partial differential equations
provides more realistic and flexible mathematical models. The solutions of nonlinear partial differential equations
(NPDEs) can be derived from the solutions of the fractional nonlinear partial differential equations (FNPDEs)
when the fractional derivatives go to 1 because FNPDEs are a generalization of NPDEs. Most of the exact solution
methods for NPDEs based on the ansatz method can be extended easily to solve FNPDEs. In this study, we
employ the unified method to obtain exact solutions in a more general form for the space-time fractional cubic
nonlinear Schrödinger equation (stFCSE). Compared to other methods, this method not only gives more general
solution forms with free parameters for the stFCSE, but also provides many novel solutions including hyperbolic,
trigonometric, and rational function solutions. The solutions of the stFCSE approach the solutions of the cubic
nonlinear Schrödinger equation when the fractional orders go to 1 for time and space. Moreover, three-dimensional
graphs of some selected solutions with specific values of the parameters are presented to visualize the behavior and
physical structures of the stFCSE.
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1. Introduction

Nonlinear partial differential equations (NPDEs) and fractional nonlinear partial differential equations (FNPDEs)
containing fractional order derivatives appear in modeling problems in many scientific fields. Therefore, using a
straightforward and robust method [9, 13, 15, 24, 26, 28, 29, 32] to find numerical or exact solutions for NPDEs and
FNPDEs is a crucial step in shifting the theory to real-life applications. The nonlinear Schrödinger equation (NLSE)
and its different forms, one of the distinguished equations particularly in science and engineering, have attracted great
attention in the last decades because of their leading role in the most important areas of mathematical physics. There-
fore, numerous researchers have sought new methods to obtain exact and numerical solutions for the class of NLSE due
to its significant applications in the dynamics of particles, water waves, nonlinear acoustics, hydrodynamics, optics,
and telecommunications.

Sulaiman et al. [30] studied (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation describing nonlin-
ear dynamics of magnets to find exact solutions using the sine-Gordon expansion method and modified ϕ(ξ)-expansion
function method. The sine-Gordon expansion method was used by Bulut et al. [12] to obtain exact solutions of the (1+1)
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and (2 + 1)-dimensional Chiral nonlinear Schrödinger equations which describe the edge states of the fractional quan-
tum hall effect. Biswas et al. [10] applied a semi-inverse variational principle to obtain an analytical soliton solution to
the perturbed nonlinear Schrödinger equation with anti-cubic nonlinearity. The exact solutions of the Kundu-Eckhaus
equation modeling soliton propagation in a dispersive media were obtained using the modified simple equation method
by Biswas et al. [11]. Eslami and Neirameh [16] employed the ϕ(ξ)-expansion function method to find new exact solu-
tions of higher order nonlinear Schrödinger equation. Lan and Guo [22] used the Hirota method to find the 1, 2, 3, and
N-soliton solutions for a coupled generalized nonlinear Schrödinger-Boussinesq system in a homogeneous magnetized
plasma. Kudryashov [21] utilized the traveling wave reductions to find solutions to the generalization of the resonant
nonlinear Schrödinger equation which describes the propagation of nonlinear waves in a resonant medium. Using the
Kudryashov method and sub-equation method, Akinyemi et al. [2] found exact solutions for the generalized nonlinear
Schrödinger-Korteweg-de Vries equations. The optical soliton solutions of the nonlinear Schrödinger equation with
parabolic law nonlinearity are presented by Akinyemi et al. [3] applying the generalized auxiliary equation method.
The perturbed Biswas-Milovic equation with Kudryashov’s law of refractive index a form of the generalized nonlinear
Schrödinger equation was studied by Mirzazadeh et al. [23] using the improved F-expansion method. A perturbed
nonlinear Schrödinger equation with Γ = 0 was investigated by Akinyemi et al. [4] both analytically and numerically
employing the modified sub-equation method and the split-step Fourier method, respectively.

The governing model of the space-time fractional cubic nonlinear Schrödinger equation (stFCSE) is the generalized
(1 + 1)-dimensional unstable space-time fractional nonlinear Schrödinger [8, 14] given by

iDα
t u + D2β

x u + σ|u|2u + τu = 0.

When taking σ = γ and τ = 0, then it reduces the space-time fractional cubic NLS + equation

iDα
t u + D2β

x u + γ|u|2u = 0

and when taking σ = −γ and τ = 0, then it reduces the space-time fractional cubic NLS − equation

iDα
t u + D2β

x u − γ|u|2u = 0.

The notion of fractional comes from the fractional order derivatives of the form dα
dxα where α > 0 is not necessarily

an integer. Fractional derivatives contribute to generalizing classical results, capturing memory effects in physical
systems, and improving mathematical modeling. The FNPDEs involving fractional order derivatives as a subfield
of the partial differential equations have gained growing interest from researchers in recent times due to their wide
utilization in control theory, signal and image processing, environmental science, medicine, mechanics, and other
various disciplines including mathematics, physics, chemistry, and biology. The He’s variational iteration method was
used to solve numerically by Wazwaz [31] for (1 + 1)-dimensional nonlinear Schrödinger with γ = ∓2. Bilal et al. [8]
worked on the generalized (1 + 1)-dimensional unstable space-time fractional nonlinear Schrödinger to obtain exact
solutions by extended sinh-Gordon equation expansion method. Bright, dark, and singular optical soliton solutions of
space-time were found by Darvishi et al. [14]. Pandir and Agir [25] applied the extended trial equation method to the
cubic nonlinear Schrödinger equation to find exact solutions. The Jacobi elliptic functions expansion method is used
to solve the space-time fractional cubic nonlinear Schrödinger equation by Gundogdu and Gozukizil [17]. Seadawy
and Tariq [27] applied the extended modified auxiliary equation mapping method to the generalized (1+1)-dimensional
space-time fractional unstable nonlinear Schrödinger equation to obtain bright, dark, singular, combo, optical, singular
optical, and bright-singular combo soliton solutions.

In this study, we apply the unified method to the space-time fractional cubic nonlinear Schrödinger equation
(stFCSE). The stFCSE is given by

iDα
t u + D2β

x u + γ|u|2u = 0, (1.1)

where γ , 0 and α, β ∈ (0, 1]. Eq. (1.1) is defined as attractive if γ > 0, otherwise repulsive. The unified method
used in many articles to solve NPDEs [1,5–7,18,19] provides many exact hyperbolic, trigonometric, and rational-type
solutions with free parameters without needing extra hardware support.

This paper is organized as follows. Some important definitions and properties of the conformable fractional deriva-
tives and a brief description of the unified method for FNPDEs are presented in Section 2. Application of the method
to the space-time fractional cubic nonlinear Schrödinger equation (stFCSE) is given in Section 3. Finally, result and
discussion and conclusions are given in Section 4 and Section 5, respectively.
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2. Preliminaries

2.1. Conformable Fractional Derivative. Assume that ϕ : [0,∞) → R is α-differentiable function, then α-order
conformable fractional derivative is

Dα
xϕ(x) = lim

ϵ→0

ϕ(x + ϵx1−α) − ϕ(x)
ϵ

for all t > 0, α ∈ (0, 1). Some important properties of the conformable fractional derivative can be reached from [20].
Let ϕ(x), ψ(x) are α-order conformable fractional differentiable functions and a, b are real constants, then

• Dα
x (a) = 0,

• Dα
x (xb) = bxb−α,

• Dα
xϕ(x) = x1−α dϕ(x)

dx
,

• Dα
x [aϕ(x) + bψ(x)] = aDα

xϕ(x) + bDα
xψ(x),

• Dα
x [ϕ(x)ψ(x)] = ϕ(x)Dα

xψ(x) + ψ(x)Dα
xϕ(x),

• Dα
x

[
ϕ(x)
ψ(x)

]
=
ψ(x)Dα

x (ϕ(x)) − ϕ(x)Dα
x (ψ(x))

ψ2(x)
.

2.2. Description of the Unified Method. In this section, we briefly describe the unified method and explain in the
following steps how to apply it to the fractional nonlinear partial differential equations (FNPDEs) with complex-valued
terms. Let a general form for FNPDEs in two independent variables x and t be defined as follows:

P(u, ut, ux, uxt, utt, uxx, ...) = 0, (2.1)

where u (x, t) is a complex-valued unknown function and P is an equation of u = u (x, t) and its various partial
derivatives, where highest order derivative and nonlinear terms are involved.
Step 1: Firstly, we perform the transformation u(x, t) = U(η)eiζ where η = xα

α
−c tα

α
and ζ = w xβ

β
+ λ tα

α
are. Substituting

this transformation into Eq. (2.1) reduces it to the following nonlinear ordinary differential equation (NODE)

P(U,U′,U′′,U′′′, ...) = 0. (2.2)

Step 2: Supposed the solution of FNPDE can be expressed by an ansatz as follows:

V (η) = a0 +

M∑
m=1

[
amϕ

m + bmϕ
−m]

, (2.3)

where ϕ = ϕ (η) satisfies the Riccati differential equation

ϕ′ (η) = µ + ϕ2 (η) (2.4)

and ϕ′ = dϕ
dη , and am, bm are coefficients of ϕ and µ is parameter. The general solutions of Eq. (2.4) as follows:

Family 1. When µ < 0, the solutions of Eq. (2.4)

ϕ (η) =



∓
√
−

(
A2 + B2) µ − A

√
−µ cosh

(
2
√
−µ (η + η0)

)
A sinh

(
2
√
−µ (η + η0)

)
+ B

∓
√
−µ ±

2A
√
−µ

A + cosh
(
2
√
−µ (η + η0)

)
± sinh

(
2
√
−µ (η + η0)

) , (2.5)

where A , 0 and B are two real arbitrary parameters, and η0 arbitrary parameter.
Family 2. When µ > 0, the solutions of Eq. (2.4)

ϕ (η) =



∓
√(

A2 − B2) µ − A
√
µ cos

(
2
√
µ (η + η0)

)
A sin

(
2
√
µ (η + η0)

)
+ B

∓i
√
µ ±

2Ai
√
µ

A + cos
(
2
√
µ (η + η0)

)
± i sin

(
2
√
µ (η + η0)

) , (2.6)
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where A , 0 and B are two real arbitrary parameters, and η0 arbitrary parameter.
Family 3. When µ = 0, the solution of Eq. (2.4)

ϕ (η) = −
1

η + η0
, (2.7)

where η0 arbitrary parameter.
It should be pointed out that the unified method yields the same solutions in family 1 and family 2. In other words,

using the identities sinh (ix) = i sin (x) and cosh (ix) = cos (x) , the solutions in (2.5) and (2.6) are exactly the same.
Therefore, the solutions in (2.5) and (2.6) can be easily converted to each other by applying these identities.
Step 3: After determining positive integer M by considering the homogeneous balance between the linear term of the
highest order with the nonlinear term of the highest degree, Eq. (2.3) and (2.4) substitute into Eq. (2.2) and collect all
terms with the same powers of ϕ in the final equation. Then, equating each power of ϕ to zero gives a set of algebraic
equations of am, bm, c,w, λ and µ.
Step 4: Substituting am, bm, c,w, λ and µ obtained in step 3 into Eq. (2.3) and using the general solutions of Eq. (2.4)
given (2.5), (2.6) and (2.7), we obtain the exact solutions of Eq. (2.1) in closed form.

3. The Space-Time Fractional Cubic Nonlinear Schrödinger Equation

The space-time fractional cubic nonlinear Schrödinger equation (stFCSE) is given by

iDα
t u + D2β

x u + γ|u|2u = 0, (3.1)

where γ , 0 and α, β ∈ (0, 1]. We substitute u(x, t) = U(η)ei(w xβ
β +λ

tα
α ) and its derivatives

iDα
t (x, t) =

(
−λU(η) − icU′(η)

)
ei(w xβ

β +λ
tα
α ),

Dβ
x(x, t) =

(
iwU(η) + U′(η)

)
ei(w xβ

β +λ
tα
α ),

D2β
x (x, t) =

(
U′′(η) + 2iwU′(η) − w2U(η)

)
ei(w xβ

β +λ
tα
α ),

|u(x, t)|2u(x, t) = U3(η)ei(w xβ
β +λ

tα
α ),

into Eq. (3.1) considering the wave transformation η = xβ
β
− c tα

α
, then the stFCSE is reduced to the nonlinear ordinary

differential equations as follows:
U′′ − (w2 + λ)U + γU3 + i(2w − c)U′ = 0. (3.2)

c = 2w obtained from the imaginary part of Eq. (3.2); therefore, the final reduced nonlinear ordinary differential
equation for the stFCSE is

U′′ − (w2 + λ)U + γU3 = 0. (3.3)

Balancing between the highest order U′′ with the nonlinear term U3 gives the simple equation M + 2 = 3M. From
here, it is M = 1. So the solutions of the stFCSE (3.1) can be written in the form

U (η) = a0 + a1ϕ +
b1

ϕ
, (3.4)

where a0, a1 and b1 are coefficients of ϕ which are determined later. Substituting Eq. (3.4) and its derivatives into Eq.
(3.3), then equating each coefficients of ϕ to zero gives a set of nonlinear algebraic equations for a0, a1, b1 and c,w, λ.
Solving this algebraic equations system by using Maple, the following sets of parameters are obtained.

Set 1. a0 = 0, a1 = ∓i

√
2
γ
, b1 = 0, λ = 2µ − w2.

Set 2. a0 = 0, a1 = 0, b1 = ∓i

√
2
γ
µ, λ = 2µ − w2.

Set 3. a0 = 0, a1 = ∓i

√
2
γ
, b1 = ∓i

√
2
γ
µ, λ = −4µ − w2.
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Set 4. a0 = 0, a1 = ±i

√
2
γ
, b1 = ∓i

√
2
γ
µ, λ = 8µ − w2.

The exact solutions of the stFCSE are listed under three categories hyperbolic, trigonometric, and rational with
respect to these solution sets as follows:
Hyperbolic function solutions

u1 (x, t) = ±i

√
2
γ

∓
√
−(A2 + B2)µ − A

√
−µ cosh

(
2
√
−µ (η + η0)

)
A sinh

(
2
√
−µ (η + η0)

)
+ B

 ei(w xβ
β +(2µ−w2) tα

α ), (3.5)

u2 (x, t) = ±i

√
2
γ

[
∓
√
−µ ±

2A
√
−µ

A+cosh(2
√
−µ(η+η0))±sinh(2

√
−µ(η+η0))

]
ei(w xβ

β +(2µ−w2) tα
α ), (3.6)

u3 (x, t) = ±i

√
2
γ
µ
[

A sinh(2
√
−µ(η+η0))+B

∓
√
−(A2+B2)µ−A

√
−µ cosh(2

√
−µ(η+η0))

]
ei(w xβ

β +(2µ−w2) tα
α ), (3.7)

u4 (x, t) = ±
i
√

2µ
√
γ
(
∓
√
−µ ±

2A
√
−µ

A+cosh(2
√
−µ(η+η0))±sinh(2

√
−µ(η+η0))

)ei(w xβ
β +(2µ−w2) tα

α ), (3.8)

u5 (x, t) = ∓i

√
2
γ


µ

(
A sinh(2

√
−µ(η+η0))+B

∓
√
−(A2+B2)µ−A

√
−µ cosh(2

√
−µ(η+η0))

)

+

(
∓
√
−(A2+B2)µ−A

√
−µ cosh(2

√
−µ(η+η0))

A sinh(2
√
−µ(η+η0))+B

)
 ei(w xβ

β −(4µ+w2) tα
α ), (3.9)

u6 (x, t) = ∓


i
√

2µ
√
γ
(
∓
√
−µ±

2A
√
−µ

A+cosh(2
√
−µ(η+η0))±sinh(2

√
−µ(η+η0))

)

+
i
√

2
(
∓
√
−µ±

2A
√
−µ

A+cosh(2
√
−µ(η+η0))±sinh(2

√
−µ(η+η0))

)
√
γ

 ei(w xβ
β −(4µ+w2) tα

α ), (3.10)

u7 (x, t) = ∓i

√
2
γ


µ

(
A sinh(2

√
−µ(η+η0))+B

∓
√
−(A2+B2)µ−A

√
−µ cosh(2

√
−µ(η+η0))

)

−

(
∓
√
−(A2+B2)µ−A

√
−µ cosh(2

√
−µ(η+η0))

A sinh(2
√
−µ(η+η0))+B

)
 ei(w xβ

β +(8µ+w2) tα
α ), (3.11)

u8 (x, t) = ∓


i
√

2µ
√
γ
(
∓
√
−µ±

2A
√
−µ

A+cosh(2
√
−µ(η+η0))±sinh(2

√
−µ(η+η0))

)

−
i
√

2
(
∓
√
−µ±

2A
√
−µ

A+cosh(2
√
−µ(η+η0))±sinh(2

√
−µ(η+η0))

)
√
γ

 ei(w xβ
β +(8µ+w2) tα

α ), (3.12)

where µ < 0 and η = xβ
β
− 2w tα

α
.

Trigonometric function solutions

u9 (x, t) = ±i

√
2
γ

∓
√(

A2 − B2) µ − A
√
µ cos

(
2
√
µ (η + η0)

)
A sin

(
2
√
µ (η + η0)

)
+ B

 ei(w xβ
β +(2µ−w2) tα

α ), (3.13)

u10 (x, t) = ∓

√
2
γ

[
±
√
µ ±

2A
√
µ

A+cos(2
√
µ(η+η0))±i sin(2

√
µ(η+η0))

]
ei(w xβ

β +(2µ−w2) tα
α ), (3.14)
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u11 (x, t) = ±i

√
2
γ
µ
[

A sin(2
√
µ(η+η0))+B

∓
√

(A2−B2)µ−A
√
µ cos(2

√
µ(η+η0))

]
ei(w xβ

β +(2µ−w2) tα
α ), (3.15)

u12 (x, t) =
±
√

2µ
√
γ
(
∓
√
µ ±

2A
√
µ

A+cos(2
√
µ(η+η0))±i sin(2

√
µ(η+η0))

)ei(w xβ
β +(2µ−w2) tα

α ), (3.16)

u13 (x, t) = ∓i

√
2
γ


µ

(
A sin(2

√
µ(η+η0))+B

∓
√

(A2−B2)µ−A
√
µ cos(2

√
µ(η+η0))

)

+

(
∓
√

(A2−B2)µ−A
√
µ cos(2

√
µ(η+η0))

A sin(2
√
µ(η+η0))+B

)
 ei(w xβ

β −(4µ+w2) tα
α ), (3.17)

u14 (x, t) = ∓


√

2µ
√
γ
(
∓
√
µ±

2A
√
µ

A+cos(2
√
µ(η+η0))±i sin(2

√
µ(η+η0))

)

+

√
2
(
∓
√
µ±

2A
√
µ

A+cos(2
√
µ(η+η0))±i sin(2

√
µ(η+η0))

)
√
γ

 ei(w xβ
β −(4µ+w2) tα

α ), (3.18)

u15 (x, t) = ∓i

√
2
γ


µ

(
A sin(2

√
µ(η+η0))+B

∓
√

(A2−B2)µ−A
√
µ cos(2

√
µ(η+η0))

)

−

(
∓
√

(A2−B2)µ−A
√
µ cos(2

√
µ(η+η0))

A sin(2
√
µ(η+η0))+B

)
 ei(w xβ

β +(8µ+w2) tα
α ), (3.19)

u16 (x, t) = ∓


√

2µ
√
γ
(
∓
√
µ±

2A
√
µ

A+cos(2
√
µ(η+η0))±i sin(2

√
µ(η+η0))

)

−

√
2
(
∓
√
µ±

2A
√
µ

A+cos(2
√
µ(η+η0))±i sin(2

√
µ(η+η0))

)
√
γ

 ei(w xβ
β +(8µ+w2) tα

α ), (3.20)

where µ > 0 and η = xβ
β
− 2w tα

α
.

Rational function solutions

u17 (x, t) = ±i

√
2
γ

ei(w xβ
β −w2 tα

α )

(η + η0)
, (3.21)

where µ = 0 and η = xβ
β
− 2w tα

α
.

4. Result and Discussion

In this section, the reduced form of the solutions found in the former section and the graphical representations of
some solutions have been illustrated.

We have obtained 17 general solutions for the space-time fractional cubic nonlinear Schrödinger equation in the
former section. Using trigonometric and hyperbolic identities and taking B = 0, hyperbolic and trigonometric solutions
obtained by the modified extended tanh method can be attained as follows:

Reduced hyperbolic function solutions

uh1 (x, t) = ±i

√
−2µ
γ

tanh
(√
−µ (η + η0)

)
ei(w xβ

β +(2µ−w2) tα
α ),

uh2 (x, t) = ±i

√
−2µ
γ

coth
(√
−µ (η + η0)

)
ei(w xβ

β +(2µ−w2) tα
α ),
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uh3 (x, t) = ±i

√
−2µ
γ

(
−A + e∓2

√
−µ(η+η0)

A + e∓2
√
−µ(η+η0)

)
ei(w xβ

β +(2µ−w2) tα
α ),

uh4 (x, t) = ±i

√
−8µ
γ

coth
(
2
√
−µ (η + η0)

)
ei(w xβ

β −(4µ+w2) tα
α ),

uh5 (x, t) = ±i

√
−8µ
γ

cosech
(
2
√
−µ (η + η0)

)
ei(w xβ

β −(4µ+w2) tα
α ),

uh6 (x, t) = ±i

√
−8µ
γ

(
A2 + e∓4

√
−µ(η+η0)

−A2 + e∓4
√
−µ(η+η0)

)
ei(w xβ

β −(4µ+w2) tα
α ),

uh7 (x, t) = ±i

√
−8µ
γ

coth
(
2
√
−µ (η + η0)

)
ei(w xβ

β +(8µ+w2) tα
α ),

uh8 (x, t) = ±i

√
−8µ
γ

cosech
(
2
√
−µ (η + η0)

)
ei(w xβ

β +(8µ+w2) tα
α ),

uh9 (x, t) = ±i

√
−8µ
γ

(
4Ae∓2

√
−µ(η+η0)

−A2 + e∓4
√
−µ(η+η0)

)
ei(w xβ

β +(8µ+w2) tα
α ),

where µ < 0 and η = xβ
β
− 2w tα

α
.

Reduced trigonometric function solutions

ut1 (x, t) = ±i

√
−2µ
γ

tan
(√
µ (η + η0)

)
ei(w xβ

β +(2µ−w2) tα
α ),

ut2 (x, t) = ±i

√
−2µ
γ

cot
(√
µ (η + η0)

)
ei(w xβ

β +(2µ−w2) tα
α ),

ut3 (x, t) = ±i

√
−2µ
γ

(
−A + e∓2i

√
µ(η+η0)

A + e∓2i
√
µ(η+η0)

)
ei(w xβ

β +(2µ−w2) tα
α ),

ut4 (x, t) = ±i

√
−8µ
γ

cot
(
2
√
µ (η + η0)

)
ei(w xβ

β −(4µ+w2) tα
α ),

ut5 (x, t) = ±i

√
−8µ
γ

cosec
(
2
√
µ (η + η0)

)
ei(w xβ

β −(4µ+w2) tα
α ),

ut6 (x, t) = ±i

√
−8µ
γ

(
A2 + e∓4i

√
µ(η+η0)

−A2 + e∓4i
√
µ(η+η0)

)
ei(w xβ

β −(4µ+w2) tα
α ),

ut7 (x, t) = ±i

√
−8µ
γ

cot
(
2
√
µ (η + η0)

)
ei(w xβ

β +(8µ+w2) tα
α ),

ut8 (x, t) = ±i

√
−8µ
γ

cosec
(
2
√
µ (η + η0)

)
ei(w xβ

β +(8µ+w2) tα
α ),

ut9 (x, t) = ±i

√
−8µ
γ

(
4Ae∓2i

√
µ(η+η0)

−A2 + e∓4i
√
µ(η+η0)

)
ei(w xβ

β +(8µ+w2) tα
α ),

where µ > 0 and η = xβ
β
− 2w tα

α
.
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(a) 3D graph of of real part
with α = 0.25

(b) 3D graph of of imaginary part
with α = 0.25

(c) 3D graph of of real part
with α = 0.5

(d) 3D graph of of imaginary part
with α = 0.5

(e) 3D graph of of real part
with α = 0.75

(f) 3D graph of of imaginary part
with α = 0.75

(g) 3D graph of of real part
with α = 1

(h) 3D graph of of imaginary part
with α = 1

Figure 1. Graphical representation of real and imaginary part for solution of u1 is plotted above for
−10 < x < 10, 0 < t < 10, with parameters µ = −1, w = 1, γ = 1, β = 1 A = 1, B = 0 and various
alpha parameters.
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(a) 3D graph of of real part
with α = 0.25

(b) 3D graph of of imaginary part
with α = 0.25

(c) 3D graph of of real part
with α = 0.5

(d) 3D graph of of imaginary part
with α = 0.5

(e) 3D graph of of real part
with α = 0.75

(f) 3D graph of of imaginary part
with α = 0.75

(g) 3D graph of of real part
with α = 1

(h) 3D graph of of imaginary part
with α = 1

Figure 2. Graphical representation of real and imaginary part for the solution of u14 is plotted above
for −10 < x < 10, 0 < t < 10, with parameters µ = 1, w = 1, γ = 1, β = 1 A = 1, B = 0 and various
alpha parameters.
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(a) 3D graph of of real part
with α = 0.25

(b) 3D graph of of imaginary part
with α = 0.25

(c) 3D graph of of real part
with α = 0.5

(d) 3D graph of of imaginary part
with α = 0.5

(e) 3D graph of of real part
with α = 0.75

(f) 3D graph of of imaginary part
with α = 0.75

(g) 3D graph of of real part
with α = 1

(h) 3D graph of of imaginary part
with α = 1

Figure 3. Graphical representation of real and imaginary part for the solution of u17 is plotted above
for −10 < x < 10, 0 < t < 10, with parameters µ = 0, w = 1, γ = 1, β = 1 A = 1, B = 0 and various
alpha parameters.

The studies in [8,14,17,25,27] used the extended sinh-Gordon equation expansion method, the extended trial equa-
tion method, the Jacobi elliptic functions expansion method, and the extended modified auxiliary equation mapping
method respectively. Compared to the solutions in the aforementioned studies, the solutions obtained by the unified
method represent a more general solution form with free parameters in closed forms. In other words, these methods
provide hyperbolic and trigonometric function solution forms with the tanh, tan, coth, cot, sech, sec, cosech, cosec
function and combinations of them. These all solutions can be derived from the solutions between (3.5)-(3.21) easily
using some hyperbolic and trigonometric identities with certain values for free parameters.

The trigonometric type, hyperbolic type and rational type solutions are plotted in Fig.1, Fig.2, Fig.3, respectively.
The selected solutions u1 in (3.5), u14 in (3.18), and u17 in (3.21) are drawn using Maple with the real part on the left
and the imaginary part on the right as above. The free parameters A = 1, and B = 0 are chosen because some of
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the obtained solutions are reduced those obtained by using modified extended tanh method solutions, known as the
strongest tanh technique.

3D graphs of u1, u14 and u17 solutions are drawn here for different α values from 0.25 to 1 with certain µ, w, γ, β
values to show the physical structure of the wave solution. Therefore, the temporal changes of the wave solution can
be followed as α goes to 1. This shows the structural change in solutions from fractional to non-fractional derivatives.

5. Conclusions

The fractional nonlinear partial differential equations (FNPDEs) are a generalization of nonlinear partial differential
equations (NPDEs) that allows for more powerful and realistic modeling of systems with complex behaviors, such as
those with memory effects or long-range interactions. For this reason, the FNPDEs are reduced to the NPDEs when
the fractional orders go to integer values for time and space. The effect of the fractional order derivatives captures the
memory or non-local effects in the system.

In this study, the unified method is applied successfully to the space-time fractional-order cubic nonlinear Schrödinger
equation(stFCSE) with time and space fractional derivatives. This method based on the ansatz method is a straight-
forward and powerful method that gives many solutions. Different solutions can be produced by plugging various
arbitrary parameters for A, B w, and µ from the obtained 17 solutions in Section 3. Therefore, it distinguishes this
method from other methods that give many exact solutions such as bright, dark, singular, combo, optical, singular
optical, and bright-singular combo soliton solutions because it is more general. For this reason, the obtained solutions
of the stFCSE not only go to the solutions of the cubic nonlinear Schrödinger equation when the fractional orders go
to 1 for time and space but also produce the solutions obtained in the previous studies.

The selected solutions are preferred to plot here with the free parameters A = 1, B = 0 because some of the
solutions are the same as those obtained using modified extended tanh method solutions. The obtained solutions here
can be plotted for different values.

The computations in this work have been performed by Maple.
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