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Abstract: Molecular geometry structures were accurately optimized to low convergence energy thresholds for the Zn3S3

cluster before and after adding Polyethylene Glycol (PEG4000). Density functional theory DFT/ B3LYP calculations with 6-
113G (d, p) basis set were employed to investigate structural and electronic properties of Zn3S3/PEG4000 composite. The
FTIR spectral  lines were analyzed where an agreement of FTIR spectra of  titled molecules was evaluated between
experimental and theoretical findings of the active peaks of O–H, C–H, C=O, C–O–C, and Zn–S functional groups. The
vibrational modes frequencies were systematically analyzed on the distribution basis of potential energy around the
range 0–4000 cm-1 and observed 12 modes of vibrations for the Zn3S3 molecule, while 36 modes for the Zn3S3/PEG4000
compound. Frontier high occupied, and low unoccupied molecular orbitals (HOMO&LUMO) were calculated and plotted
to  obtain  the  energy  gap  (E𝒈)  resulting  from the  difference  between  those  orbitals.  The  promising  indicator  was
obtained at increasing E𝒈 from (4.031 to 4.459) eV after adding PEG4000, pointing out the effect of polymer on the ZnS
surface as a capping agent. Additionally, electronic features of the mentioned structures, such as IP, EA, Ef, E𝒈, 𝐶𝑝, χ, η,
Ѕ, and ω, were calculated. Finally, the molecular electrostatic potential (MEP) diagram of Zn3S3 and Zn3S3/ PEG4000 and
charge densities of isosurface and contour diagrams were estimated, showing the nucleophilic and electrophilic attack
of these compounds.
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1. INTRODUCTION

Zinc sulfide (ZnS) is a substantial compound with a wide
range  of  applications  due  to  its  unique  optical  and
structural  features.  ZnS nanomaterials  have  a  relatively
large bandgap of 3.6 eV, which increases with decreasing
particle  size  (1).  In  addition,  3D-Zn-VI  used  in
semiconductors  has  drawn  wide  attention  due  to  their
applications  in  short-wavelength  light-emitting  devices.
3D-ZnS is one such binary compound that appears in two
structures:  the  Wurtzite  (WZ)  structure  at  high
temperatures and a cubic zinc alloy (ZB) structure at low

temperatures and ambient pressures (2-4). Zinc is widely
used on electrodes in the deposition process industry with
other  metals  like  Sn-alloy (5).  The  preparation  of
nanomaterials occupies a significant position in research
centers, and the preparation methods have been varied,
either  physically  or  chemically,  according  to  their
application (6-8).  Recently,  polymers have played a  vital
role in improving and enhancing the characterizations of
nanoparticles'  surfaces  (9,10).  Polyethylene  Glycol
(PEG4000)  is  one of  these polymers  that  is  an ethereal
compound belonging to the family of polymers with high
molecular weight (11); some other names for the PEG4000
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polymer  include  polyglycol,  poly  (ethylene  oxide)  (PEO),
and poly (oxyethylene) (POE) (12). PEG is the most popular
among  the  three  types  and  the  best  among  them  to
employ in the field of medicine and refers  to polymers
with  molecular  masses  less  than  20,000  g/mol.  For
instance,  PEG  4000  is  a  safe  and  more  effective  drug
compared to lactulose for the treatment of constipation in
children  (13),  where  several  clinical  studies  have
demonstrated that PEG 4000 is effective in the treatment
of constipation in adults and children (14,15). In addition,
PEG 4000 acts as an osmotic agent that increases fecal
water  content.  PEG4000  is  nontoxic  and  non-
immunogenic (16). Thanks to the feature of PEG4000, it is
flexible and soluble in water, so that it can work at high
osmotic  pressures  (17,18).  It  has  been  proven  that
nanopolymers have the advantages of mass production
and high stability, so the manufacture of smart or stimuli-
responsive  polymers  has  been  achieved.  Either  from
natural or synthetic resources, one of the most important
natural  polymers  used  in  the  manufacture  of  medical
preparations  is  dextrose  gelatin.  In  contrast,  synthetic
polymers  use  polyethylene  glycol  (19,20).  Density
Functional  Theory  (DFT),  which  is  an  algorithm  of
quantum  mechanical  modeling  utilized  in  the  chemical
and physical  fields to  discover  electronic  structure (21),
has  established  itself  as  a  valuable  research  tool  to
validate  experimental  conclusions  or  characterize  those
possibilities left open (22).

Computational processes offer precisely superior scales in
chemical  interactions  and  combinations  phenomena,
particularly  (DFT)  method,  which  theoretically  presents
predictions  of  material  design  through the  geometrical
structures (23) in addition to the low cost. Furthermore,
the more quantitative predictions of phenomena that are
made and confirmed by experiment, the more the overall
theory is  accepted when the theoretical  investigation is
“confirmed”  for  that  specific  experiment  (24).
Nevertheless, several theoretical studies have been relied
on and taken into account in practical applications such as
gas sensors (25).

DFT theory was recently employed to study the structural
and electronic properties of ZnS molecules as a nanotube
in  different  numbers  of  ZnS  atoms  (26,27),  or  by  ab
initio/DFT to study electronic and spectroscopic properties
of  ZnO-NPs.  Furthermore,  an  investigation  of
Polyethylene Glycol (PEG) was based on a nanocomposite
by DFT study to use as a drug in medical applications (23).
On the other hand,  to  study  the effect  of  polymers  on
nanoparticle  behaviors,  the  structural  and  electronic
properties  of  ZnS  nanoparticles  with  the  presence  of

PEG4000  have  been  investigated  experimentally  in  our
recent work (28). However, their structural, electronic, and
vibrational  features  have  not  been  theoretically
investigated. Therefore, this work could be promising for
gaining  more  knowledge  for  this  composite  over
theoretical study using the DFT theory.

2. COMPUTATIONAL DETAILS

The development of the quantum mechanical technique
has  been  influenced  by  the  density  functional  theory
(DFT),  which  has  been  used  to  study  the  electronic
structure  and  behavior  of  many  electron  systems.
Disciplines  of  physics  and  chemistry  employ  functional
analysis to gain an understanding of the electron density
distribution. A many-electron system's ground state (GS)
and  other  features  can  be  identified  using  DFT,  as
demonstrated  by  this  study.  The  most  popular  and
adaptable  method  in  computational  physics  and
chemistry  disciplines is,  by  far,  DFT.  Additionally,  it  has
proven to be quite efficient at estimating the properties of
materials in their ground state. The approach in this work
uses  DFT  theory  with  hybrid  B3LYP  (Becke,  three
parameters, Lee-Yang-Parr) and a basis set with 6-311G**.
Where  the  first  asterisk  above  basis  G  represents  the
polarization set d-function for heavy atoms. However, the
second sign  indicates  the  polarization  of  p-functions  of
hydrogen atoms or sometimes must be written as 6-311G
(d, p) (29,30). Because of the accuracy of this basis set, it
was powerfully used to calculate energetic and electronic
features in multiple phases (31). All those equations and
theories were involved by Gaussian 09 and Gaussian View
6.0 software (32).

To achieve accurate results, the geometries of molecules
were  optimized  precisely  to  lower  the  convergence
thresholds.  Furthermore,  Frequencies  of  normal
vibrations were calculated to confirm the minimal energy
at  geometric  optimization by solving the  self-consistent
field (SCF) equation.

Figure  (1-a)  demonstrates  the  molecular  structure  of  a
cluster of three Zn atoms and three S atoms (Zn3S3); either
(1-b)  clarifies the cluster  of  Zn3S3 after  adding PEG4000
polymer  (C2H4O)n,  as  adsorption  process  experimentally
on  PEG  surface.  These  structures  were  optimized
geometrically at the following conditions: maximum force,
RMS  force,  max.  displacement  and  RMS  displacement
converged at several steps, 0.000076, 0.000021, 0.000104,
and 0.000099, respectively. Figure (2) shows the steps of
geometrical optimization.
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Figure 1: The optimized structures of ZnSNPs (Zn3S3) before adding PEG4000 (a), and after adding the polymer (b) using
the DFT method with basis set 6-311G**.

The electronic features of the mentioned molecules were
computed,  which are Fermi  level  energy  (Ef),  Energy of
bandgap (E𝒈), and Ionization potential (IP) that represents
the amount of energy needed to break the structural unit
of the weakest electron bond to the nucleus. The greater
the ionization energy, the more difficult it is to extract the
electron and electron affinity (EA), which is the amount of
energy released when an electron is added to a gaseous
atom,  after  identifying  the  Highest  Occupied  Molecular
Orbital (HOMO) and Lowest Unoccupied Molecular Orbital
(LUMO) energies by the following equations (33,34):

E𝒈 = ELUMO – EHOMO (1)
IP = - EHOMO (2)
EA= - ELUMO (3)
Ef = (EHOM + ELUMO) / 2 (4)

In  addition,  to  describe  the  chemical  reactivity  of  the
studied  system  between  polymer-NPs,  the  quantum
molecular identifiers (𝐶𝑝,  χ , η,  Ѕ, and ω) were employed.
These  descriptors  involved  are  generally:  the  chemical
potential  (𝐶𝑝)  is  the  energy  that  can  be  absorbed  or
released due to a change in the number of particles, and
it can be known as the ferry energy in a semiconductor
when a system of electrons at a temperature of absolute
zero, electronegativity (χ) is a measure of an atom's ability
to  attract  electrons  in  a  chemical  bond;  the  global
hardness  (η),  the  softness  (Ѕ),  and  the  electrophilicity
index (ω) are by the following equations (35, 36):

𝐶𝑝 =  χ− (5)
χ = IP+EA / 2 (6)
η = IP EA /2− (7)
𝑆 = 1/ 𝜂 (9)
ω = - χ2 / 2𝜂 (10)

Figure 2: Steps of geometrical optimization with minimal
energy DFT study using B3LYP-D/6–311 G.

3. RESULTS AND DISCUSSION

3.1. Vibrational Frequencies & FTIR spectra
Any way of connection with Ethelyne Glygole polymer is a
planar  structure  of  the  C1  point  symmetry  group.
According to the equation (3N-6) for non-linear molecules,
the number of normal vibration modes can be calculated,
where  N  is  the  number  of  atoms.  Hence,  twelve
vibrational modes were obtained for the Zn3S3 molecule,
which consists of 6 atoms. These frequencies have been
arranged in Table  (1)  from the lowest frequency of  the
patterns  to  the  highest  mode.  The  highest  frequency
modes are (11 and 12) in the range (408.23-408.89) cm -1.
In  comparison,  36  modes  were  obtained  for  the
Zn3S3/PEG4000  structure,  including  14  atoms.  The
strongest modes at high frequencies are (33, 34, 35, and
36) at frequencies (3175.62, 3244.59, 3450.37, 374.07) cm-

1, respectively, as shown in Table (2).

On the other hand, the IR spectra of the studied structure
were calculated at the range (0 – 4000) cm-1 using DFT-
B3LYP levels with the 6-311G** basis set. The comparison
of the FT-IR spectra between theoretical and experimental
spectra is illustrated in Figure (3) for Zn3S3 and Zn3S3/PEG,
observing a strong agreement between them.
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Table 1: The range of normal vibrational modes for Zn3S3 from lowest to highest frequency.

No. Mode Frequency/ cm-1 No. Mode Frequency/ cm-1

MODE 1 89.33 MODE7 297.88
MODE2 90.87 MODE8 298.05
MODE3 106.96 MODE9 327.78
MODE4 107.06 MODE10 387.43
MODE5 146.05 MODE11 408.23
MODE6 170.53 MODE12 408.89

Table 2: The range of normal vibrational modes for Zn3S3/PEG400 from lowest to highest frequency.

No. Mode Frequency/cm-1 No. Mode Frequency/cm-1 No. Mode Frequency/cm-1

MODE 1 16.59 MODE 13 278.38 MODE 25 945.70
MODE 2 37.60 MODE 14 297.00 MODE 26 964.47
MODE 3 67.18 MODE 15 309.08 MODE 27 1138.66
MODE 4 80.75 MODE 16 335.13 MODE 28 1271.64
MODE 5 87.68 MODE 17 372.38 MODE 29 1322.46
MODE 6 98.75 MODE 18 393.31 MODE 30 1393.98
MODE 7 105.80 MODE 19 416.68 MODE 31 1407.61
MODE 8 120.49 MODE 20 431.47 MODE 32 1713.20
MODE 9 130.08 MODE 21 530.63 MODE 33 3175.62

MODE 10 154.22 MODE 22 666.68 MODE 34 3244.59
MODE 11 167.68 MODE 23 721.17 MODE 35 3450.37
MODE 12 257.22 MODE 24 767.55 MODE 36 3764.07

It was found that the broad peaks at frequency 3760 cm-1

(DFT)  and frequency 3480 cm-1  belong to  the  black line
(ZnS/PEG4000  (exp.)),  indicating  to  the  OH-stretching
vibrations  band  (37,  38).  This  stretching  vibration  is
significantly  attributed  to  the  hydrogen  bonding  (39).
Meanwhile, this band for ZnS (exp.) in the pink line has
red-shifted  to  the  short  frequency  3221  cm-1 (long
wavelength) due to the confinement quantum of phonon
(26). This could be evidence of the effect of polymer that
enhances the nano properties of ZnS particles.

In  addition,  the  peaks  of  (1120  and  1110)  cm-1 for
Zn3S3/PEG4000 (DFT) and ZnS/PEG4000 (Exp), respectively,

indicate the C–O–C band stretching vibrations (40). Other
signed Peaks at (660, 657, and 648) cm-1 are attributed to
the stretching vibrations of the Zn–S bond and belong to
the  Zn3S3/PEG4000  (DFT),  ZnS/PEG4000  (Exp),  and  Zn3S3

(DFT) respectively (41, 42). It was observed that the peaks
of  vibration  bands  at  regions  (416,  416,  and  420)  cm-1

belong to (ZnS/PEG4000 (exp.), Zn3S3/PEG 4000 (DFT), and
ZnS  (exp.),  respectively.  Also,  it  is  located  at  the  range
around 600 cm-1, where the range of the appearance of
the  Zn–S  bond  is  located  around  the  range  450–1000.
Agrees with Liu et. Al.’s work (43). Table (3) presents this
comparison of FTIR spectra of mentioned molecules.

568



Hraja MA et al. JOTCSA. 2024; 11(2): 565-574 RESEARCH ARTICLE

Figure 3: Comparison of the FTIR spectra for ZnSNPs before and after adding PEG polymer theoretically and
experimentally showing remarkable agreement between them.

Table 3: Comparison of FTIR of studied structures between experimental and theoretical spectra for ZnSNPs before and
after adding PEG polymer clarifying the range of functional groups.

ZnS/PEG (Exp) Zn3S3/PEG (DFT) ZnS (Exp) Zn3S3 (DFT)
Functional

group The range Functional
group The range Functional

group The range Functional
group

The
range

Zn – S 657–416 Zn–S 660–416 Zn – S 648–416 Zn – S 412
C– O –C 1110 C– O –C 1120
O – H 3760 O – H 3480 O – H 3221

3.2. Electronic Properties
Molecular  orbital  theory  (MOT)  is  a  significantly
sophisticated model  that  covers  comprehensive aspects
relating  to  the  bonding  of  orbitals,  energies,  chemical
reactions, and their characterizations. From these orbitals
are  the  highest  occupied  molecular  orbital  (HOMOs)
which occupies by electrons  in  it  and have the highest
energy. The other one is the lowest unoccupied molecular
orbital  (LUMO),  which  has  no  electrons  and  the  lowest
energy.  The  values  of  those  molecular  orbitals  were
computed  for  ZnSNPs  before  and  after  adding  PEG
polymer using the DFT method with a 6-113G** basis set.
By  determining  the  HOMO,  LUMO  energies  and  the
HOMO-LUMO  (E𝒈)  that  are  a  valuable  index  of  the
interaction system, electronic properties IP, EA, Ef, Eg, 𝐶𝑝,
χ, η, Ѕ and ω, were calculated using the (1–10) Equations.
Table (4) demonstrates the electronic properties of ZnS–
NP  clusters  before  and  after  adding  PEG4000  at  room
temperature.  It  was  observed  an  agreement  of  E𝒈
experimentally and theoretically around 4.2 (grey shaded)
and 4.03 eV,  respectively,  for  the ZnS cluster.  Similarly,
there are (4.5 eV - exp) and (4.459 eV - DFT) concerning
ZnS-PEG.  Figure (4)  clarifies  HOMO and LUMO MOs for
mentioned  molecules,  where  the  energy  gap  (E𝒈)

increases with adding polymer, indicating the effect of the
PEG molecule  on the ZnS particles  as a  capping agent,
indicating  the  quantum  confinement  concept  strongly,
the  greater  value  for  the  band  gap  (the  smallest
nanoparticle diameter) (44).

Table 4: Computed electronic features of ZnSNPs before
and after adding PEG polymer at room temperature.

Properties Zn3S3 (DFT) Zn3S3
 /PEG (DFT)

EHOMO - 7.0199 - 6.7014
ELUMO - 2.9886 - 2.2323

Ef / eV - 5.0043 - 4.4668
E𝒈/ eV 4.0310 4.4599
E𝒈 / eV 4.2000  (Exp) 4.5000  (Exp)
IP  / eV 7.0199 6.7014
EA / eV 2.9886 2.2323
𝑪𝒑 / eV - 5.0043 - 4.4668
χ   /  eV 5.0043 4.4668
η   / eV 2.0156 2.2323

S  / (eV)-1 0.4961 0.4479
𝛚  / eV - 6.2122 - 4.4691
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3.3. Molecular Electrostatic Potential
To  evaluate  the  connections  and  interactions  of  non-
covalent  inside  molecules  with  intermolecular  distance
and to  examine the attractive or  repulsive  interactions,
nonlocalized dispersion among the structures reactions,
molecular  electrostatic  potential  (MEP)  diagram,  and
densities  of  the  electron  with  charge  were  utilized  (45)
using B3LYP calculations with basis set 6-311G(d,p). The
zones of these interactions were described in Figure (5)
for a titled molecule to visualize three interaction areas
based on the electron density function (46).

The  being  of  hydrogen  bonding  is  presented  in  blue
zones. Red patches indicate the repulsive interactions and
the green zones refer to the Van der Waals bonding (VdW)
(46). Figure (5) shows the transfor-mation of the colored
from  a  cluster  of  Zn3S3 into  Zn3S3/PEG4000  (a  to  b),
respectively.  Furthermore,  The  advantage  of  the
molecular  electrostatic  potential  scheme  is  that  it  is  a
useful tool  for investigating reactivity to electrophilic or
nucleophilic attacks in the studied systems depending on
the  charge  distribution.  The  colored  line  shown  in  the

upper  edge  in  Fig.  (5)  is  color-coded  of  the  system
referring to two regions (the range from -8.065×10-2  (red)
to 8.065×10-2 (blue) and from -4.036×10-4 to 4.036×10-4 for
ZnS cluster and Zn3S3-PEG-4000 surfaces respectively; the
negative  charge  densities  in  red  color  represent  the
acceptor of the H-bonding of molecules. Meanwhile, the
second  zone  demonstrates  positive  charge  densities  in
the blue ruler for the donor of the H-bonding (47).

On  the  other  hand,  If  all  Zn3S3/PEG4000  surfaces  are
plotted with all iso-surface values, only the top surface will
be seen. To see all the studied molecules' surfaces, it can
simply  plot  each  surface  as  a  contour  around  the
molecule, as shown in Figures (5- c and d) for the Zn3S3

cluster and Zn3S3/PEG4000 surface, respec-tively.

Figure 4: Frontier molecular (HOMO&LUMO) orbitals and E𝒈 of ZnSNPs cluster (on left), for Zn3S3/PEG4000 (on right). An
increase in E𝒈 around 0.43 eV with adding PEG polymer indicates the enhancement for nano features.
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Figure 5: Charge density distribution as color-coded ruler in upper edge (red color for negative charge and blue for
positive), MEP isosurface surfaces diagram of Zn3S3 (a) Zn3S3_PEG4000 (b), MEP contour surface of  Zn3S3 (c)

Zn3S3_PEG4000 (d).
4. CONCLUSION

Structural  and  electronic  features  of  a  cluster  of  three
atoms  of  Zn  and  three  atoms  of  S  (Zn3S3)  have  been
calculated  theoretically  for  the first  time using the DFT
computations  with  the  hybrid  B3LYP and  6-311G (d,  p)
basis set. The same calculations have been conducted for
the  mentioned  molecule  after  adding  the  PEG4000
polymer (Zn3S3/PEG4000). The spectral lines, such as FTIR
spectra, were analyzed, and a comparison has been made
between  the  two  structures  experimentally  and
theoretically. A strong agreement of active peak position
between experimental and theoretical spectra was found.

Vibrational  frequencies  assigned  around  the  range  0–
4000 cm-1 were systematically analyzed, and 12 modes of
vibration  of  the  Zn3S3 molecule  and  36  modes  of  the
Zn3S3/PEG4000 compound were observed. In addition, the
energies  of  HOMO  and LUMO  orbitals  were  calculated
and  illustrated  to  evaluate  the  Energy  gap  (E𝒈).  A
remarkable effect of the polymer after adding to the ZnS
cluster  was  noticed on  the  Energy  gap,  where the  gap
increases from (4.031 to 4.459) eV, and these findings are

in agreement with the experimental value indicating the
quantum confinement concept strongly, the greater value
for the band gap (the smallest nan particle diameter). The
molecular  electrostatic  potential  (MEP)  diagram  and
charge densities of isosurface and contour diagrams were
estimated,  showing  these  compounds'  nucleophilic  and
electrophilic attack.
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