
446

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications	

Özden ÖZCAN TOP* , Yasemin KURANEL* ,Altan KOÇYİĞİT*

(Alınış	/	Received:	08.09.2023,	Kabul	/	Accepted:	09.11.2023,	Online	Yayınlanma	/	Published	Online:	30.12.2023)

Keywords	
Technical	Debt,	
Software	as	a	Service,	
Technical	Debt	in	SaaS,		
SaaS	

Abstract:	Technical	debt	(TD)	refers	to	the	outcomes	of	making	poor	decisions	or	
choosing	simpler	solutions	generally	for	the	sake	of	faster	code	delivery	in	software	
development	 projects.	 Eventually,	 TD	 is	 repaid	 and	 usually	 the	 long-term	 costs	
overweigh	 the	 short-term	 benefits.	 Therefore,	 proper	 identification	 and	
management	 of	 technical	 debt	 is	 crucial	 in	 any	 software	 development	 effort.	
Although	the	technical	debt	concept	in	the	software	domain	has	been	extensively	
studied	in	the	literature,	there	is	a	limited	understanding	of	the	indicators	of	TD	in	
Software	 as	 a	 Service	 (SaaS)	 applications.	 Hence,	 this	 study	 investigates	 the	
indicators	 and	 major	 categories	 in	 organizations	 that	 provide	 support	 for	 SaaS	
applications	 to	 their	 customers.	To	 this	 end,	 an	exploratory	 case	 study	has	been	
conducted	 in	 a	 SaaS	 development	 vendor	 partner	 and	 consultancy	 company.	
Interviews	have	been	conducted	with	nine	employees	in	the	company	and	an	in-
depth	analysis	of	collected	data	have	been	carried	out	to	identify	the	major	technical	
debt	categories	specific	to	SaaS	applications.	The	results	revealed	that	TD	categories	
and	problems	in	traditional	software	applications	are	also	valid	for	SaaS	projects.	
There	are	also	new	categories	of	TD	specific	to	SaaS.	We	identified	15	unique	SaaS-
specific	 technical	 debt	 categories	 associated	 with	 23	 relevant	 indicators.	
Additionally,	we	noted	the	presence	of	81	generic	software	technical	debt	indicators,	
classified	under	23	categories.

Hizmet	Olarak	Yazılım	Uygulamalarında	Teknik	Borcun	Kategorizasyonu	

Anahtar	Kelimeler	
Teknik	Borç,	
Hizmet	Olarak	Yazılım,	
Hizmet	Olarak	Yazılımda	
Teknik	Borç,	
SaaS		

Öz:	Teknik	borç	(TB),	yazılım	projelerinde	genellikle	daha	hızlı	kod	teslimi	için	daha	
basit	çözümler	seçme	veya	kötü	kararlar	alma	sonucunda	ortaya	çıkan	durumları	
ifade	eder.	Sonuçta	TB	ödenir,	ancak	uzun	vadeli	maliyetler,	kısa	vadeli	 faydaları	
aşar.	Bu	nedenle,	teknik	borcun	uygun	bir	şekilde	tanımlanması	ve	yönetilmesi	her	
yazılım	 geliştirme	 projesinde	 önemlidir.	 Yazılım	 alanında	 teknik	 borç	 kavramı	
literatürde	 kapsamlı	 bir	 şekilde	 incelenmesine	 rağmen,	 Hizmet	 Olarak	 Yazılım	
(SaaS)	uygulamalarındaki	TB	göstergeleri	oldukça	sınırlıdır.	Bu	nedenle,	bu	çalışma,	
müşterilerine	 SaaS	 uygulamaları	 için	 destek	 sağlayan	 organizasyonlardaki	 TB	
göstergelerini	 ve	 başlıca	 kategorileri	 araştırmaktadır.	 Bu	 amaçla	 çalışmada,	 bir	
bağımsız	 SaaS	 ortağı	 olan	 danışmanlık	 şirketinde	 keşif	amaçlı	 bir	 vaka	 çalışması	
gerçekleştirilmiştir.	Bu	kapsamda	şirkette	dokuz	çalışanla	görüşmeler	yapılmış	ve	
toplanan	verilerin	derinlemesine	analizi	 ile	SaaS	uygulamalarına	özgü	başlıca	TB	
kategorileri	 belirlenmiştir.	 Sonuçlar,	 geleneksel	 yazılım	 uygulamalarındaki	 TB	
kategorilerinin	ve	sorunlarının	SaaS	projeleri	için	de	geçerli	olduğunu	göstermiştir.	
SaaS'a	özgü	15	TB	kategorisi	ile	ilişkili	23	TB	göstergesi	tespit	edilmiştir.	Buna	ek	
olarak,	genel	yazılım	projelerinde	de	geçerli	olacak	81	TB	göstergesi,	23	kategori	
altında	gözlenmiştir.	

1. Introduction

Metaphors	 are	 cognitive	 lenses	 that	 help	 us	 make	 sense	 of	 situations	 and	 reality	 [1].	 Technical	 Debt	 (TD)	
metaphor	is	used	to	describe	the	effects	that	result	from	making	suboptimal	decisions	or	taking	shortcuts	for	
various	 reasons	 during	 software	 and	 system	 development	 [2].	 Although	 suboptimal	 decisions	 and	 solutions	
may	 save	 time	 and	effort	in	the	short	term;	they	lead	to	issues	in	software	product,	requiring	more	time	and	
effort	for	improvement	and	bug	fixing	in	the	long	term	[3][4].		

Erciyes	University	
Journal	of	Institue	Of	Science	and	Technology	

Volume	39,	Issue	3,		2023	

Erciyes	Üniversitesi	
Fen	Bilimleri	Enstitüsü	Dergisi	
Cilt	39,	Sayı	3	,		2023

*I�lgili Yazar, email: ozdenoz@metu.edu.tr

https://orcid.org/0000-0001-6608-0726
https://orcid.org/0000-0001-5003-4127

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

447

Swift	decisions	and	quick	measures	taken	during	software	development	life	cycle	impacts	the	final	product	quality	
[5].	 Major	 factors	 contributing	 to	 suboptimal	 decisions	 that	 result	 in	 technical	 debt	 may	 include	 customer	
pressure,	poor	communication,	low	levels	of	code	testing	coverage,	compromised	or	rigid	software	architecture,	
and	insufficient	documentation.	These	issues	are	also	common	in	cloud	computing	service	models,	as	they	increase	
with	 platform-specific	boundaries	and	 limitations,	and	ultimately	 lead	 to	 problems	 in	 software	 processes	 and	
malfunctions	in	the	end	product	delivered	to	customers	[6][7][8].			

Software	as	a	Service	(SaaS)	is	a	cloud-based	software	delivery	model	where	applications	are	provided	to	users	by	
a	service	provider	such	as	Google	Cloud,	Microsoft	Azure	or	SalesForce	[9].	Users	of	SaaS	applications	pay	for	the	
services	on	a	subscription	basis	[10][11].	There	has	been	a	growing	interest	to	such	applications.	According	to	
Gartner’s	recent	report,	it	is	estimated	that	SaaS	end-users	is	expected	to	spend	around	195	Billion	U.S.	dollars	
worldwide	 in	 2023	 [12].	 The	 key	 characteristics	 of	 SaaS	 applications	 include	 accessibility	 from	 any	 internet-
enabled	device,	 automatic	 updates	 to	 services,	and	 scalability	when	needed.	 They	also	 eliminate	 the	 need	 for	
businesses	 to	 install,	 run	 and	 maintain	 on-premises	 software	 and	 enable	 significant	 savings	 on	 hardware,	
software,	and	personnel	costs	[13].	

There	 has	 been	 extensive	 research	 on	 technical	 debt	 from	 a	 general	 software	 development	 perspective.	
Nevertheless,	understanding	technical	debt	specific	to	SaaS	applications	is	essential	due	to	the	unique	challenges	
that	this	software	delivery	model	presents.	SaaS	platforms,	especially	multitenant	ones	deliver	scalable,	reliable	
and	customizable	software	to	their	customers.	The	complexity	of	cloud-based	architectures,	frequent	updates	to	
satisfy	rapidly	evolving	customer	expectations,	and	continuous	delivery	often	pose	distinct	challenges	and	can	
cause	unusual	forms	of	technical	debt.	Addressing	these	challenges	is	essential	as	accumulating	technical	debt	can	
lead	to	slower	feature	delivery	and	degraded	quality	of	service.	Moreover,	as	the	SaaS	business	model	typically	
relies	on	regular	user	subscriptions,	maintaining	a	high	quality	of	experience	is	critical	to	retain	customers	and	
attract	 new	 ones,	 thereby	 improving	 return	 on	 investment	 and	 ensuring	 profitability.	 Any	 slowdown	 or	
degradation	in	service	quality	due	to	technical	debt	can	lead	to	customer	dissatisfaction	and	eventually	result	in	
loss	of	revenue	[14].		

The	purpose	of	this	research	is	to	specify	and	categorize	the	technical	debt	indicators	and	categories	specific	to	
Software	as	a	Service	application	development	projects.	 In	order	 to	achieve	 these	purposes,	we	performed	an	
exploratory	case	study	in	a	SaaS-based	customer	relationship	management	application	development	company	by	
interviewing	nine	employees	who	have	various	roles	and	experiences	in	product	development	and	maintenance.	
We	performed	the	interviews	based	on	the	ISO/IEC	12207	Software	Life	Cycle	Processes	categories	to	follow	a	
systematic	approach,	and	analyzed	the	interview	data	using	the	qualitative	coding	technique.	
This	study	contributes	to	the	literature	by	specifying	novel	TD	categories	for	SaaS	projects	and	augmenting	the	
existing	 knowledge	 about	 technical	 debt	 for	 general	 software	 development	 projects.	 The	 SaaS-specific	 TD	
categories	and	indicators	can	be	used	for	facilitating	more	effective	technical	debt	management	throughout	the	
software	development	life	cycle.	

The	rest	of	the	paper	is	structured	as	follows.	Section	2	gives	background	information	on	technical	debt	and	SaaS	
applications	and	provides	the	review	of	the	literature.	Section	3	explains	the	case	study	design	and	conduct	stages,	
and	the	validity	threats.	Section	4	presents	the	results.	The	findings	and	discussions	are	provided	in	Section	5.	
Finally,	Section	6	concludes	with	major	findings	of	the	study	and	future	work.

2. Background	and	Related	Work

2.1.	Software	as	a	Service	(SaaS)	

SaaS,	also	known	as	on-demand	software,	is	a	way	to	deliver	software	applications	running	on	cloud	platforms	
over	the	Internet	as	a	service.	Unlike	on-premises	software,	which	basically	requires	installation	and	maintenance	
by	users,	Software	as	a	Service	enables	users	to	readily	access	the	required	services	provided	on	cloud	platforms	
via	 the	 Internet.	SaaS	solutions	are	usually	preferred	because	of	 their	 lower	upfront	costs	when	compared	 to	
traditional	or	on-premise	software	[15].	

SaaS	 applications	 typically	 use	 a	 multitenant	 architecture,	 where	 all	 applications	 and	 users	 share	 a	 single	
infrastructure	and	code	base.	This	essentially	enables	 faster	and	easier	 innovation	of	SaaS.	As	 the	software	 is	
delivered	through	the	Internet,	SaaS	applications	are	ubiquitous.	The	ability	for	each	user	to	access	the	services	
wherever	and	whenever	they	need	them	with	adequate	quality	of	service	improves	productivity	and	forms	trust	
and	satisfaction	[16].	SaaS	applications	not	only	differ	from	packaged	software	based	on	cost	advantage,	but	also	
their	 benefits	 on	 scalability,	 rapidness	 in	 implementation,	 accessibility,	 managing	 update	 frequencies,	 and	
ensuring	security	[17].	

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

448

A	 noteworthy	 difference	 between	 a	 packaged	 software	 and	 SaaS	 is	 the	 ease	 of	 customization,	 which	 plays	 a	
significant	role	concurrently	supporting	multiple	organizations	with	diverse	needs	and	varying	business	processes	
with	the	same	system.	Most	SaaS	solutions	provide	no-code	solutions	or	high-level	abstractions,	thereby	saving	
both	 from	development	 time,	 and	 the	 cost	 of	maintaining	 a	 code	 base.	 Additionally,	 no-code	 automation	 and	
customization	prevent	harmful	effects	on	the	common	infrastructure,	enabling	organizations	to	achieve	success	in	
their	 business	 processes	 [9][17].	 While	 making	 the	 changes,	 users	 take	 advantage	 of	 using	 SaaS	 solutions,	
benefitting	 from	documented	 and	 ready-to-use	 solutions	 for	 their	 use	 cases	 if	 the	 service	 provider	 offers	 the	
specifications	of	the	platform,	software	or	service.	Organizations	can	handle	these	development	and	maintenance	
work	through	in-house	teams,	external	support,	or	independent	software	vendors	(ISVs)	[9].	ISV	partners	refer	to	
companies	that	specializes	in	creating	and	distributing	software	applications	hosted	in	the	cloud	and	offer	services	
to	 customers	 under	 a	 subscription	 model.	 These	 vendors	 maintain	 their	 autonomy	 while	 forming	 strategic	
partnerships	with	larger	platform	providers,	such	as	cloud	hosting	services	to	enhance	their	service	delivery.	

2.2	Technical	Debt	

Technical	 debt	 occurs	 when	 a	 suboptimal	 solution	 adds	 value	 to	 the	 software	 but	 leads	 to	 undesirable	
consequences.	 In	 other	 words,	 taking	 shortcuts	 during	 analysis,	 design,	 implementation,	 testing	 or	 even	
documentation	phases	of	a	project	might	end	up	in	more	effort	and	time	spent	on	the	tasks	to	resolve	a	defect	or	
to	enhance	the	quality	of	the	end	product	[18].	The	“technical	debt”	term	was	coined	by	Cunningham	(1992)	[2]	in	
an	experience	report	as	follows:	“...Shipping	first	time	code	is	like	going	into	debt.	A	little	debt	speeds	development	
so	long	as	it	is	paid	back	promptly	with	a	rewrite….	The	danger	occurs	when	the	debt	is	not	repaid.	Every	minute	spent	
on	not-quite-right	code	counts	as	interest	on	that	debt.”	Since	then,	the	term	technical	debt	is	used	to	define	(usually)	
conscious	 technical	 decisions	 that	will	 help	 in	 short-term	 or	with	 a	more	 urgent	 request,	 but	 that	may	 have	
negative	outcomes	in	the	future	for	other	dimensions.		

Studies	prove	that	technical	debt	must	be	seriously	taken	into	consideration	and	carefully	managed	to	prevent	
everlasting	payment	of	the	“debt”.	A	survey	study	conducted	by	Besker	et	al.	[19]	indicates	that	36%	of	overall	
development	time	on	average	is	wasted	due	to	the	technical	debt.	Noteworthy,	it	was	stated	that	most	time	is	spent	
on	understanding	the	root	cause	of	technical	debt.	

High	TD	awareness	is	the	first	step	towards	managing	it	[20],	and	its	management	becomes	easier	when	causes	
and	impacts	of	TD	are	identified.	In	prior	research,	various	methods	for	identifying	and	managing	TD	have	been	
explored.	 Falessi	 and	Kazman	 [21]	and	Ramač	 et	 al.	 [22]	 conducted	 surveys	 among	 software	 practitioners	 to	
identify	common	TD	issues,	their	frequency,	and	causes.	They	also	reported	on	practitioners’	familiarity	with	the	
TD	concept.	Notably,	multiple	case	studies	have	compared	technical	debt	management	across	different	companies	
[23][24][25][26].	Kruchten	et	al.	[3]	 surveyed	 the	evolution	of	 technical	debt,	and	proposed	an	organizational	
solution.		

Technical	debt	categorization	is	crucial	for	making	informed	decisions	and	proper	management	of	TD	in	software	
development	projects.	It	helps	teams	understand	the	specific	type	of	debt	they	are	dealing	with,	prioritize	their	
solution	efforts	based	on	the	debt's	impact,	and	align	these	efforts	with	the	project's	overall	goals.	This	organized	
approach	also	enhances	communication	among	stakeholders,	guides	resource	allocation,	and	aids	in	tracking	the	
progress	of	debt	reduction	[3][27].	

Alves	 et	 al.	 [28]	 performed	 an	 SLR	 to	 reveal	 different	 TD	 types	 and	 indicators,	 considering	 the	 nature	 of	 the	
development	 process.	 Zazworka	 et	 al.	 [6]	 advocated	 using	 automated	 tools	 over	 manual	 methods,	 while	
Ramasubbu	 and	 Kemerer	 [29]	 considered	 the	 TD	 types	 arising	 from	 client-vendor	 interdependencies	 during	
system	maintenance	and	Codabux	et	al.	[4]	took	an	empirical	approach	by	gathering	insights	from	practitioners	
on	TD	management.	

Specifically,	 we	 can	 talk	 about	 three	 technical	 debt	 categorization	 levels.	 The	 first	 level	 technical	 debt	
categorization	 can	 simply	 be	 performed	on	 the	 intention	 level	 as	 suggested	 by	McConnell	 [30].	 Based	 on	 this	
categorization,	each	technical	debt	can	be	categorized	as	Intentional	or	Unintentional.	At	the	second	categorization	
level,	Fowler	[31]	classifies	the	technical	debt	based	on	the	intention	of	the	person	who	creates	the	debt	but	in	a	
more	detailed	way	than	McConnell’s	classification:	Deliberate,	Reckless,	Inadvertent	and	Prudent.	At	the	third	level,	
Alves	et	al.	 [28]	presented	13	technical	categories	at	the	process	level	based	on	a	systematic	 literature	review	
study.	 These	 are	 Architecture	 Debt,	 Build	 Debt,	 Code	 Debt,	 Defect	 Debt,	 Design	 Debt,	 Documentation	 Debt,	
Infrastructure	 Debt,	 People	 Debt,	 Process	 Debt,	 Requirement	 Debt,	 Service	 Debt,	 Test	 Debt,	 Usability	 Debt	 and	
Versioning	Debt.	

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

449

In	our	previous	research	on	detecting	technical	debt	on	ambiguous	issue	statements	(the	citation	was	removed	
intentionally	to	ensure	double	blind	review	process),	we	specified	that	most	of	the	choices	leading	to	architectural	
or	structural	debt	was	unintentional,	as	the	effects	of	these	decisions	often	become	clear	only	in	the	later	stages	of	
the	 software	 development	 cycle.	 However,	 almost	 all	 suboptimal	 solutions	 chosen	 purposefully	 to	 address	
customer	or	stakeholder	needs	result	in	decreased	product	quality.	

2.3	Technical	Debt	in	SaaS	

Despite	 these	extensive	 studies	 on	TD	 in	 software	 domain,	 our	 understanding	 of	 TD	 in	 SaaS	 applications	 and	
enterprise-level	software,	such	as	customer	relationship	management	software,	remains	limited.	Klinger	et	al.	[26]	
conducted	interviews	with	technical	architects	related	to	enterprise	solutions,	while	Alzaghoul	and	Bahsoon	[25]	
analyzed	 the	 option-based	 approach	 to	 clear	 TD	 in	 cloud-based	 solutions.	 Ramassubbu	 and	 Kemerer	 [29]	
quantified	the	negative	impact	of	TD	on	system	reliability.	Kumar	et	al.	[32]	worked	on	identifying	and	estimating	
TD	 in	 SaaS	 clouds,	 emphasizing	 the	 distinction	 between	 "good	 debt"	 and	 "bad	 debt"	 in	 the	 context	 of	 SaaS	
applications.	

In	SaaS	projects,	it	has	to	be	ensured	that	the	customizations	and	developments	are	compatible	with	the	system's	
architecture	and	infrastructure.	Proper	documentation	of	changes	made	by	external	providers,	ISVs,	or	in-house	
teams	is	necessary.	Undocumented	or	poorly	executed	changes,	especially	by	less-experienced	staff,	can	lead	to	
issues	similar	to	those	in	on-premise	services,	or	specific	to	the	SaaS	application	and	its	infrastructure	[33].	SaaS	
providers	often	address	these	problems	through	regular	updates	or	bug-fixes,	and	users	must	follow	these	updates	
closely	[34].	It	is	also	vital	to	document	customizations	and	business	processes	to	avoid	technical	debt,	which	can	
become	a	problem	in	SaaS	applications	if	not	managed	carefully.		

As	 understood	 from	our	 first	 case	 study	(the	 citation	was	 removed	 intentionally	 to	 ensure	 double	 blind	 review	
process)	in	identifying	TD	based	on	ambiguous	issue	statements,	we	determined	that	Level	3	categorization	holds	
greater	significance	for	comprehending	the	underlying	causes	of	technical	debt.	This	level	of	categorization	yielded	
more	detailed	insights,	aligning	closely	with	the	phases	of	the	software	development	life	cycle.	However,	Level	3	
categorization	needs	to	be	specifically	examined	in	the	context	of	SaaS	and	CRM	applications	to	better	understand	
the	nature	of	technical	debt	in	these	systems.	

3. Case	Study	Design	and	Conduct	

In	order	to	determine	technical	debt	categories	specific	to	SaaS	applications,	we	preferred	to	follow	the	qualitative	
research	approach	[35].	To	gain	a	deeper	understanding	of	a	phenomenon	in	a	specific	field	and	communicate	with	
research	participants	in	their	natural	settings,	we	conducted	an	exploratory	case	study	[36]	and	aimed	to	answer	
the	following	research	questions:	

RQ1:	What	are	the	indicators	highlighting	TD	in	SaaS	application	development?	
RQ2:	What	are	the	technical	debt	categories	specific	to	SaaS	applications?	
Below,	we	describe	the	case	study	design	and	conduct	stages.						

3.1	Case,	Process	and	Participant	Selection	
We	used	the	purposive	sampling	technique	in	determining	the	case	organization	[37].	In	our	purposive	sampling	
process,	we	aimed	at	finding	a	company	that	primarily	focuses	on	developing	SaaS	applications.	Such	a	company	
should	fulfil	essential	software	development	life	cycle	activities,	such	as	software	analysis,	design,	implementation,	
testing	and	project	management	to	a	certain	level.	Additionally,	a	key	criterion	was	the	presence	of	an	active	SaaS	
development	project	within	the	company.	As	the	practitioners	were	expected	to	discuss	the	problems	that	they	
experience	in	software	development	based	on	their	current	project,	they	would	be	more	precise	about	the	issues	
and	the	root	causes	of	these	issues.	
Below,	the	case	study	components	and	the	decisions	we	made	at	the	design	stage	are	described.	

The	Case	Company:	The	company	we	selected	for	conducting	the	exploratory	case	study	specializes	in	asset	and	
file	management	and	is	involved	in	various	implementation	and	integration	projects	on	multiple	platforms.	The	
company	has	several	teams	that	are	competent	and	work	on	various	digital	platforms.	The	number	of	employees	
of	 the	 company	 is	 around	 100.	 Apart	 from	 integration	 and	 platform-based	 solutions,	 there	 are	 also	 software	
products	that	the	company	works	on	and	offers	to	the	market.	The	main	purpose	of	most	of	these	products	is	to	
facilitate	asset	management	and	to	create	cost-effective	solutions.	The	remaining	products	aim	to	provide	an	ease	
of	integration	for	customers	and	to	increase	customer	communication.		

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

450

The	 Case	 Project:	 For	 the	 case	 project,	 we	 selected	 an	 ongoing	 SaaS-based	 CRM	 (customer	 relationship	
management)	project.	The	platform	that	has	been	used	in	the	case	product	is	Salesforce.	Salesforce	company	is	
specialized	in	CRM	applications,	with	a	focus	on	sales,	marketing	and	customer	services.	The	company	both	offers	
SaaS	and	platform	as	a	 service	 (PaaS).	The	CRM	product	 that	we	choose	for	 the	case	has	been	released	 to	 the	
market	for	about	15	years	ago	and	new	feature	enhancements	and	maintenance	work	continue	since	then.	The	
goal	of	the	product	is	to	provide	a	cost-effective	customer	file	management	system	for	a	specific	SaaS	platform.	
Various	developers	and	experts	have	contributed	to	the	product	over	the	years.	Specifically,	product	and	platform-
based	development	activities	have	been	going	on	in	our	case	company	by	a	team	of	8-10	people	for	the	last	five	
years.	The	product	that	the	case	company	offers	to	the	market	not	only	includes	platform-oriented	components,	
but	also	3rd	party	packages	and	products.	Some	of	which	are	managed	by	the	core	team.	Since	the	product	was	
developed	for	the	platform,	it	must	comply	with	the	limitations,	requirements	and	security	obligations	imposed	
by	 the	 platform.	Due	 to	 these	 characteristics,	 it	was	 considered	 that	 the	 project	 is	 a	 very	 good	 candidate	 for	
observing	various	TD	categories.		

The	Software	Life	Cycle	Processes:	In	order	to	understand	the	nature	of	the	TD	in	SaaS	applications,	the	first	step	
was	to	design	an	interview	questionnaire.	The	main	purpose	of	the	interview	was	to	access	wide	range	of	different	
technical	 debt	 issues	 experienced	 by	 people	working	 in	 organizations	 like	 our	 case	 company,	 having	 various	
experiences	and	roles	in	the	project.	In	order	to	follow	a	structured	approach	in	specifying	the	interview	questions,	
we	used	the	ISO/IEC	12207	[38]	software	life	cycle	process	standard	as	the	basis.	In	accordance	with	the	goals	of	
this	study,	we	focused	on	the	following	technical	management	and	technical	process	sub-group	given	in	Table	1.

Table	1.	Selected	ISO/IEC	12207	Software	Development	Life	Cycle	Processes	
Process	Group	 Process	Name	 Referring	ISO/IEC	

12207	Process	ID	
Technical	
Management	
Processes	

Project	Planning	Process	 6.3.1	

Project	Assessment	and	Control	Process	 6.3.2	
Technical	
Processes	

Stakeholder	Needs	and	Requirements	Definition	Process	 6.4.2	

Systems/Software	Requirements	Definition	Process	 6.4.3	

Architecture	Definition	Process	 6.4.4	

Design	Definition	Process	 6.4.5	

Implementation	Process	 6.4.7	

Integration	Process	 6.4.8	

Verification	Process	 6.4.9	

Validation	Process	 6.4.11	

The	Interviewees:	While	choosing	the	interviewees,	we	aimed	to	access	employees	who	have	participated	in	the	
selected	ISO/IEC	12207	Software	Life	Cycle	development	processes	given	in	Table	1.	The	interviewees	were	not	
only	defined	by	their	roles,	but	also	their	expertise	level	 in	SaaS	and	software	development.	We	contacted	the	
potential	participants	through	the	company’s	point	of	contact.	In	total,	we	have	agreed	with	nine	employees	in	the	
project	who	are	willing	to	discuss	their	experiences	and	issues	that	they	experience	in	SaaS	development	process.	
The	 roles,	 experience	 levels	 and	 TD	 awareness	 levels	 of	 these	 participants	 as	 gathered	 from	 interviews	 are	
summarized	in	Table	2.	TD	Awareness	levels	have	been	categorized	based	on	the	definitions	given	below:	

• Low	TD	Awareness:	The	participant	might	be	unfamiliar	with	the	TD	metaphor	entirely.	However,	they	
might	still	provide	general	examples	of	TD	during	the	interview.	Alternatively,	they	may	understand	the
metaphor	but	remain	uncertain	about	what	is	recognized	as	TD	in	the	processes	they	are	a	part	of.

• Intermediate	TD	Awareness:	The	participant	 is	 familiar	with	 the	TD	metaphor	and	offers	examples,
though	these	might	 lack	depth.	They	don't	articulate	the	impact	of	TD	on	processes	or	share	views	on	
managing	it.

• High	TD	Awareness:	The	participant	has	a	clear	understanding	of	the	TD	metaphor,	provides	specific
examples	of	TD,	recognizes	the	indicators,	and	is	aware	of	issues	arising	from	TD.	They	also	offer	insights
on	strategies	to	address	or	manage	TD.

Table	2.	Roles,	experience	levels,	and	TD	awareness	levels	of	each	interviewee	
ID	 Role	 Experience	Level	in	

Software	Development	
(in	years)	

Experience	Level	in	
SaaS	Development		

(in	years)	

TD	Awareness	

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

451

1	 Consultant	 3	 3	 Low	

2	 QA	Engineer	 5	 5	 High	

3	 Developer		 4	 4	 High	

4	 Developer		 5	 2	 Intermediate	

5	 Team	Lead	 13	 3	 High	

6	 Developer	 5	 2.5	 Low	

7	 Developer	 3	 3	 Intermediate	

8	 Release	Manager	 2	 2	 Low	

9	 Customer	Support	Specialist	 5	 2.5	 Intermediate	

3.2	Interview	Questions	

We	 identified	 the	 interview	questions	 given	 in	Table	 3	 to	 retrieve	 as	much	as	 possible	 information	 from	 the	
interviewees.	These	questions	were	designed	in	an	open-ended	structure	and	applicable	for	all	processes	given	in	
Table	1.	We	specifically	aimed	not	to	emphasize	the	technical	debt	term	presuming	that	the	initial	awareness	of	
the	interviewees	on	the	subject	are	low.	The	interview	questions	were	prepared	in	English	and	Turkish,	as	there	
were	people	in	the	team	with	nationalities	other	than	Turkish	as	well.		

Table	3.	Interview	Questions	
No	 Questions	
1	 What	is	your	role	in	the	organization,	and	what	kind	of	responsibilities	do	you	have	in	the	company	

and	the	projects?		
2	 Can	you	describe	the	project	and	the	technologies	being	used	in	the	project?	
3	 Which	of	the	following	Software	Life	Cycle	Processes	do	you	participate	in	the	project?		

Project	Planning,	Project	Assessment	and	Control,	Stakeholder	Needs	and	Requirements	Definition,	
Systems/Software	Requirements	Definition,	Architecture	Definition,	Design	Definition,	
Implementation,	Integration,	Verification,	Validation	

4	 Do	you	experience	any	issues	with	the	processes/practices	that	you	participate	in	the	project?	
5	 Do	you	practice	the	tasks/activities	defined	for	each	process	specified	in	ISO/IEC	12207?	
6	 Do	you	think	there	are	tasks	that	you	fail	or	don’t	achieve	completely?	
7	 What	kind	of	problems	occur	in	the	project	due	to	these	issues?	
8	 How	did	you	realize	these	problems?	Do	you	have	any	further	observations	on	the	problems?		
9	 Do	you	know	if	these	problems	are	caused	by	the	SaaS	provider	or	the	development	team	that	you	

belong	to?	
10	 Do	you	have	any	recommendations	or	a	way	to	solve/prevent	these	problems?	
11	 Do	you	experience	any	further	challenges	regarding	the	usage	of	SaaS	applications	in	the	project?	
12	 Do	you	sometimes	choose	easy/limited	solutions	to	problems	in	your	project,	instead	of	using	a	better	

approach?	
13	 Do	you	have	rework	or	refactoring	cycles	for	your	source	code?	
14	 Do	you	have	any	problems	that	you	choose	not	to	fix/solve	and	only	monitor	the	course/trend	over	

time?		
15	 Are	you	familiar	with	the	technical	debt	metaphor?	
16	 Do	you	measure	the	technical	debt	that	is	present	in	your	project,	using	any	tools	or	processes?	
17	 Do	you	mostly	monitor	or	take	further	action	on	technical	debt	issues?	
18	 How	do	you	decide	the	managerial	activities	on	the	technical	debt	issues?	
19	 Do	you	have	any	metrics	or	scale	to	prioritize	the	technical	debt	issues?	
20	 Do	you	have	any	technical	debt	that	is	expected	to	become	worse	in	the	future?	
21	 To	what	extent	does	technical	debt	affect	your	motivation?		
22	 Is	your	management	aware	of	technical	debt	and	are	they	taking	any	action?	
23	 Do	you	have	additional	issues	that	you	would	like	to	mention/highlight?	
24	 Do	you	think	that	there’s	room	for	improvement	for	your	project/organization?	

3.3	Validity	Threads	

In	the	design	stage	of	this	research,	another	aspect	that	we	considered	was	the	mitigation	strategies	to	the	validity	
threats.	As	a	qualitative	research	methodology,	the	case	study	approach	is	subject	to	certain	validity	challenges.	
To	 ensure	 the	 integrity	 of	 our	 findings,	we	have	 determined	and	 implemented	measures	 to	address	 potential	
threats	to	internal,	construct,	and	external	validity.	

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

452

3.3.1.	Construct	Validity	

Construct	validity	assesses	whether	the	research	tools	accurately	measure	the	variables	or	constructs	they	aim	to	
evaluate	[36].	For	our	study,	it	was	necessary	to	ensure	our	interview	questionnaire	was	capable	of	identifying	
SaaS-related	TD	categories	without	oversight.	To	this	end,	we	utilized	the	ISO/IEC	12207	[38]	software	life	cycle	
process	 standard	 as	 our	 foundation.	We	 selected	 ten	 processes	 that	 spanned	 both	 technical	 and	 managerial	
categories	from	ISO/IEC	12207.	

Another	element	that	could	influence	construct	validity	is	the	potential	ambiguity	in	terms	and	definitions	used	in	
the	 research.	 In	 particular,	 as	 presented	 in	 Table	 2,	 team	members	 demonstrate	 different	 levels	 awareness	
regarding	TD.	Recognizing	that	members	of	the	SaaS	project	development	team	might	interpret	the	term	“technical	
debt”	in	various	ways,	we	reframed	our	questions.	Instead	of	asking,	“What	specific	technical	debt	issues	do	you	
encounter?”,	we	posed,	“What	kind	of	problems	do	you	experience	in	relation	to	a	specific	process?”.		

3.3.2.	Internal	Validity	
Internal	validity	considers	the	degree	to	which	the	observed	effects	 in	the	research	are	actually	caused	by	the	
manipulated	 variables	 or	 interventions,	 rather	 than	 some	 other	 external	 factors	 [36].	 	 In	 our	 case	 study,	we	
considered	 the	 possibility	 that	 the	 SaaS	 development	 team	members	might	 provide	answers	 they	believe	 the	
researchers	want	to	hear.	To	mitigate	this	potential	bias,	we	assured	the	participants	that	their	responses	would	
be	 kept	 confidential,	 and	 any	 data	 published	 would	 be	 anonymized.	 We	 believe	 this	 approach	 minimizes	
participant	bias.	Furthermore,	instead	of	prompting	for	confirmatory	answers,	we	encouraged	participants	to	give	
detailed,	descriptive,	open-ended	responses	to	our	interview	questions,	elaborating	on	problematic	situations	as	
comprehensively	as	possible.	

3.3.3.	External	Validity	

External	validity	concerns	the	generalizability	of	the	research	findings	outside	the	specific	context	or	sample	in	
which	the	research	was	conducted	[36].	As	the	study	focuses	on	a	single	CRM	application,	the	findings	might	not	
be	generalized	to	other	SaaS	applications	or	other	domains.	In	the	findings	and	results	sections,	we	clearly	stated	
the	research	 findings.	These	 insights	are	highly	valuable;	however,	 they	pertain	primarily	 to	 the	specific	CRM	
application	studied.	Additional	qualitative	and	quantitative	research	is	needed	to	explore	technical	debt	categories	
in	SaaS	application	for	other	domains.	We	performed	the	interview	with	nine	employees	in	a	SaaS	project	and	
covered	a	wide	diversity	of	the	roles	and	experience	levels	within	the	development	team.	This	has	provided	a	more	
comprehensive	view	of	the	technical	debt	landscape.	

3.4	Case	Study	Conduct	
In	this	section,	we	explain	the	data	collection	and	data	analysis	stages	of	the	case	study.	

3.4.1	Data	Collection	

The	data	was	obtained	from	semi-structured	interviews	based	on	the	questions	provided	in	Table	3.	We	followed	
the	techniques	recommended	by	Patton	[39]	to	ensure	comprehensive	coverage	of	every	process	listed	in	Table	1,	
while	also	retrieving	participants’	experiences	in	a	flexible	way.	In	total,	nine	face-to-face	interview	sessions	were	
conducted,	with	each	 taking	around	45	minutes.	Out	of	 the	nine	 interviewees,	 two	preferred	 to	conduct	 their	
interviews	in	English.	Each	team	member	was	responsible	for	at	least	one	SDLC	process	listed	in	Table	2.	The	SDLC	
processes	experienced	by	the	organization,	in	terms	of	the	number	of	participants	responsible	for	each	process,	
are	detailed	below.	

At	 the	 start	 of	 each	 interview	 session,	 the	 participants	were	 asked	 about	 the	 processes	 for	which	 they	were	
responsible.	 To	 aid	 in	 this,	 the	 names	 and	 purposes	 of	 each	 process	were	 presented	 to	 the	 participants.	 If	 a	
participant	requested	examples	for	any	process,	these	were	also	provided	by	referring	to	the	activities	defined	in	
the	 ISO/IEC	 12207	 standard.	 Table	 4	 given	 below	 shows	 the	 SDLC	 process	 involvement	 for	 each	 interview	
participant.	

Table	4.	SDLC	process	involvement	for	each	interviewee	
Process	Name	/	Interviewee	#	 1	 2	 3	 4	 5	 6	 7	 8	 9	
Project	Planning	Process	 X	 X	 X	
Project	Assessment	and	Control	Process	 X	
Stakeholder	Needs	and	Requirements	Definition	Process	 X	 X	 X	 X	 X	 X	
Systems/Software	Requirements	Definition	Process	 X	 X	 X	 X	 X	

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

453

Architecture	Definition	Process	 X	 X	 X	
Design	Definition	Process	 X	 X	 X	 X	 X	
Implementation	Process	 X	 X	 X	 X	 X	 X	
Integration	Process	 X	 X	 X	 X	 X	
Verification	Process	 X	 X	 X	 X	 X	 X	
Validation	Process	 X	 X	 X	 X	

3.4.2	Data	Analysis:	Coding	and	Categorization	

In	analyzing	the	data,	we	applied	open	and	axial	coding	techniques	to	identify	themes,	as	recommended	by	[40]	
and	Lochmiller	[41].	First,	the	interview	data	was	first	transcribed.	The	coding	and	categorization	processes	were	
carried	out	in	three	iterative	and	incremental	stages.	

During	the	first	stage,	open	coding	helped	us	specify	initial	TD	indicators	within	the	project.	Next,	we	established	
connections	between	the	codes,	focusing	on	process	levels	and	keywords	highlighted	by	the	participants.	These	
stages	enabled	us	to	detect	TD	categories	specific	to	SaaS	development,	addressing	RQ1	and	RQ2	respectively.	
While	determining	TD	categories,	we	sought	patterns	that	could	define	TD	category	themes.	To	ensure	consistent	
and	accurate	coding,	 two	review	sessions	were	held:	one	after	 the	open	coding	and	another	at	 the	end	of	 the	
analysis.		
The	 TD	 indicators	 identified	 from	 the	 interview	 transcripts,	 along	 with	 the	 resulting	 TD	 categories,	 will	 be	
presented	in	the	following	section.		

4. Findings

SaaS	applications	are	intrinsically	complex.	They	are	built	to	serve	clients	with	diverse	needs	and	designed	to	be	
universally	 accessible.	 Therefore,	 they	 frequently	 subject	 to	 updates	 and	modifications.	 As	 businesses	 race	 to	
introduce	new	features	or	adapt	to	market	demands,	there	is	often	a	tendency	to	make	swift	decisions,	sometimes	
overlooking	long-term	implications.	Such	decisions	can	inadvertently	introduce	technical	debt.	

Table	 5	 given	 below	presents	 technical	 debt	 indicators	and	 categories	 for	 both	 SaaS	applications	 and	generic	
software	 development	 projects.	 In	 total,	we	 identified	 38	 TD	 categories,	 and	 15	 of	 them	are	 specific	 to	 SaaS	
projects.	We	also	found	104	TD	indicators	in	total,	23	being	related	only	to	SaaS	projects.		
These	indicators	were	derived	directly	from	responses	given	by	interview	participants	during	our	case	study.	Once	
the	 indicators	were	 defined,	 the	 categories	were	 determined	 over	 three	 iterations.	 Multiple	 instances	 of	 TD	
indicators	have	been	removed	from	Table	5.	

The	table's	first	column	specifies	if	the	TD	category	and	its	associated	indicators	are	common	in	generic	software	
development	or	are	unique	 to	SaaS	projects.	This	 is	 followed	by	columns	providing	 the	TD	category	name,	 its	
description,	and	 the	 corresponding	TD	 indicators.	 The	 table	 is	 organized	 in	 ascending	 order	 based	 on	 the	TD	
categories.	SaaS-specific	technical	debt	categories	are	highlighted	with	an	orange	background.	

Table	5.	TD	categories,	TD	descriptions	and	associated	TD	indicators	
TD	Type	
SaaS-Specific	
/	Generic	

TD	Category	 Category	Description	 TD	Indicators	

Generic	 1. Communication	
Issues	

Represents	any	problems	
related	to	conveying	or	
understanding	information	
among	team	members,	
stakeholders,	or	customers.	

a. Communication	barriers	on	
work	tracking	

b. Miscommunication	on	customer
requests	

c. Miscommunication	with
stakeholders/team	members	

Generic	 2. Design	Adaptability	
Challenges	

Indicates	the	difficulties	in	
adjusting	designs	based	on	
evolving	customer	requests	or	
requirements.	

a. Customer	driven	volatile	design	

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

454

Generic	 3. Design	and
Implementation	
Mismatch	

Denotes	scenarios	where	the	
design	and	the	actual	
implementation	don't	align	or	
match	as	intended.	

a. Incomplete	implementation	wrt
design	

b. Insufficient	design	maintenance	
c. Insufficient	design

verification/validation	

Generic	 4. Design	Inadequacy	 Addresses	instances	where	the	
design	is	incomplete,	flawed,	or	
based	 on	 incorrect	
assumptions.	

a. Design	with
incomplete/incorrect
requirements	

b. Incomplete	design	
c. Lack	of	solid	design	principles	

Generic	 5. Design	Inefficiency	 Covers	 situations	 where	 the	
design	 process	 or	 outcome	 is	
inefficient,	 overly	 complex,	 or	
doesn't	 adhere	 to	 standard	
practices.	

a. Overengineering

Generic	 6. Design	Process	
Inefficiency	

Refers	 to	 instances	where	 the	
design	 process	 is	 flawed	 or	
doesn't	yield	optimal	results.	

a. Poor	design	process	

Generic	 7. Document
Maintenance
Deficiency	

Indicates	 a	 lack	 of	 adequate	
updates,	 maintenance,	 or	
attention	to	various	project	or	
system	documents.	

a. Insufficient	maintenance	of
design	documentation	

Generic	 8. Documentation	
Deficiency	

Refers	to	situations	where	
critical	documentation	is	
missing	or	inadequate,	
potentially	leading	to	
confusion	or	mistakes.	

a. Inadequate	architecture
definition	

b. Inadequate	design	definition	
c. Insufficient	design	

documentation	
d. Insufficient	requirements	

documentation	
e. Missing	documentation	

SaaS-Specific	 9. Explorative	 SaaS	
Challenges	

Challenges	that	emerge	when	
attempting	to	innovate	or	
implement	new	methods,	
features,	or	processes	within	a	
SaaS	environment.	

a. Exploration	 of	 new	 approaches	
in	SaaS	

SaaS-Specific	 10. Inadequate	 SaaS	
Support	

Occurs	where	the	SaaS	
provider	does	not	offer	
enough	assistance,	guidance,	
or	customer	service	for	users	
facing	issues.	

a. Inadequate	 support	 from	 SaaS	
provider	

Generic	 11. Inadequate
Technical Debt	
Management	

This	theme	refers	to	the	
challenges	of	managing,	
addressing,	or	accumulating	
technical	debt	in	the	project.	

a. Bug-focused	releases	
b. Customer-driven	quick	fixes	
c. Delayed	problem	identification	
d. Developer-initiated	refactoring	
e. Incomplete	solutions	
f. Rework	for	fixed	problems	
g. Lack	of	design	refactoring	
h. Post-verification	problem

identification	
i. Quick	unconventional	fixes	
j. Refactoring	cycles	
k. Rework	time	constraints	
l. Rigid	architecture	ang	coding

structure
m. Temporary	fixes	

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

455

Generic	 12. Inefficient	 Work	
Planning/Estimation	

Captures	 issues	 related	 to	
misestimating	work	durations,	
improperly	 planning	 tasks,	 or	
having	 conflicts	 about	
priorities	

a. Decision	ambiguities	
b. Estimation	difficulties	
c. Issue	priority	conflicts	
d. Planning	 conflicts	 with	 upper	

management	
e. Priority	conflicts	
f. Rising	ticket	resolution	time	

SaaS-Specific	 13. Insufficient	 SaaS	
Communication	

A	 lack	 of	 clarity	 or	 adequate	
information	 from	 the	 SaaS	
provider.	This	can	be	in	terms	
of	 potential	 impacts,	 updates,	
or	 changes	 that	 might	 affect	
users.	

a. Insufficient	impact	information	
from	SaaS	

Generic	 14. Issue/Task
Description	Issues	

Highlights	 problems	 arising	
from	 unclear	 or	 incomplete	
descriptions	of	tasks	or	issues.	

a. Insufficient	issue	details	

SaaS-Specific	 15. Known	 SaaS-Specific	
Issues	

Issues	 that	 are	 already	
identified	and	recognized	with	
the	 SaaS	 provider.	 These	 are	
often	listed	or	documented	but	
remain	unresolved.	

a. Pre-existing	issues	with	SaaS	

Generic	 16. Legacy System	
Challenges	

This	 theme	 refers	 to	 the	
difficulties	 associated	 with	
maintaining,	 upgrading,	 or	
working	 within	 older	 systems	
that	may	no	longer	be	efficient	
or	 compatible	 with	 newer	
technologies.	

a. Legacy	system	maintenance	

Generic	 17. Process	 Adherence	
Issues	

Highlights	 situations	 where	
established	 processes	 are	 not	
being	 followed	 or	 are	
incompletely	adhered	to.	

a. Incomplete	process	adherence	
b. Ineffective	parallel	design-

implementation	cycles	
c. Neglected	backlog	maintenance	

Generic	 18. Process	 Definition	
Ambiguity	

Describes	 situations	 where	
processes	 or	 criteria	 are	 not	
clearly	 defined,	 leading	 to	
confusion	or	misalignment	

a. Ambiguous	completion	criteria	
b. Undefined	checkpoints	

Generic	 19. Quality	 Assurance	
Inefficiency	

Encompasses	 challenges	 and	
inefficiencies	 in	 ensuring	 the	
quality	 of	 code,	 designs,	 or	
implementations.	

a. Absent	code	convention
checklist	

b. Delayed	testing	cycles	
c. Ineffective	code	review	
d. Self-code	verification	neglect	

SaaS-Specific	 20. Reactive	 SaaS	
Adjustments	

The	 need	 for	 users	 to	 make	
changes,	 fixes,	 or	 adaptations	
due	 to	 unexpected	 or	
uncommunicated	 changes	
made	by	the	SaaS	provider.	

a. Adjustments	needed	due	to	SaaS
alterations	

Generic	 21. Release	Management	
Issues	

Denotes	 difficulties	 related	 to	
managing	 product	 releases,	
updates,	 or	 ensuring	
customers	 can	 keep	 up	 with	
the	release	pace.	

a. Mismatch	of	customer	and	
product	needs	

Generic	 22. Requirement	Issues	 Refers	 to	 problems	 related	 to	
understanding,	 gathering,	 or	
clearly	defining	requirements.	

a. Inadequate	requirement
gathering	

b. Incomplete	requirement
understanding	

c. Incomplete	requirements	
d. Requirement	consensus	lack
e. Undefined	stakeholder	needs	
f. Vague	requirements	

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

456

Generic	 23. Requirements	 and	
Design	Mismatch	

Highlights	 situations	 where	
there's	 a	 disparity	 between	
what's	 required	 and	 the	
resulting	design.	

a. Insufficient	design
verification/validation	

SaaS-Specific	 24. SaaS	 Configuration	
Overhead	

Challenges	related	to	the	
extensive	setup,	tuning,	or	
customization	required	on	the	
SaaS	side.	It	indicates	that	the	
SaaS	might	have	a	complex	or	
not	have	user-friendly	
configuration	setup.	

a. Extensive	SaaS-side
configurations	

SaaS-Specific	 25. SaaS	 Imposed	
Limitations	

These	are	strict	constraints	set	
by	 the	SaaS	provider	 (such	as	
the	 number	 of	 API	 calls	 per	
hour,	 storage	 capacity,	
customization	 options,	 or	
integration	capabilities).		

a. Limitations	imposed	by	SaaS	
governor	

b. Constraints	imposed	by	SaaS
provider	

c. Inability	to	exceed	SaaS
limitations	

SaaS-Specific	 26. SaaS-Induced	
Modifications	

Challenges	 that	 arise	 directly	
due	 to	 changes,	 updates,	 or	
decisions	 made	 by	 the	 SaaS	
provider.	 This	 can	 include	
anything	 from	 platform	
changes	 to	 the	 deprecation	 of	
certain	features.	

a. Platform-driven	design	
alterations	

b. Release-induced
incompatibilities	

c. Deprecation-induced
disruptions	

SaaS-Specific	 27. SaaS-Platform	
Specific	Limitations	

Refers	to	the	constraints	that	
are	unique	to	a	specific	SaaS	
platform.	Salesforce	has	its	
own	set	of	limitations	distinct	
such	as	platform-specific	
development	languages,	
modules,	or	unique	
architectural	elements.	

a. Salesforce-specific	SaaS
constraints	

SaaS-Specific	 28. SaaS	 Testing	 and	
Troubleshooting	
Limitations	

Difficulties	faced	during	the	
testing	or	troubleshooting	
phases	because	of	constraints	
or	peculiarities	in	the	SaaS.	

b. Testing	and	troubleshooting
issues	due	to	SaaS	limits	

c. SaaS-related	troubleshooting
difficulty	

SaaS-Specific	 29. Setup	 and	
Replication	
Challenges	

Difficulties	related	to	creating,	
setting	up,	or	duplicating	SaaS	
environments.	This	can	range	
from	initial	environment	setup	
to	trying	to	reproduce	specific	
conditions	for	testing	or	
troubleshooting.	

a. Time-consuming	SaaS
environment	setup	

b. Difficulty	in	replicating	live
environments	

c. Challenges	in	customer
environment	replication	

SaaS-Specific	 30. Shared	
Accountability	

This	theme	pertains	to	
situations	where	both	the	
software	vendor	and	the	
development	team	share	the	
blame	for	issues	or	conflicts.	It	
emphasizes	that	responsibility	
is	not	solely	on	one	party.	

a. Accountability	on	both	vendor
and	development	team	

Generic	 31. Standards	 and	 Best	
Practices	Violation	

Represents	scenarios	where	
industry	standards,	best	
practices,	or	internal	
guidelines	aren't	followed.	

b. Absence	of	architectural
standards	

c. Absent	unit	test	standards	
d. Best	practice	implementation	

neglect	
e. Flawed	testing	process	
f. Incomplete	unit	tests	
g. Lack	of	a	defined	design	process	
h. Neglect	of	solid	design	

principles	
i. Neglected	code	conventions	

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

457

j. Non-conforming	code	practices	
k. Undefined	test	steps	

SaaS-Specific	 32. Technological	
Diversity	Challenges	

Issues	that	arise	due	to	using	a	
mix	of	different	technologies,	
tools,	or	platforms.	This	might	
be	the	integration	of	varied	
systems	or	the	problems	that	
arise	from	them.	

a. Diverse	technology	hindrances	

Generic	 33. Testing	Limitations	 Deals	with	challenges	in	the	
testing	phase,	including	time	
restrictions,	missing	tests,	or	
lack	of	automation.	

a. Insufficient	testing	
b. Manual	testing	overhead	
c. Missed	edge	case	testing	
d. Missing	unit	test	coverage	
e. Time-restricted	testing	

Generic	 34. Time	 Management	
Issues	

Encompasses	challenges	
related	to	deadlines,	frequent	
releases,	or	general	time	
constraints.	

a. Deadline	pressures	
b. Frequent	release	pressure	
c. General	time	constraints	
d. Missed	deadlines	

SaaS-Specific	 35. Trade-offs	due	to	
SaaS	Architecture	

Recognizing	both	the	
advantages	and	disadvantages	
of	using	a	particular	SaaS	due	
to	its	design	or	structure,	
especially	with	architectures	
like	multi-tenancy.	

a. Multi-tenancy-related	SaaS
trade-offs	

b. SaaS	limits	acknowledged,	but
seen	as	not	positive

Generic	 36. Verification	
Inefficiency	

Highlights	inefficiencies	or	
challenges	in	the	verification	
phase,	whether	it's	customer	
or	internal	verifications.	

a. Customer-identified	issues	
b. Verification	difficulties	
c. Verification-identified	issues	

Generic	 37. Workaround
Dependencies	

Refers	to	reliance	on	
workarounds,	be	it	due	to	
platform	constraints,	specific	
requests,	or	other	limitations.	

a. Limitation	workarounds	
b. Platform-specific	workarounds	
c. Request-specific	workarounds	

SaaS-Specific	 38. Workaround	for	SaaS	
Limitations	

The	effort	and	methods	
employed	to	find	alternative	
solutions	or	bypasses	for	
issues	or	limits	set	by	the	SaaS	
provider.	

a. Employing	workarounds	for
SaaS	limits/issues	

5. Discussions	

SaaS	applications	have	recently	gained	significant	interest	due	to	their	adaptability	and	scalability	characteristics.	
These	 applications	 can	 serve	 to	 many	 clients	with	 varying	 needs.	 However,	 this	 flexibility	 can	 contribute	 to	
increased	TD	levels	in	SaaS	projects.	In	this	study,	we	identified	technical	debt	categories	specific	to	SaaS	projects.	
Our	study	was	not	limited	to	SaaS;	we	also	identified	categories	of	technical	debt	that	apply	to	generic	software	
development.	The	SaaS-specific	TD	categories	identified	in	this	study	are	novel,	whereas	the	generic	categories	are	
consistent	with	prior	literature	on	technical	debt.	However,	these	generic	TD	categories	are	explained	at	a	finer	
level	of	abstraction,	thereby	providing	a	deeper	understanding	of	the	associated	challenges.	

5.1	SaaS-Specific	Technical	Debt	Indicators	and	Categories	

Technical	debt	is	a	well-discussed	topic	in	general	software	development,	but	SaaS	environments	bring	their	own	
set	of	challenges	and	characteristics.	The	limitations	imposed	by	SaaS	platforms	play	a	significant	role	in	finding	

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

458

quick	solutions	 and	making	 swift	 decisions	which	 leading	 to	 technical	 debt.	 The	 technical	 debt	 categories	we	
specified	in	this	study	for	SaaS	development	are;	

1. Explorative	SaaS	Challenges	
2. Inadequate	SaaS	Support
3. Insufficient	SaaS	Communication	
4. Known	SaaS-Specific	Issues	
5. Reactive	SaaS	Adjustments
6. SaaS	Configuration	Overhead	
7. SaaS	Imposed	Limitations,
8. SaaS-Platform	Specific	Limitations
9. SaaS-Induced	Modifications
10. SaaS	Testing	and	Troubleshooting	Limitations	
11. Setup	and	Replication	Challenges	
12. Shared	Accountability	
13. Technological	Diversity	Challenges	
14. Trade-offs	due	to	SaaS	Architecture
15. Workaround	for	SaaS	Limitations

Within	the	technical	debt	landscape,	SaaS-related	TD	indicators	stand	out	mainly	from	the	characteristics	of	SaaS	
platforms.	These	indicators	that	range	from	configuration	overheads	to	platform-specific	limitations	highlight	the	
balance	developers	need	to	ensure	between	using	the	benefits	of	SaaS	and	managing	its	inherent	constraints.		
The	 Trade-offs	 due	 to	 SaaS	 architecture,	 SaaS	 imposed	 limitations,	 SaaS	 platform	 specific	 limitations	 and	
Technological	 Diversity	 Challenges	 categories	 are	 basically	 related	 to	 strict	 nature	 of	 the	 SaaS	 platforms.	 The	
architectural	decisions	made	during	the	design	and	implementation	phases	of	SaaS	solutions	often	lead	to	inherent	
trade-offs.	By	 its	nature,	SaaS	usually	adopts	architectures	 like	multi-tenancy	 [16].	While	 this	approach	offers	
scalability	and	maintenance	advantages,	it	can	also	introduce	constraints.	For	instance,	while	one	tenant	(i.e.	the	
client	organization)	might	benefit	 from	a	specific	 feature	addition	or	update,	another	might	 find	 it	disruptive.	
Moreover,	 customization	 becomes	 challenging	when	 trying	 to	 adjust	 to	 the	 diverse	 needs	 of	 various	 tenants	
without	affecting	the	base	architecture.	The	architectural	decisions	to	use	such	shared	resources	might	 lead	to	
performance	bottlenecks	or	security	concerns	in	SaaS	projects.	Recognizing	these	trade-offs	is	essential	to	ensure	
that	the	advantages	of	a	SaaS	solution	outweigh	its	potential	limitations.	Developers	and	decision-makers	need	to	
be	continually	be	aware	of	these	trade-offs	to	make	informed	choices,	ensuring	that	the	software	remains	resilient,	
secure,	and	effective.		

The	SaaS	development	landscape	also	involves	multiple	stakeholders,	including	SaaS	providers,	developers,	third-
party	integrators,	and	end-users	[17].	This	dynamic	nature	can	lead	to	situations	where	no	single	entity	has	full	
ownership	 of	 a	 technical	 challenge	 or	 its	 resultant	 debt.	 The	 Shared	 Accountability	 category	 highlights	 these	
blurred	lines	of	responsibility.	For	instance,	a	limitation	imposed	by	the	SaaS	provider	might	lead	the	development	
team	to	implement	a	workaround.	If	this	workaround	causes	performance	issues,	 it	would	not	be	clear	who	is	
responsible	for	the	issue.	This	shared	accountability	can	complicate	the	resolution	process	and	make	it	challenging	
to	specify	the	root	cause	of	issues.	For	effective	technical	debt	management	in	SaaS	projects,	it	is	crucial	to	establish	
clear	lines	of	responsibility	and	communication	pathways	between	all	involved	parties.		

In	 SaaS	 projects,	 the	 complicated	 relationship	 between	 the	 Inadequate	 SaaS	 Support,	 Insufficient	 SaaS	
Communication,	and	Known	SaaS-Specific	Issues	categories	highlights	the	shared	challenges	that	developers	face.	
Although	there	is	a	close	and	symbiotic	dependence	between	SaaS	providers	and	developers,	this	relationship	may	
lean	 towards	a	 state	of	 imbalance,	often	 leading	 to	 the	accumulation	of	 technical	debt.	Even	 if	SaaS	providers	
communicate	well,	SaaS	developers	might	still	have	to	deal	with	known	problems	with	the	platform.	Knowing	
about	these	issues	does	not	always	make	them	easy	to	avoid.	

The	Explorative	SaaS	Challenges	technical	debt	occurs	when	developers	try	innovated	operations	within	the	SaaS	
environment.	Whether	employing	a	novel	API	or	integrating	a	new	feature,	uncertainties	associated	with	these	
actions	 may	 cause	 the	 development	 team	 to	 adopt	 shortcuts.	 The	 absence	 of	 established	 SaaS	 development	
guidelines	may	increase	the	technical	debt	levels.	

The	 categories	 of	 Inadequate	 SaaS	 Support	 and	 Insufficient	 SaaS	 Communication	 often	 interact	 hand-to-hand.	
Insufficient	support	from	SaaS	providers	may	be	in	the	form	of	limited	guidance	or	insufficient	documentation.	
This	 can	 increase	 the	 problem	 by	 forcing	 developers	 into	 unexpected	 actions.	 Especially,	 poor	 SaaS	 provider	
communication	 on	 platform	updates,	 new	 features	 or	 other	 changes	may	 result	 in	misinterpreted	 features	 or	
misunderstood	functionalities,	both	of	which	contribute	to	an	increase	in	technical	debt.	

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

459

Similarly,	 the	 Known	 SaaS-Specific	 Issues	 and	 Reactive	 SaaS	 Adjustments	 TD	 categories	 represent	 potential	
challenges	that	are	recognized	but	may	not	be	readily	resolved.	Developers	may	search	for	quick,	reactive	code	
changes	 to	 overcome	 these	 issues.	While	 such	 adjustments	 serve	 as	 temporary	 solutions,	 they	 inadvertently	
contribute	to	the	accumulation	of	technical	debt.	

The	SaaS	Configuration	Overhead,	Setup	and	Replication	Challenges	and	SaaS-Induced	Modifications	TD	categories	
refer	 to	 the	 additional	workload	 required	 by	 the	configuration	 and	 customization	 of	 a	SaaS	 platform	 to	meet	
particular	needs.	Especially,	a	complex	configuration	structure	without	sufficient	guidance	can	contribute	to	the	
accumulation	of	technical	debt.	Lastly,	the	categories	of	SaaS	Testing	and	Troubleshooting	Limitations	TD	category	
points	 to	 restrictions	 in	 effective	 software	 verification	 processes.	 Impediments	 in	 setting	 up	 suitable	 test	
environments	or	replicating	conditions	can	lead	to	less	rigorous	testing,	thereby	causing	further	technical	debt.	
A	 comprehensive	 understanding	 of	 these	areas	 is	 critical	 for	effective	management	 of	 technical	 debt	which	 is	
basically	 comprised	 of	 seven	 stages:	 Identification,	 Measurement,	 Prioritization,	 Resolution,	 Monitoring,	
Communication,	and	Prevention	[7][42].	Awareness	of	potential	technical	debt	is	critical	for	a	well-executed	TD	
management	life	cycle.	For	instance,	awareness	on	the	SaaS	Configuration	Overhead	technical	debt	category	would	
enable	teams	to	recognize	specific	type	of	indicators,	making	timely	and	accurate	categorization	in	a	SaaS	context.	
This	TD	categorization	will	aid	in	the	efficient	allocation	of	resources,	accurate	issue	prioritization	for	resolving	
TDs,	and	facilitate	the	development	of	resolution	strategies.	

5.3	Generic	Software	Technical	Debt	Categories	

Our	case	study	revealed	81	distinct	indicators	associated	with	23	generic	technical	debt	categories,	as	illustrated	
in	Figure	1.	This	graph,	which	includes	redundant	occurrences,	aims	to	capture	the	frequency	of	each	technical	
debt	category.	From	the	data,	we	can	note	that	the	top	three	technical	categories	are	SaaS-Related	Technical	Debt	
(elaborated	in	Section	5.1),	Inadequate	Technical	Debt	Management,	and	Violations	of	Standards	and	Best	Practices,	
with	23,	13,	and	11	instances	respectively.	

While	Alves	et	al.	[28]	identified	13	high-level	technical	debt	categories	based	on	a	systematic	literature	review,	
our	study	takes	this	a	step	further.	We	provide	a	deeper	level	of	categorization	associated	with	indicators.	We	
argue	that	just	referencing	process	names	in	TD	categories	does	not	suffice;	each	technical	debt	category	should	
clearly	hint	potential	challenges.	

In	 addition	 to	 SaaS	 related	TD	categories,	 our	 study	 has	 highlighted	a	 new	area	 of	 concern	 in	 technical	 debt:	
Inadequate	Technical	Debt	Management.	Neglecting	to	manage	technical	debt	effectively	can	have	a	snowball	effect,	
leading	to	even	more	debt.	The	importance	here	is	not	just	recognizing	how	technical	debt	accumulates	but	also	
understanding	how	to	manage	it	properly.	We	recommend	teams	not	only	be	cautious	about	occurring	technical	
debt	but	also	prioritize	its	effective	management	through	regular	audits,	targeted	sprints,	and	long-term	planning.	
Lastly,	we	find	categories	like	'Verification	Inefficiency'	and	'Testing	Limitations'	to	be	pivotal.	These	emphasize	
the	crucial	role	that	verification	and	testing	play	in	managing	technical	debt.	A	lack	of	rigor	in	these	areas	can	
worsen	existing	technical	problems,	making	them	increasingly	complex	to	identify	and	resolve.		

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

460

Figure	1.	TD	indicator	counts	per	TD	category	
6. CONCLUSIONS

While	 SaaS	 development	 holds	 significant	 potential	 and	 benefits,	 it	 comes	 with	 its	 unique	 challenges.	 Such	
challenges	highlight	the	need	for	a	deeper	understanding	and	strategic	approach	to	SaaS	development.		
In	 this	 study,	we	approached	 to	 the	 problem	 from	 technical	 debt	 perspective	 and	aimed	 to	 understand	 SaaS-
specific	 technical	 debt	 indicators	 and	 categories.	 We	 performed	 an	 exploratory	 case	 study	 by	 conducting	
interviews	with	nine	employees	in	a	SaaS	vendor.	Based	on	the	data	we	collected	from	interviewees,	we	identified	
15	distinct	SaaS-specific	technical	debt	categories	and	23	corresponding	indicators.	Additionally,	we	observed	81	
generic	software-specific	technical	debt	indicators	categorized	into	23	types.		

Addressing	SaaS-specific	categories	is	not	just	about	acknowledging	their	existence,	our	study	points	out	several	
categories	that	are	unique	to	SaaS	development.	This	emphasizes	the	distinct	challenges	of	SaaS	development	and	
the	need	for	specific	strategies	to	manage	its	technical	debt.	

These	 granular	 categorizations	 are	 valuable	 in	 terms	 of	 enabling	 developers	 to	 identify,	 prioritize,	 tackle	and	
prevent	SaaS	specific	issues	effectively.	Our	findings	highlight	the	multifaceted	nature	of	technical	debt	and	stress	
the	 need	 for	 an	 encompassing	 approach	 to	 understanding	 and	 managing	 it.	 Therefore,	 our	 study	 makes	 a	
significant	contribution	for	effective	management	of	technical	debt	in	SaaS	applications.		
Future	studies	can	be	performed	with	multiple	case	studies	and	on	understanding	the	impact	of	SaaS	technical	
debt	on	the	overall	software	development	lifecycle.	

References	

[1] Kendall, J. E., & Kendall, K. E. 1993. Metaphors and methodologies: Living beyond the systems machine.
MIS quarterly, 149-171.

[2] Cunningham, W. 1992. The WyCash portfolio management system. ACM SIGPLAN OOPS Messenger,
4(2), 29-30.

[3] Kruchten, P., Nord, R. L., & Ozkaya, I. 2012. Technical debt: From metaphor to theory and practice.
IEEE software, 29(6), 18-21.

[4] Codabux, Z., Williams, B. J., Bradshaw, G. L., & Cantor, M. 2017. An empirical assessment of technical
debt practices in industry. Journal of software: Evolution and Process, 29(10), e1894.

[5] Tom, E., Aurum, A., & Vidgen, R. 2012. A consolidated understanding of technical debt, European
Conference of Information Systems Proceedings, https://core.ac.uk/reader/301355650.

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

461

[6] Zazworka, N., Spínola, R. O., Vetro', A., Shull, F., & Seaman, C. 2013. A case study on effectively
identifying technical debt. In Proceedings of the 17th International Conference on Evaluation and
Assessment in Software Engineering (pp. 42-47).

[7] Li, Z., Avgeriou, P., & Liang, P. 2015. A systematic mapping study on technical debt and its
management. Journal of Systems and Software, 101, 193-220.

[8] Rios, N., Spínola, R. O., Mendonça, M., & Seaman, C. 2020. The practitioners’ point of view on the
concept of technical debt and its causes and consequences: a design for a global family of industrial
surveys and its first results from Brazil. Empirical Software Engineering, 25, 3216-3287.

[9] Patidar, S., Rane, D., & Jain, P. 2012. A survey paper on cloud computing. In 2nd International Conference
on Advanced Computing & Communication Technologies (pp. 394-398). IEEE.

[10] Sun, W., Zhang, K., Chen, S. K., Zhang, X., & Liang, H. 2007. Software as a service: An integration
perspective. In Service-Oriented Computing Proceedings, 5, 558-569, Springer Berlin Heidelberg.

[11] Benlian, A., & Hess, T. 2011. Opportunities and risks of software-as-a-service: Findings from a survey
of IT executives. Decision support systems, 52(1), 232-246.

[12] Gartner Press Release 2022, https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-
forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023, (Access
Date: 28.07.2023)

[13] Turner, M., Budgen, D., & Brereton, P. 2003. Turning software into a service. Computer, 36(10), 38-44.
[14] Vidhyalakshmi, R., & Kumar, V. 2014. Design comparison of traditional application and SaaS. In 2014

International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 541-
544). IEEE.

[15] Cusumano, M. 2010. Cloud computing and SaaS as new computing platforms. Communications of the
ACM, 53(4), 27-29.

[16] Chou, S. W., & Chiang, C. H. 2013. Understanding the formation of software-as-a-service (SaaS)
satisfaction from the perspective of service quality. Decision Support Systems, 56, 148-155.

[17] Sadiku, M. N., Musa, S. M., & Momoh, O. D. 2014. Cloud computing: opportunities and
challenges. IEEE potentials, 33(1), 34-36.

[18] Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., ... & Zazworka, N. 2010. Managing
technical debt in software-reliant systems. In Proceedings of the FSE/SDP workshop on Future of
software engineering research (pp. 47-52).

[19] Besker, T., Martini, A., & Bosch, J. 2017. The Pricey Bill of Technical Debt: When and by Whom will it
be Paid?. 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME).

[20] Suryanarayana, G., Samarthyam, G., & Sharma, T. 2014. Refactoring for software design smells:
managing technical debt. Morgan Kaufmann.

[21] Falessi, D., & Kazman, R. 2021. Worst smells and their worst reasons. In IEEE/ACM International
Conference on Technical Debt (TechDebt) (pp. 45-54). IEEE.

[22] Ramač, R., Mandić, V., Taušan, N., Rios, N., Freire, S., Pérez, B., ... & Spinola, R. 2022. Prevalence,
common causes and effects of technical debt: Results from a family of surveys with the IT industry.
Journal of Systems and Software, 184, 111114.

[23] Zazworka, N., Izurieta, C., Wong, S., Cai, Y., Seaman, C., & Shull, F. 2014. Comparing four approaches
for technical debt identification. Software Quality Journal, 22(3), 403-426.

[24] Iuliia, G. 2017. Technical Debt Management. In Russion Software Development Companies. Master's
Thesis. St. Petersburg University Graduate School of Management.

[25] Alzaghoul, E., & Bahsoon, R. 2013. CloudMTD: Using real options to manage technical debt in cloud-
based service selection. In 2013 4th International Workshop on Managing Technical Debt (MTD) (pp.
55-62), IEEE.

[26] Klinger, T., Tarr, P., Wagstrom, P., & Williams, C. 2011. An enterprise perspective on technical debt. In
Proceedings of the 2nd Workshop on managing technical debt (pp. 35-38).

Categorization	of	Technical	Debt	in	Software	as	a	Service	Applications		

462

[27] Nugroho, A., Visser, J., & Kuipers, T. 2011. An empirical model of technical debt and interest.
In Proceedings of the 2nd workshop on managing technical debt, 1-8.

[28] Alves, N. S., Ribeiro, L. F., Caires, V., Mendes, T. S., & Spínola, R. O. 2014. Towards an ontology of
terms on technical debt. In 6th International Workshop on Managing Technical Debt (pp. 1-7). IEEE.

[29] Ramasubbu, N., & Kemerer, C. F. 2016. Technical debt and the reliability of enterprise software systems:
A competing risks analysis. Management Science, 62(5), 1487-1510.

[30] Mcconnell, S. 2008. Construx,. Available from: https://www.construx.com/resources/whitepaper-
managing-technical-debt/. (Access Date: 23.08.2023).

[31] Fowler, M. 2009. Technical Debt Quadrant, Available from:
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html. (Access Date: 31.07.2023).

[32] Kumar, S., Bahsoon, R., Chen, T., & Buyya, R. 2019. Identifying and estimating technical debt for service
composition in SaaS cloud. In 2019 IEEE International Conference on Web Services (ICWS) (pp. 121-
125). IEEE.

[33] Agarwal, P. 2011. Continuous Scrum: Agile management of SAAS products. In Proceedings of the 4th
India Software Engineering Conference (pp. 51-60).

[34] Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., & Leaf, D. 2011. NIST cloud computing
reference architecture. NIST special publication, 500(2011), 1-28.

[35] Baxter, P., & Jack, S. 2008. Qualitative case study methodology: Study design and implementation for
novice researchers. The qualitative report, 13(4), 544-559.

[36] Runeson, P., & Höst, M. 2009. Guidelines for conducting and reporting case study research in software
engineering. Empirical software engineering, 14, 131-164.

[37] Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. 2008. Selecting empirical methods for software
engineering research. Guide to advanced empirical software engineering, 285-311.

[38] ISO/IEC/ IEEE 12207 2017. Systems and software engineering — Software life cycle processes.
[39] Patton, M. Q. 2002. Qualitative interviewing, in Qualitative Research and Evaluation Methods.

Thousand Oaks, CA, USA: SAGE, pp. 344–347.
[40] Williams, M., & Moser, T. 2019. The art of coding and thematic exploration in qualitative

research. International Management Review, 15(1), 45-55.
[41] Lochmiller, C. R. 2021. Conducting thematic analysis with qualitative data. The Qualitative

Report, 26(6), 2029-2044.
[42] Kruchten, P., Nord, R., & Ozkaya, I. 2019. Managing Technical Debt: Reducing Friction in Software

Development. Software Engineering Institute.

