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1. Introduction 

Crash boxes used in automobiles and placed on the 

front bumper are fasteners with the ability to absorb 

kinetic energy, which occurs as deformation in frontal 

crashes. If impact forces acting on crash boxes are not 

sufficiently damped during an accident, these forces 

are directly transmitted to the passenger compartment 

in the vehicle. This situation will result in both fatal 

injuries to the passengers in the vehicle and a high 

amount of financial damage in the vehicle. Crash box-

es are used in automobiles to minimize this damage 

that occurs. There are various studies for crash boxes. 

In some of these studies, the geometry [1-4], taper 

angle [5-8], single-cell or multi-cell [9-12] and corru-

gated shape [13-16] of the crash box are used as varia-

ble parameters in order to increase the energy damping 

capacity of crash boxes. In addition to these studies, 

the information on the extensive literature search is 

given in Table 1.  

Jusuf et al. [1] investigated the numerical and ex-

perimental analysis of different cross-sections of com-

pares to single-walled and double-walled columns 

under dynamic loading. They found that energy ab-

sorption capacity is improved by incorporating the 

internal ribs in multi-cell tubes. Kashani et al. [2] per-

formed finite element analyses and experimental on 

the bitubular square tubes with parallel and diamond 

configurations under quasi-static axial compression 

loading. They found that the energy absorbed by bitu-

bal tubes exceeds the sum of the energy absorbed by 

inner and outer tubes when loaded separately. Mama-

lis et al. [5], have focused on the axial crushing of 

square frusta tubes with four tapered sides. They 

found deformation charactereistic of such elements are 

similar to those of tubes. Nagel and Thambiratnam [6], 

compared the energy absorption response of straight 

and tapered thin-walled rectangular tubes under quasi-

static and dynamic axial as well as off-axial dynamic 

impact loading. They found that the advantages of 

using tapered tubes for energy absorption under 

oblique impact loading. Experimental studied were 

carried out by Salehghaffari et al. [9] and development 

a two new design concept to energy absorption charac-

teristic of circular metal tubes under quasi-static load-

ing condition. They found that the significant efficien-

cy of the presented design methods in improving ener-

gy absorption characteristic and collapse modes of 

circular tubes under axial loading. Nia and Parsapour 

[10] investigated experimental and numerical the en-

ergy absorption characteristics of multi-cell square 

tubes different sized cells and found that multi-cell 

square section absorb 227% higher energy capacity 

than of other section. Chen and Ozaki [13], studied the 

crushing behavior of cylindrical tubes subjected to 

under axial loading. They show that the deformation 

modes corresponding to corrugations can be classified 

into asymmetric and axisymmetric modes. Kılıçaslan 

[14], performed numerical simulation for determining 

energy absorption and crushing characteristics of emp-

ty and foam-filled corrugated single and double circu-

lar tubes. The result indicated that the foam-filled cor-

rugated tubes have progressive and decreased peak 

crush force.  
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Table 1. Studies conducted on the crash boxes 
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In this study, different sizes of corrugations were 

formed on the crash boxes used as passive safety sys-

tem components in automobiles and the effects of 

these corrugations on crashing performance were ex-

amined. 

 

2. Problem description 

Representative geometric drawings of crash boxes to be 

used in the study are given in Fig. 1 and Fig. 2. The crash 

boxes were selected with circular cross section and the base 

diameter was determined as 90 mm and the height as 180 mm. 

The crash boxes designed are deformed by a speed of 17 m/s 

with a load of 500 kg (See Fig. 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The geometry of the crash box (withought corrugat-

ed) having circular cross-section. 

Fig. 2. The geometry of the thin walled tube (with     

     corrugated) having circular cross- section. 

 

 

 

 

 

 

Fig. 3. The crash box impacted with a rigid wall. 

3. Definitions 

The parameters needed for characterising the crashwor-

thiness performance of the crash boxes can be described 

as follows [17]:  
 

3.1. Total energy absorption 

The total energy absorbed, absorbedE  , in crushing the struc-

ture is equal to the area under the load-displacemenet curve. 

The total energy absorbed may be calculated by; 

max

0

absorbedE Fd



     (1) 

where F is the resultant impact force and   is the displace-

ment of the crushed structure. 

3.2. Peak crush force 

The peak crush force, Fmax, is the highest load required 

to cause significiant permanent deformation in the 

axial direction during the crush. 

3.3. Mean crush force (Fmean) 

Mean crush force which is obtained by following 

equation, 

max

absorbed
mean

E
F


                   (2) 

Fmean is defined as the total energy absorption divided by 

the maximum crush displacement. 

3.4. Specific energy absorption (SEA) 

Specific energy absorption (SEA) which is defined as 

the total absorbed crash energy per unit of the crushed 

structure mass (m).  

absorbedE
SEA

m
                   (3) 

3.5. Crush force efficiency (CFE) 

The crush force efficiency is defined as the ratio of the 

mean crush force to the peak crush force: 

max

meanF
CFE

F
                     (4) 

4. Finite Element Simulation 

The numerical simulations of these models are per-

formed in the explicit nonlinear FE code LS-DYNA. 

The finite element model was constructed as a shell 

element with a dimension of 2×2 network structure 

(See Fig. 4). The sidewall of circular tube was mod-

eled with Belytschko-Tsay 4-node shell element with 

five integration points through the thickness. The ma-

terial models used are the “Material type 20 rigid ma-

terial” for the rigid wall and the “Material type 24 

elasto-plastic material.” For Material type 24, the plas-

tic region is included with true stress true strain curve.  

The self-contact between the tube and the rigid wall 
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are defined by using this type of contact. The static 

and dynamic frictional coefficients defined in these 

contacts are taken as 0.2 and 0.3, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Finite element mesh of the corrugated crash box 

Table 2 shows the True effective stress-true effective plastic 

strain values for the aluminum mild steel with density 7850 

kg/m3, young’s modulus E = 210 GPa, poisson’s ratio v = 0.33 

[18]. 

 
Table 2. True effective stress-true effective plastic strain 
values for aluminum. 
 

t  

[MPa] 

331 247 290 427 450 469 501 524 533 

p  0 0.018 0.037 0.056 0.075 0.093 0.138 0.180 0.230 

 

4.1. Validation of the numerical models 

In order to assure the accuracy of the FEA model, the 

present numerical model has to be validated by existent 

numerical models for axial crushing of conical tubes. In 

order to validate the numerical simulation results, circu-

lar tube has been modeled and compared to experimental 

result. The crash box was selected as Al 6082-T5 with a 

length of 180 mm, a diameter of 90 mm and a wall 

thickness of 2 mm. The tests were carried out on the 

INSTRON 600 LX servo hydraulic testing device with a 

compression capacity of 600 kN.  

The deformation rate to be applied to the crashing force 

during compression was determined as 2 mm/min. The 

crash box was deformed by 80 mm for a total of 40 

minutes under this compression rate. As a result of the 

tests and the finite elements analysis, the load-

displacement curves of the crash box are obtained as 

given in Figure 5. As shown in Figure 5, the experi-

mental results and the finite elements analysis results are 

very close to each other. Besides, deformation views of 

crash boxes are given within 80 mm in Figure 6.  

 

 

 

Fig. 5. Experimental and simulation load-displacement  

curves of crash boxes 
 

Fig. 6. Deformation of collapse models circular tube from 

       the experimental and numerical results. 

 

5. Result and Discussion 

In this section, first the crash performances of differ-

ent types of cross-section geometry are evaluated and 

compared to each other. Then, the effect of corrugated 

size and the different taper angle are explored. The crash 

performances of different corrugated width size are 

evaluated by using the metrics defined in Section 2. The 

wall thickness is set to 2.0 mm, and the taper angle is set 

to 0°, 2° and 4° (for tapered tubes). The abbreviated 

symbols given in Table 3 are used to identify different 

types of models (see Fig. 1). In model descriptions, 

‘CS***’ is used to define the corrugation width and 

‘TA***’ is used to define the taper angle. For instance, 

CS1.0TA4.0 is the model with corrugated circular ge-

ometry that has 1.0 mm corrugation width and 4 taper 

angle. The CFE and SEA results for different corruga-

tion size configurations are presented in Table 3, Fig. 7 

and Fig. 8.  

 

 

 

 

 

 

http://tureng.com/tr/turkce-ingilizce/width
http://tureng.com/tr/turkce-ingilizce/width
http://tureng.com/tr/turkce-ingilizce/width
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Fig. 7. Crush force efficiency for geometries 

 

Fig. 8. Specific energy absorption for geometries. 

 

It shows that, it can be inferred that the corrugated 

width 5.0 mm design having the best CFE performance 

(CS5.0TA2.0) has a CFE value of 0.69, and this value is 

63.7% larger than the corrugation width 1.0 mm design 

having the worst performance (CS1.0TA0 design) with a 

CFE value of 0.44. The deformation shaper of the 

CS5.0TA2.0 crash box are show in Fig. 9. Similarly, the 

non-corrugated design having the best SEA performance 

(CS0TA2.0) has a SEA value of 33.91 kj/kg, and this 

value is 74.3% larger than the corrugation size 3.0 de-

sign having the worst performance (CS3.0TA4.0 design) 

with a SEA value of 25.21 kj/kg. 

 

 

Table 3. The effect of corrugated width size on the crash 

performance circular crash boxes energy absorber models. 

The numbers with bold fonts shows the maximum value ob-

served in the corresponding column. 

Geometry 

Displace- 

ment  

(mm) 

Ener-

gy  

(kJ) 

Peak  

Crash  

Force  

(kN) 

Mean  

Crush  

Force  

(kN) 

CFE 

(%) 

SEA  

(kj/

kg) 

Taper 

Angle 

CS0TA0 120 8.421 143.17 70.18 49 30.6 0 

CS1.0TA0 120 7.457 140.32 62.14 44 26.9 0 

CS3.0TA0 120 6.558 116.21 54.65 47 25.4 0 

CS5.0TA0 120 6.923 112.56 57.69 51 27.0 0 

CS0TA2 120 8.090 125.39 67.42 54 33.9 2 

CS1.0TA2 120 8.299 137.16 69.16 50 29.6 2 

CS3.0TA2 120 7.020 104.39 58.50 56 29.6 2 

CS5.0TA2 120 7.422 89.65 61.85 69 28.4 2 

CS0TA4 120 7.767 108.20 64.73 60 27.1 4 

CS1.0TA4 120 7.790 124.40 64.92 52 32.2 4 

CS3.0TA4 120 6.702 93.87 55.85 59 25.1 4 

CS5.0TA4 120 7.058 85.89 58.82 68 28.6 4 

 

 

 

Fig. 9. Deformation photos of CS5.0TA2.0 crash box 

 

 

6. Conclusion 

The crashworthiness performance of corrugated circular 

tubes under impact loading are investigated with numer-

ical simulation in this paper by using an explicit nonline-

ar finite element code LS-DYNA. The crashworthiness 

assessment was based on the crush force efficiency 

(CFE), and the specific energy absorption (SEA). 

 

 All the specimens showed very good energy absorp-

tion capacity. 

http://tureng.com/tr/turkce-ingilizce/width
http://tureng.com/tr/turkce-ingilizce/width
http://tureng.com/tr/turkce-ingilizce/width
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 Highest SEA values (33.9 kj/kg) were found for cor-

rugated width 0 and taper angle 2° (CS0TA2) confi-

gurations. 

 Highest CFE values (69%) were found for corruga-

ted width 5.0 mm and taper angle 2° (CS5.0TA2) 

configurations.  

 CFE value increased when taper angle increase from 

0° to 4°. 

 When the taper angle of absorber increase, the ab-

sorbed energy also increases for all models.  

 It is possible to control the compressive stress in a 

cylindrical tube during impact loading by introdu-

cing corrugations on the tube surface. 

 The initial peak load of CS5.0TA4 crash box is 

59.9% less than the CS0TA0 samples and the 

CS5.0TA4 crash box are convenient shock absorber 

for structures which are sensitive to deceleration le-

vel. 

 

The initial peak load can be controlled with the corru-

geted  width and initial peak load is reduced by increasing 

of the corrugeted  width size. 
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