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ABSTRACT 
 

Soft set theory, developed by Molodtsov, has been applied both theoretically and practically in many fields. It is a useful 

mathematical tool for handling uncertainty. Numerous variations of soft set operations, the crucial concept for the theory, have 

been described and used since its introduction. In this paper, we explore more about soft binary piecewise difference operation 

(defined first as “difference of soft sets”) and its whole properties are examined especially in comparison with the basic 

properties of difference operation in classical set theory. Several striking properties of soft binary piecewise operations are 

obtained as analogous to the characteristic of difference operation in classical set theory. Also, we show that the collection of 

all soft sets with a fixed parameter set together with the soft binary piecewise difference operation is a bounded BCK-algebra. 
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1. INTRODUCTION 
 

Due to the existence of some types of uncertainty, we are unable to employ traditional ways effectively 

to address issues in many domains, including engineering, environmental and health sciences, and 

economics. Molodtsov [1], in 1999, proposed Soft Set Theory as a mathematical method to deal with 

these uncertainties. Since then, this theory has been applied to a variety of fields, including information 

systems, decision-making, optimization theory, game theory, operations research, measurement theory, 

and some algebraic structures. The initial contributions to soft set operations were stated by Maji et al. 

[2] and Pei and Miao [3]. Following this, Ali et al. [4] introduced and discussed several soft set 

operations, including restricted and extended soft set operations. Sezgin and Atagün [5] discussed the 

basic properties of soft set operations and the connections between them. They also investigated and 

defined the idea of restricted symmetric difference of soft sets. A brand-new soft set operation called 

“extended difference of soft sets” was presented by Sezgin et al. [6]. Stojanovic [7] introduced the term 

"extended symmetric difference of soft sets" and its characteristics were investigated. The two main 

categories into which the operations of soft set theory fall, according to the soft set literature, are 

restricted soft set operations and extended soft set operations. Soft binary piecewise operations were 

defined by Yavuz [8], who also carefully analyzed their core characteristics. Since the creation of new 

soft set operations and derivation of their algebraic properties as well as the introduction of new soft set 

operations and their implemantations offer new perspectives for solving parametric data problems, the 

operations of soft sets are the fundemantal concepts of soft set theory, and thus soft set operations have 

been extensively studied since 2003. For more details, we refer to [9-36].   

There is a lot of algebra related to logic. Boolean algebra is related to traditional two valued Aristotelean 

logic. MV algebra is suitable for multi-valued logic. BCI/BCK algebra generalizes the concept of set 

algebra of sets with the set subtraction as the only non-nullary operation, while these algebras generalize 

the algebra of implication. The concept of BCI/BCK algebra was introduced by Imai and Iseki [37] to 
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study non-classical propositional logic. Although soft sets over algebraic structures have been studied 

extensively with the initial study of soft groups, the soft set algebras themselves have been studied 

extensively by [10,18,38,39]. 

There are five different types of difference operation defined in the soft set literature; one of which is 

restricted difference of soft sets defined in [4], the other is extended difference of soft sets defined in 

[6], the other is complementary extended difference of soft sets defined in [9], the other is 

complementary soft binary piecewise difference operation defined in [28].  Eren [17], in 2019, 

introduced a brand-new class of soft difference operations, which we call here as “soft binary piecewise 

difference” to avoid confusion, and the core characteristics of the operation together with the distribution 

laws were analyzed. This paper is a following study of [17] and we aim to enrich the paper [17] by 

investigating more on soft binary piecewise difference operation. 

In this study, we especially examine the full algebaric properties of this soft set operation comparatively 

with the basic properties of difference operation existing in classical set theory and we obtain many 

interesting similarities. Moreover, we prove that the set of all the soft sets with a fixed parameter set 

together with the soft binary piecewise difference operation is a BCK-algebra. This paper is arranged in 

the following manner. In Section 2, we recall the preliminary concepts in soft set theory together with 

BCK-algebras. In Section 3, definition and the example of soft binary piecewise difference operation 

defined in [17] are reminded. The full analysis of the algebraic properties of the new operation, including 

closure, associativity, unit, inverse element, and abelian property, are then examined. Besides, the 

properties of this soft set opertaion are handled comparatively with the difference operation in classical 

set theory and we obtain stunning analogies. In the same section, it is proved that the set of all the soft 

sets with a fixed parameter set with respect to soft binary piecewise difference operation is a BCK 

algebra. In the conclusion section, we put into focus the meaning of the study's findings and its potential 

influence on the field.   

 

2. PRELIMINARIES 

Definition 2.1. [1] Let  U be the universal set,  E be the parameter set, P(U) be the power set of U and 

A ⊆ E. A pair  (F, A) is called a soft set over U where F is a set-valued function such that F: A → P(U). 

 

Throughout this paper, the collections of all the soft sets defined over U is designated by SE(U). Let A 

be a fixed subset of E and SA(U) be the collection of all those soft sets over U with the fixed parameter 

set A. Clearly, SA(U) is a subset of SE(U).  

 

Definition 2.2. [4] (K, W) is called a relative null soft set (with regard to W), denoted by ∅W, if  K(ϑ) =
∅ for all  ϑ∈W and (K, W) is called a relative whole soft set (with regard to W), denoted by UW if  

K(ϑ) = U  for all ϑ ∈W. The relative whole soft set UE with regard to E is called the absolute soft set 

over U. We shall denote by ∅∅ the unique soft set over U with an empty parameter set, which is called 

the empty soft set over U. Note that by ∅∅ and by ∅A are different soft sets over U [10]. 

 

Definition 2.3. [3] For two soft sets (K, W)  and (T, Ş), (K, W)  is a soft subset of (T, Ş) and it is denoted 

by  (K, W) ⊆̃ (T, Ş),  if  W⊆ Ş and K( ϑ) ⊆ T( ϑ), ∀ ϑ ∈ W. Two soft sets (K, W)  and (T, Ş) are said to 

be soft equal if (K, W) is a soft subset of (T, Ş) and (T, Ş) is a soft subset of (K, W). 

Definition 2.4. [4] The relative complement of a soft set (K, W), denoted by (K, W)r, is defined by 
(K, W)r = (Kr, W), where Kr: W → P(U) is a mapping given by (K, W)r = U\W(ϑ) for all  ϑ ∈ W. 

From now on,  U\K( ϑ)=[K(ϑ)]′ will be designated by K’(ϑ) for the sake of ease.  

Soft set operations can be grouped into the following categories as a summary: If " Θ " is used to denote 

the set operations (Namely, Θ here can be ∩, ∪, \, ∆), then the following soft set operations are defined 

as follows: 
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Definition 2.5. [4,5] Let (K, W) and (T, Ş) be soft sets over U. The restricted  Θ operation of (K, W) and 

(T, Ş) is the soft set (B,X), denoted by, (K, W)ΘR(T, Ş) = (B, X), where  X = W ∩ Ş ≠ ∅ and  ∀ϑ ∈ X, 

B( ϑ) =K( ϑ) Θ T( ϑ). Here note that if W ∩ Ş = ∅, then (K, W)ΘR(T, Ş) = ∅∅ [10]. 

Definition 2.6. [2,4,6,7,11] Let (K, W) and (T, Ş) be soft sets over U. The extended Θ operation of 

(K, W) and (T, Ş) is the soft set (B,X), denoted by, (K, W)Θε(T, Ş) = (B, X), where  X = W ∪ Ş and 

∀ϑ ∈ X, 

B(ϑ) = {

K(ϑ),  ϑ ∈ W\Ş,

T(ϑ),  ϑ ∈ Ş\W,

K(ϑ)ΘT(ϑ),   ϑ ∈ W ∩ Ş.

 

Definition 2.7. [9,12,23] Let (K, W) and (T, Ş) be soft sets over U. The complementary extended Θ 

operation of (K, W) and (T, Ş) is the soft set (B,X), denoted by, (K, W)Θε(T, Ş) = (B, X), where  X =
W ∪ Ş and ∀ϑ ∈ X, 

B(ϑ) = {

K′( ϑ),  ϑ ∈ W\Ş,

T′( ϑ),  ϑ ∈ Ş\W,

K(ϑ)ΘT( ϑ),   ϑ ∈ W ∩ Ş.

 

Definition 2.8. [8,17] Let (K, W) and (T, Ş) be soft sets over U. The soft binary piecewise Θ operation 

of (K, W) and (T, Ş) is the soft set, (B,W), denoted by, (K, W)Θ̃ (T, Ş ) = (B, W), where ∀ϑ ∊W, 

                 K(ϑ),                         ϑ ∊W\Ş 

 B(ϑ)= 

                  K(ϑ) Θ T(ϑ) ,           ϑ ∊W∩Ş      

A set X containing a binary operation ζ  and a constant 0 is called a BCI algebra if it satisfies  

BCI-1 ((a ζ b) ζ (a ζ c)) ζ (c ζ b) = 0, BCI-2 (a ζ (a ζ b)) ζ b = 0,  BCI-3 a ζ a = 0,  BCI-4 a ζ b = 0 and b 

ζ a = 0 imply a = b. A BCI algebra is called a BCK algebra if it additionally satisfies: BCK-5 0 ζ a = 0.A 

BCK algebra X is called bounded if there exists some element 1 ∈ X such that a ∗ ζ 1 = 0 for all x ∈ X. 

For a bounded BCK algebra X, if an element a∈X satisfies 1 ζ (1 ζ a) = a, then a is called an involution. 

3. MORE ON THE PROPERTIES OF SOFT BINARY PIECEWISE DIFFERENCE 

OPERATION 

 

Definition 3.1. [17] Let (V, ℵ) and (Y, I) be soft sets over U.  The complementary soft binary piecewise 

difference operation of (V, ℵ) and (Y, I) is the soft set (Q,ℵ), denoted by  (V, ℵ)\̃(Y, I) = (Q, ℵ), where 

∀ϑ∊ℵ,     

                  V(ϑ),                      ϑ∊ℵ\I           

 Q(ϑ)=   

                 V(ϑ) \Y(ϑ),            ϑ∊ℵ∩I         

Here note that, in [17], the above definition was given as “difference of soft sets”; however since there 

are five types of difference of soft sets operations in the literature, in order to avoid confusion, we prefer 

to use “soft binary piecewise operation” for the above definition. 

Example 3.2. Let E={e1,e2,e3,e4} be the parameter set Q={e1, e3} and I={e2, e3, e4} be the subsets 

of E and U={h1,h2,h3,h4,h5} be the initial universe set. Assume that (V,ℵ)  and (Y,I) are  the soft sets 

over U defined as follows: 

(V,ℵ) ={( e1,{h2,h5}), (e3,{h1,h2,h5})} 

(Y,I)={( e2,{h1,h4,h5}), (e3,{h2,h3,h4}),(e4,{ h3,h5})}. Let (V,ℵ) \̃ (Y,I)=(Q,ℵ). Then, 
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                  V(ϑ),                     ϑ∊ℵ\I 

 Q(ϑ)=   

                  V(ϑ) \Y(ϑ),           ϑ∊ℵ∩I         

Since ℵ={e1, e3} and ℵ\I={e1}, so Q(e1) = V(e1)={ h2,h5}. And since ℵ∩I={e3}, so Q(e3)= 

V(e3)\Y(e3)={h1, h5}. Thus, (V,ℵ) \̃(Y,I)={( e1,{h1,h3,h4}), (e3, {h1, h5})}. 

In classical set theory, V\Y=V∩Y’. Now, we have the following analogy. 

Theorem 3.3 (V,ℵ) \̃(Y,R)  =(V,ℵ) ∩ε (Y, ℵ ∩ R)r [17]. 

Theorem 3.4.(V,ℵ) \̃(Y,R)  =(V,ℵ) ∩̃ (Y, R)r. 

Proof: Let (V,ℵ) ∩̃ (Y, R)r=(Q,ℵ),  where ∀ϑ∊ℵ, 

                V(ϑ),                ϑ∊ℵ\R 

Q(ϑ)= 

                V(ϑ)∩Y’(ϑ),    ϑ∊ℵ∩R 

Thus, (Q,ℵ)= (V,ℵ) \̃(Y,R). 

Theroem 3.5. (Algebraic properties of the operation) 

1)  The set SE(U) is closed under the operation \̃.   

Proof: It is clear that \̃  is a binary operation in SE(U). That is, 

                                             \̃: SE(U)x SE(U)→ SE(U) 

                                                 ((V,ℵ) , (Y,I)) →(V,ℵ) \̃ (Y,I)= (Q,ℵ)  

In classical set theory, difference operation does not have associative property. Now, we have the 

following analogy: 

2)  [(V,ℵ)\̃(Y,ℵ) ] \̃(Q,ℵ)  ≠ (V,ℵ) \̃[(Y,ℵ) \̃(Q,ℵ)] 

Proof: Let  (V,ℵ) \̃ (Y,ℵ)=(T,ℵ) , where ∀ϑ∊ℵ;   

                   V(ϑ),                ϑ∊ℵ\ℵ=∅    

 T(ϑ)=       

                   V(ϑ) \Y(ϑ) ,     ϑ∊ℵ∩ℵ=ℵ 

Let (T, ℵ) \̃(Q, ℵ)=(M, ℵ) , where ∀ϑ∊ℵ;  

                 T(ϑ),               ϑ∊ℵ\ℵ=∅    

 M(ϑ)=       

                 T(ϑ)\Q(ϑ),      ϑ∊ℵ∩ℵ=ℵ 

Thus, 

                  T(ϑ),                          ϑ∊ℵ\ℵ=∅    

 M(ϑ)=       

                  [V(ϑ) \Y(ϑ)]\Q(ϑ),   ϑ∊ℵ∩ℵ=ℵ        

Let (Y,ℵ)\̃ (Q,ℵ) =(L,ℵ) , where ∀ϑ∊ℵ;   

                    Y(ϑ),                         ϑ∊ℵ\ℵ=∅    

 L(ϑ)=       

                   Y(ϑ) \Q(ϑ) ,              ϑ∊ℵ∩ℵ=ℵ 

Let (V,ℵ) \̃(L,ℵ) =(D,ℵ) , where ∀ϑ∊ℵ;  
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                    V(ϑ),                        ϑ∊ℵ\ℵ=∅    

 D(ϑ)=       

                   V(ϑ) \L(ϑ) ,              ϑ∊ℵ∩ℵ=ℵ 

Thus,  

                  V(ϑ),                            ϑ∊ℵ\ℵ=∅    

 D(ϑ)=       

                  V(ϑ) \[Y(ϑ)\Q(ϑ)],    ϑ∊ℵ∩ℵ=ℵ       

It is seen that (M, ℵ) and (D,ℵ) are not the same soft sets. 

That is, on the soft sets whose parameter set are the same, the operation \̃ does not have associativity 

property. Moreover, we have the following: 

3)  [(V,ℵ) \̃ (Y,I)] \̃(Q,Z) ≠ (V,ℵ) \̃[(Y,I) \̃(Q,Z)] 

Proof: Let (V,ℵ) \̃ (Y,I)=(T,ℵ) , where ∀ϑ∊ℵ;   

                  V(ϑ),                         ϑ∊ℵ\I 

 T(ϑ)=       

                  V(ϑ) \Y(ϑ) ,              ϑ∊ℵ∩I 

Let (T,ℵ) \̃(Q,Z) =(M,ℵ) , where ∀ϑ∊ℵ;  

                  T(ϑ),                       ϑ∊ℵ\Z   

 M(ϑ)=      

                  T(ϑ)\Q(ϑ) ,             ϑ∊ℵ∩Z 

Thus, 

                 V(ϑ),                              ϑ∊(ℵ\I)\Z=ℵ∩I’∩Z’ 

 M(ϑ)=      V(ϑ) \Y(ϑ),                    ϑ∊(ℵ∩I)\Z=ℵ∩I∩Z’ 

                 V(ϑ)\Q(ϑ),                     ϑ∊(ℵ\I)∩Z=ℵ∩I’∩Z 

                 [V(ϑ)\Y(ϑ)] \Q(ϑ),        ϑ∊(ℵ∩I)∩Z=ℵ∩I∩Z         

 Let (Y,I) \̃ (Q,Z)=(K,I), where ∀ϑ∊I;   

                  Y(ϑ),                         ϑ∊I\Z 

 K(ϑ)=       

                 Y(ϑ) \Q(ϑ) ,               ϑ∊I∩Z 

Let (V,ℵ) \̃ (K,I) =(S,ℵ) , where ∀ϑ∊ℵ;  

                  V(ϑ),                     ϑ∊ℵ\I   

 S(ϑ)=      

                 V(ϑ)\K(ϑ) ,            ϑ∊ℵ∩I 

Thus, 

                 V(ϑ),                              ϑ∊ℵ\I 

 S(ϑ)=       V(ϑ) \Y(ϑ),                    ϑ∊ℵ∩(I\Z)=ℵ∩I∩Z’ 

                 V(ϑ) \[Y(ϑ) \Q(ϑ)],       ϑ∊ℵ∩(I∩Z)=ℵ∩I∩Z             

 

Here let handle ϑ∊ℵ\I in the first line of S(ϑ). Since ℵ\I= ℵ∩I’, if ϑ∊I’, then ϑ∊Z\I or ϑ∊(I∪Z)’. Hence, 

if ϑ∊ℵ\I, then ϑ∊ℵ∩I’∩Z’ or ϑ∊ℵ∩I’∩Z. Thus, it is seen that (M, ℵ) and (S,ℵ) are not the same soft set. 

That is, for the soft sets whose parameter set are not the same, the operation \̃ does not have associativity 

property in the set SE(U). 
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In classical set theory, difference operation does not have commutative property. Now, we have the 

following analogy: 

 4) (V,ℵ) \̃ (Y,I)≠(Y,I) \̃ (V,ℵ)  

Proof: Let (V,ℵ) \̃(Y,I)=(Q,ℵ). Then, ∀ϑ∊ℵ; 

, 

                  V(ϑ),                      ϑ∊ℵ\I    

Q(ϑ)=     

                  V(ϑ)\Y(ϑ),              ϑ∊ℵ∩I    

Let (Y,I) \̃ (V,ℵ) =(T,I). Then ∀ϑ∊I; 

                 Y(ϑ) ,                       ϑ∊I\ℵ      

T(ϑ)= 

                 Y(ϑ)\ℵ(ϑ),                ϑ∊I∩ℵ       

Here, while the parameter set of the soft set of the left hand side is ℵ; the parameter set of the soft set 

of the right hand side is I. Thus, by the definition of soft equality  

                                      (V,ℵ) \̃ (Y,I)≠(Y,I) \̃(V,ℵ). 

Hence, the operation \̃ does not have commutative property in the set SE(U), where the parameter sets 

of the soft sets are different. Moreover, it is easy to see that (V,ℵ) \̃ (Y,ℵ)≠(Y,ℵ) \̃(V,ℵ) since V(ϑ) \Y(ϑ) 

≠ Y(ϑ)\ℵ(ϑ). That is, the operation \̃ does not have commutative property when the parameter sets of 

the soft sets are the same.              

5)  (V,ℵ)\̃ (V,ℵ) = ∅ℵ. 

  Proof: Let (V,ℵ) \̃ (V,ℵ) =(Q,ℵ), where ∀ϑ∊ℵ;   

                    V(ϑ),                        ϑ∊ℵ\ℵ=∅    

 Q(ϑ)=       

                   V(ϑ)\V(ϑ) ,               ϑ∊ℵ∩ℵ=ℵ 

 Here ∀ϑ∊ℵ; Q(ϑ)= V(ϑ) \V(ϑ)= ∅, thus (Q,ℵ) = ∅ℵ. 

That is, the operation \̃ does not have idempotency property in the set SE(U). 

6) (V,ℵ) \̃ ∅K=(V,ℵ) [17]. 

Here note that, for the soft sets (no matter what the parameter set is), null soft sets with respect to any 

parameter set (Here, K may be E, ℵ, ∅, or any set) is the right identity element for the operation \̃ in the 

set  SE(U). 

7) ∅K\̃ (V,ℵ) = ∅K [17]. 

Here note that, for the soft sets (no matter what the parameter set is), null soft sets with respect to any 

parameter (Here, K may be E, ℵ, ∅, or any set) is the left-absorbing element for the operation \̃ in the 

set  SE(U).  

8)  (V,ℵ) \̃ Uℵ=(V,ℵ) \̃UE=∅ℵ [17]. 

9)  Uℵ\̃(V, ℵ) = (V, ℵ)r and  UE\̃(V, ℵ) ≠ (V, ℵ)r  [17]. 

10) (V,ℵ) \̃(V,ℵ)r=(V,ℵ).  

Proof: Let (V,ℵ)r=(Q,ℵ). Hence, ∀ϑ∊ℵ; Q(ϑ)=V’(ϑ). Let (V,ℵ) \̃(Q,ℵ) =(T,ℵ) , where ∀ϑ∊ℵ, 
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                 V(ϑ),                            ϑ∊ℵ\ℵ=∅  

T(ϑ)=         

                 V(ϑ) ∩Q’(ϑ),               ϑ∊ℵ∩ℵ=ℵ 

 Hence, ∀ϑ∊ℵ; T(ϑ)= V(ϑ) ∩Q’(ϑ)=V(ϑ) ∩V(ϑ)= V(ϑ), thus (T,ℵ) =(V,ℵ).  

Note that, relative complement of every soft set is its own right identity element for the operation \̃ in 

the set  SE(U). 

11)  (V,ℵ)r \̃(V,ℵ) = (V, ℵ)r. 

Proof: Let (V,ℵ)r=(Q,ℵ). Hence, ∀ϑ∊ℵ; Q(ϑ)=V’(ϑ).  Let (Q,ℵ)\̃(V,ℵ) =(T,ℵ) , where ∀ϑ∊ℵ; 

                    Q(ϑ),                          ϑ∊ℵ\ℵ =∅    

T(ϑ)=       

                   Q(ϑ) ∩V’(ϑ) ,              ϑ∊ℵ∩ℵ =ℵ 

Hence, ∀ϑ∊ℵ; T(ϑ)= Q(ϑ) ∩V’(ϑ)= V’(ϑ) ∩ V’(ϑ)= V’(ϑ), thus (T,ℵ) = (V, ℵ)r. 

Note that, relative complement of a soft set is its own left-absorbing element for the operation \̃ in the 

set  SE(U). 

12)［(V,ℵ)\̃(Y,I)]r=(V,ℵ)  

＊

~
+

(Y,I). 

Proof:  Let (V,ℵ)\̃(Y,I)=(Q,ℵ). Then, ∀ϑ∊ℵ, 

                V(ϑ),                     ϑ∊ℵ\I 

Q(ϑ)= 

                V(ϑ) ∩ Y’(ϑ),       ϑ∊ℵ∩I 

Let (Q,ℵ)r=(T,ℵ),  so  ∀ϑ∊ℵ, 

                V’(ϑ),                      ϑ∊ℵ\I 

T(ϑ)= 

                V’(ϑ) ∪Y(ϑ),          ϑ∊ℵ∩I 

Thus, (T,ℵ)  =(V,ℵ)  

＊

~
+

 (Y,I). 

In classical set theory, V ∩ Y = U ⇔ V = U and Y = U. Now, we have the following: 

13) (V,ℵ) \̃(Y, ℵ)= Uℵ ⇔ (V, ℵ) = Uℵ and   (Y, ℵ)=∅ℵ. 

Proof: Let  (V, ℵ) \̃(Y, ℵ) = (T,ℵ). Hence, ∀ϑ∊ℵ, 

                 V(ϑ),                 ϑ∊ℵ-ℵ=∅  

T(ϑ)=              

                V(ϑ)∩Y’(ϑ),      ϑ∊ℵ∩ℵ =ℵ 

Since (T, ℵ) = Uℵ,  ∀ϑ∊ℵ, T(ϑ)=U. Hence, ∀ϑ∊ℵ, T(ϑ)= V(ϑ)∩Y’(ϑ)=U⇔ ∀ϑ ∊ ℵ,  V(ϑ)=U and 

Y’(ϑ)=U  ⇔ ∀ϑ∊ℵ, V(ϑ)=U and Y(ϑ)= ∅ ⇔ (V, ℵ) = Uℵ and (Y, ℵ) =  ∅ℵ. 

In classical set theory, for all A, ∅ ⊆ A. Now, we have the following: 

14) ∅ℵ ⊆̃(V,ℵ) \̃(Y,I) and ∅I ⊆̃(Y,I) \̃(V,ℵ). 
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In classical set theory, for all A, A ⊆ U. Now, we have the following: 

15)  (V,ℵ) \̃(Y,I) ⊆̃  Uℵ and (Y,I) \̃(V,ℵ)  ⊆̃  UI. 

In classical set theory, V\Y ⊆ V and Y\V⊆ Y.  Moreover, V\Y ⊆ Y′ and  Y\V ⊆ V′  Now, we have the 

following analogy: 

16)  (V,ℵ)\̃(Y,I)  ⊆̃(V,ℵ)  and  (Y,I) \̃(V,ℵ) ⊆̃(Y,I).  Moreover, (V,ℵ) \̃(Y,ℵ)  ⊆̃(Y,ℵ)r and (Y,ℵ) \̃(V,ℵ)  

⊆̃(V,ℵ)r. 

Proof: Let (V,ℵ) \̃(Y,I) =(Q,ℵ). First of all, ℵ ⊆ ℵ. Moreover, ∀ϑ∊ℵ, 

                V(ϑ),                 ϑ∊ℵ\I 

Q(ϑ)= 

                V(ϑ)∩Y’(ϑ),     ϑ∊ℵ∩I 

Since ∀ϑ∊ℵ\I; Q(ϑ)⊆ V(ϑ) and ∀ϑ∊ℵ∩I; Q(ϑ)=V(ϑ)∩Y’(ϑ) ⊆ V(ϑ), thus ∀ϑ∊ℵ; Q(ϑ)⊆ V(ϑ). This shows 

that (Q,ℵ) = (V,ℵ)\̃(Y,I)⊆̃(V,ℵ).  (Y,I)\̃(V,ℵ)⊆̃(Y,I) can be shown similarly.  

Let (V,ℵ) \̃(Y,ℵ) =(K,ℵ). First of all, ℵ ⊆ ℵ. Moreover, ∀ϑ∊ℵ, 

                V(ϑ),                 ϑ∊ℵ\ℵ=∅ 

K(ϑ)= 

                V(ϑ)∩Y’(ϑ),    ϑ∊ℵ∩ℵ=ℵ 

Since ∀ϑ∊ℵ; K(ϑ)=V(ϑ)∩Y’(ϑ)⊆Y’(ϑ), this shows that (K,ℵ) = (V,ℵ)\̃(Y,ℵ)⊆̃(Y,ℵ)r . (Y,ℵ)\̃(V,ℵ)  

⊆̃(V,ℵ)r can be shown similarly.  

In classial set theory; V=(V\Y) ∪ (V∩Y) and Y=(Y\V) ∪ (Y∩V). Now, we have the following analogy: 

17) (V,ℵ) =[(V,ℵ) \̃(Y,I) ] ∪̃ [(V, ℵ)  ∩̃ (Y,I) ] and (Y,I) =[(Y,I)  \̃(V,ℵ) ] ∪̃ [(Y, I)  ∩̃ (V,ℵ)]. 

Proof: Let (V,ℵ) \̃(Y,I) =(Q,ℵ), where ∀ϑ∊ℵ, 

                V(ϑ),                  ϑ∊ℵ\I 

Q(ϑ)= 

               V(ϑ) \Y(ϑ),        ϑ∊ℵ∩I 

and (V, ℵ) ∩̃ (Y,I) =(K,ℵ), where ∀ϑ∊ℵ, 

                V(ϑ),                  ϑ∊ℵ\I 

K(ϑ)= 

               V(ϑ) ∩ Y(ϑ),     ϑ∊ℵ∩I 

Let (Q,ℵ) ∪̃ (K,ℵ) =(T,ℵ) , where ∀ϑ∊ℵ, 

                Q(ϑ),                    ϑ∊ℵ\ℵ=∅ 

T(ϑ)= 

                Q(ϑ) ∪ K(ϑ),       ϑ∊ℵ∩ℵ=ℵ 

Thus, 

               V(ϑ)∪ V(ϑ),                                 ϑ∊(ℵ\I) ∩(ℵ\I)=(ℵ\I) 

               V(ϑ)∪ [V(ϑ) ∩ Y(ϑ)],                  ϑ∊(ℵ\I) ∩(ℵ∩I)=∅ 

T(ϑ) =    [V(ϑ) \Y(ϑ)]  ∪ V(ϑ),                    ϑ∊(ℵ∩I)∩(ℵ\I)=∅ 

               [V(ϑ)\Y(ϑ)]  ∪ [V(ϑ) ∩ Y(ϑ)],    ϑ∊(ℵ∩I)∩(ℵ∩I)=(ℵ∩I) 

Hence, 
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                V(ϑ),                                              ϑ∊ℵ\I 

 

T(ϑ)=      [V(ϑ)\Y(ϑ)]  ∪ [V(ϑ) ∩ Y(ϑ)],     ϑ∊ℵ∩I                          

 

Since, ∀ϑ∊ℵ, [V(ϑ) \Y(ϑ)] ∪ [V(ϑ) ∩ Y(ϑ)]=V(ϑ), T(ϑ)= V(ϑ). Thus, (T,ℵ) =(V,ℵ). The other can be 

shown similarly. 

In classical set theory, V ∪ Y= (V\Y) ∪ Y and Y ∪ V = (Y\V) ∪ V. Now, we have the following analogy. 

18) (V, ℵ) ∪̃ (Y,I) =[(V,ℵ) \̃(Y,I) ] ∪̃(Y,I) and  (Y,I) ∪̃ (V, ℵ) =[(Y,I) \̃ (V,ℵ) ] ∪̃(V,ℵ). 

Proof:  Let (V,ℵ) \̃(Y,I) =(Q,ℵ) , where ∀ϑ∊ℵ, 

                V(ϑ),               ϑ∊ℵ\I 

Q(ϑ)= 

                V(ϑ)\Y(ϑ),      ϑ∊ℵ∩I 

and (Q, ℵ) ∪̃(Y,I) =(K,ℵ) , where ∀ϑ∊ℵ, 

                Q(ϑ),                ϑ∊ℵ\I 

K(ϑ)= 

                Q(ϑ)∪Y(ϑ),     ϑ∊ℵ∩I 

Thus,  

               V(ϑ),                               ϑ∊(ℵ\I)\I=ℵ\I 

K(ϑ)=     V(ϑ)\Y(ϑ),                       ϑ∊(ℵ∩I)\I=∅ 

               V(ϑ) ∪ Y(ϑ),                   ϑ∊(ℵ\I)∩I=∅                          

              [V(ϑ)\Y(ϑ)] ∪ Y(ϑ)         ϑ∊(ℵ∩I)∩(ℵ∩I)=(ℵ∩I) 

Since [V(ϑ)\Y(ϑ)] ∪ Y(ϑ)= V(ϑ)∪Y(ϑ), ∀ϑ∊ℵ,         

                V(ϑ),                  ϑ∊ℵ\I 

K(ϑ)= 

                V(ϑ) ∪ Y(ϑ),     ϑ∊ℵ∩I 

Thus, (K,ℵ) = (V, ℵ) ∪̃(Y,ℵ). The other can be shown similarly. 

In classical set theory, V⊆ Y ⟺ V\Y = ∅. In [17], it was shown that if (V,ℵ) ⊆̃(Y,I), then (V,ℵ) \̃(Y,I) 

=∅ℵ. For satisfying also the necessity, we have the following:  

19) (V,ℵ)  ⊆̃(Y,ℵ)  ⟺ (V,ℵ) \̃(Y,ℵ) =∅ℵ. 

Proof: Let (V,ℵ)  ⊆̃(Y,ℵ) . Then, ∀ϑ∊ℵ,V(ϑ) ⊆ Y(ϑ). And let (V,ℵ) \̃(Y,ℵ) =(Q,ℵ) . Then, ∀ϑ∊ℵ,  

                V(ϑ),                  ϑ∊ℵ\ℵ=∅ 

Q(ϑ)= 

                V(ϑ) \Y(ϑ),       ϑ∊ℵ∩ℵ=ℵ 

Since ∀ϑ∊ℵ, V(ϑ) ⊆ Y(ϑ), then V(ϑ)\Y(ϑ)= ∅,  and hence (Q,ℵ) = (V,ℵ)  \̃(Y,ℵ) =∅ℵ, For the converse, 

we need to show that when (V,ℵ)\̃(Y,ℵ) =∅ℵ, then (V,ℵ) ⊆̃(Y,ℵ) . In order to show this, let (V,ℵ) \̃(Y,ℵ) 

= (T, ℵ). Then,   

                V(ϑ),               ϑ∊ℵ\ℵ=∅ 

T(ϑ)= 

                V(ϑ) \Y(ϑ),     ϑ∊ℵ∩ℵ=ℵ 
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Since, (T,ℵ) =∅ℵ, ∀ϑ ∊ ℵ, V(ϑ) \Y(ϑ)= ∅. Thus, ∀ϑ∊ℵ, V(ϑ)⊆Y(ϑ). Hence, (V,ℵ) ⊆̃(Y,ℵ). 

In classical set theory, V\(V\Y)=V∩Y  and  Y\(Y\V)=Y∩V.  Now, we have the following: 

20) (V,ℵ)  \̃ [(V,ℵ)  \̃(Y, ℵ)]= (V,ℵ)  ∩̃ (Y,ℵ)   and  (Y,ℵ) \̃ [(Y,ℵ) \̃(V, ℵ)]= (Y,ℵ)  ∩̃ (V,ℵ). 

Proof: Let (V,ℵ) \̃(Y,ℵ) =(Q,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                  ϑ∊ℵ\ℵ=∅ 

Q(ϑ)= 

                V(ϑ) \Y(ϑ),        ϑ∊ℵ∩ℵ=ℵ 

Let (V,ℵ) \̃(Q,ℵ) =(K,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                  ϑ∊ℵ\ℵ=∅ 

K(ϑ)= 

                V(ϑ) \Q(ϑ),        ϑ∊ℵ∩ℵ=ℵ 

Thus, ∀ϑ∊ℵ, 

                V(ϑ),                           ϑ∊ℵ\ℵ=∅ 

K(ϑ)= 

               V(ϑ)\ (V(ϑ) \Y(ϑ)),    ϑ∊ℵ∩ℵ=ℵ  

Hence, ∀ϑ∊ℵ, 

                V(ϑ),                  ϑ∊ℵ\ℵ=∅ 

K(ϑ)= 

                V(ϑ) ∩ Y(ϑ),     ϑ∊ℵ∩ℵ=ℵ  

Thus, ∀ϑ∊ℵ, (K,ℵ) = (V,ℵ) \̃ (Y,ℵ). Moreover (Y,ℵ) \̃ [(Y,ℵ) \̃(V, ℵ)]= (Y,ℵ) ∩̃(V,ℵ) can be shown 

similarly. 

In classical set theory, V\(Y∩V)=V\Y and Y\(V∩Y)=Y\V. Now we have the following: 

21) (V,ℵ)\̃ [(Y,I)∩̃(V,ℵ) ]= (V,ℵ)\̃(Y,I)   and  (Y,I) \̃ [(V,ℵ)  ∩̃ (Y,I) ]= (Y,I) \̃(V,ℵ). 

Proof: Let (Y,I) ∩̃(V,ℵ) =(Q,ℵ). Then, ∀ϑ∊I,  

                Y(ϑ),                 ϑ∊I\ℵ 

Q(ϑ)= 

                Y(ϑ) ∩V(ϑ),     ϑ∊I∩ℵ 

Let (V,ℵ) \̃(Q,I) =(K,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                ϑ∊ℵ\I 

K(ϑ)= 

                V(ϑ)\Q(ϑ),      ϑ∊ℵ∩I 

Thus, ∀ϑ∊ℵ, 

                V(ϑ),                               ϑ∊ℵ\I 

K(ϑ)=      V(ϑ)\Y(ϑ)                       ϑ∊ℵ∩(I\ℵ)=∅ 

                V(ϑ)\ [(Y(ϑ) ∩V(ϑ)],      ϑ∊ℵ∩(I∩ℵ)=ℵ∩I 

Since V(ϑ)\ [(Y(ϑ) ∩V(ϑ)]= V(ϑ)\Y(ϑ),  hence ∀ϑ∊ℵ, 

                V(ϑ),             ϑ∊ℵ\I 

K(ϑ)= 

                V(ϑ)\Y(ϑ),    ϑ∊ℵ∩I 
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Thus, (K,ℵ) = (V,ℵ)\̃(Y,I). Moreover (Y,I) \̃ [(V,ℵ)∩̃ (Y,I) ]= (Y,I) \̃(V,ℵ) can be shown similarly. 

In classical set theory, V\(V∩Y)=V\Y and  Y\(Y∩V)=Y\V. Now, we have the following: 

22)  (V,ℵ)\̃[(V,ℵ)  ∩̃(Y,ℵ) ]= (V,ℵ)\̃(Y,ℵ)   and  (Y,ℵ)\̃[(Y,ℵ)∩̃(V,ℵ) ]= (Y,ℵ)\̃(V,ℵ). 

Proof: Let (V,ℵ) ∩̃(Y,ℵ) =(Q,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                 ϑ∊ℵ\ℵ=∅ 

Q(ϑ)= 

                V(ϑ) ∩Y(ϑ),     ϑ∊ℵ∩ℵ=ℵ 

Let (V,ℵ) \̃ (Q,ℵ) =(K,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                ϑ∊ℵ\ℵ=∅ 

K(ϑ)= 

                V(ϑ) \Q(ϑ),      ϑ∊ℵ∩ℵ=ℵ 

Thus, ∀ϑ∊ℵ, 

                V(ϑ),                                ϑ∊ℵ\ℵ=∅ 

K(ϑ)= 

               V(ϑ)\ [(V(ϑ) ∩Y(ϑ)],       ϑ∊ℵ∩ℵ=ℵ  

Hence, ∀ϑ∊ℵ, 

                V(ϑ),              ϑ∊ℵ\ℵ=∅ 

K(ϑ)= 

                V(ϑ)\ Y(ϑ),     ϑ∊ℵ∩ℵ=ℵ  

Thus, ∀ϑ∊ℵ, (K,ℵ)=(V,ℵ)\̃(Y,ℵ). Moreover (Y,ℵ)\̃[(Y,ℵ)∩̃(V,ℵ)]= (Y,ℵ)\̃(V,ℵ) can be shown similarly. 

NOTE: In classical set theory, V∩Y=Y∩V, hence V\(Y∩V)=V\(V∩Y)=V\Y and Y\(V∩Y)= 

Y\(Y∩V)=Y\V. However, since  (V,ℵ) ∩̃ (Y,I)≠ (Y,I) ∩̃(V,ℵ); while Theorem 3.4 (21) is satisfied when 

the parameter sets of soft sets are different; Theorem 3.4. (22) is satisfied only when the parameter sets 

of soft sets are the same. 

In classical set theory, if V∩Y= ∅, then V\Y=V. Now, we have the following analogy: 

23) If (V,ℵ) ∩̃ (Y, I) = ∅ℵ,  then  (V,ℵ) \̃(Y,I) =(V,ℵ).       

Proof: Let (V,ℵ) ∩̃(Y,I) =(Q,ℵ). Then, for all ϑ∊ℵ,  

                V(ϑ),                  ϑ∊ℵ\I 

Q(ϑ)= 

                V(ϑ) ∩ Y(ϑ),     ϑ∊ℵ∩I 

Since, (Q,ℵ) = ∅ℵ,  then for all ϑ∊ℵ. Q(ϑ)= ∅. Thus, for all ϑ∊ℵ\I; Q(ϑ)=V(ϑ)= ∅, and for all ϑ∊ℵ∩I; 

Q(ϑ)=V(ϑ) ∩Y(ϑ)= ∅. Let (V,ℵ) \̃(Y,I) =(S,ℵ). Then, for all ϑ∊ℵ,  

               V(ϑ),                  ϑ∊ℵ\I 

S(ϑ)= 

               V(ϑ) \ Y(ϑ),       ϑ∊ℵ∩I 

Since, for all ϑ∊ℵ∩I; V(ϑ ∩Y(ϑ)= ∅, V(ϑ) \Y(ϑ)=V(ϑ). Therefore, 

                V(ϑ),       ϑ∊ℵ\I 

S(ϑ)= 

                V(ϑ),      ϑ∊ℵ∩I 
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Thus, (S,ℵ)=(V,ℵ) \̃(Y,I) =(V,ℵ). 

In classical set theory, (V\Y) ∩Y=∅  and (Y\V) ∩V=∅. Now, we have the similar analogy: 

24) [(V,ℵ) \̃ (Y,ℵ) ]∩̃(Y,ℵ) = ∅ℵ  and [(Y,ℵ) \̃(V,ℵ) ]∩̃(V,ℵ) = ∅ℵ. 

Proof: Let (V,ℵ) \̃ (Y,ℵ) =(Q,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                ϑ∊ℵ\ℵ=∅ 

Q(ϑ)= 

                V(ϑ)\Y(ϑ),       ϑ∊ℵ∩ℵ=ℵ 

And let (Q,ℵ)∩̃(Y,ℵ) =(T,ℵ),  where ∀ϑ∊ℵ,  

                Q(ϑ),                  ϑ∊ℵ\ℵ=∅ 

T(ϑ)= 

                Q(ϑ)∩Y(ϑ),       ϑ∊ℵ∩ℵ=ℵ 

Thus, ∀ϑ∊ℵ, 

                Q(ϑ),                              ϑ∊ℵ\ℵ=∅ 

T(ϑ)= 

               [V(ϑ)\Y(ϑ)] ∩ Y(ϑ),       ϑ∊ℵ∩ℵ=ℵ  

Hence, ∀ϑ∊ℵ, 

                Q(ϑ),           ϑ∊ℵ\ℵ=∅ 

T(ϑ)= 

                ∅,                ϑ∊ℵ∩ℵ=ℵ  

Since ∀ϑ∊ℵ, T(ϑ)= ∅, thus (T,ℵ) = ∅ℵ. Moreover, [(Y,ℵ) \̃ (V,ℵ) ] ∩̃(V,ℵ) = ∅ℵ can be shown similarly. 

NOTE: In classical set theory, (V\Y)\Y=V\Y (as (V\Y) ∩Y=∅)  and (Y\V)\V=Y\V (as (Y\V) ∩V=∅). 

As an analogy, we have the following: 

25) [(V,ℵ)\̃(Y,I) ] \̃(Y,I) = (V,ℵ)\̃(Y,I)  and [(Y,I) \̃(V,ℵ) ] \̃(V,ℵ) = (Y,I)\̃(V,ℵ). 

Proof: Let (V,ℵ) \̃ (Y,I) =(Q,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                 ϑ∊ℵ\I 

Q(ϑ)= 

                V(ϑ)\Y(ϑ),        ϑ∊ℵ∩I 

And let (Q,ℵ) \̃ (Y,I) =(T,ℵ), where ∀ϑ∊ℵ,  

                Q(ϑ),               ϑ∊ℵ\I 

T(ϑ)= 

                Q(ϑ)\Y(ϑ),      ϑ∊ℵ∩I 

Thus, ∀ϑ∊ℵ, 

               V(ϑ),                         ϑ∊(ℵ\I)\I=ℵ\I 

               V(ϑ)\Y(ϑ),                ϑ∊(ℵ∩I)\I=∅ 

T(ϑ)=      V(ϑ)\Y(ϑ),                ϑ∊(ℵ\I)∩I=∅ 

               [V(ϑ)\Y(ϑ)] \Y(ϑ),    ϑ∊(ℵ∩I)∩I=ℵ∩I 

Thus, ∀ϑ∊ℵ, 
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                V(ϑ),             ϑ∊ℵ\I 

T(ϑ)=  

                V(ϑ)\Y(ϑ)],   ϑ∊ℵ∩I 

Thus, (T,ℵ)= (V,ℵ)\̃(Y,I). Also, [(Y,I)\̃(V,ℵ) ] \̃(V,ℵ) = (Y,I)\̃(V,ℵ) can be shown simillarly. 

In classical set theory, (V\Y) ∩(Y\V)=∅. Now, we have the following analogy. 

26) [(V,ℵ)\̃(Y,ℵ)] ∩̃ [(Y,ℵ)\̃(V,ℵ) ]=∅ℵ  and  [(Y,ℵ)\̃(V,ℵ)] ∩̃ [(V,ℵ)\̃(Y,ℵ) ]=∅ℵ.  

Proof: Let (V,ℵ)\̃(Y,ℵ) =(Q,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                 ϑ∊ℵ\ℵ=∅ 

Q(ϑ)= 

                V(ϑ)\Y(ϑ),       ϑ∊ℵ∩ℵ=ℵ 

Let (Y,ℵ)\̃(V,ℵ) =(K,ℵ). Then, ∀ϑ∊ℵ,  

                Y(ϑ),               ϑ∊ℵ\ℵ=∅ 

K(ϑ)= 

                Y(ϑ)\V(ϑ),      ϑ∊ℵ∩ℵ=ℵ 

And let (Q,ℵ)∩̃(K,ℵ) =(T,ℵ),  where ∀ϑ∊ℵ, 

                Q(ϑ),                  ϑ∊ℵ\ℵ=∅ 

T(ϑ)= 

                Q(ϑ)∩K(ϑ),      ϑ∊ℵ∩ℵ=ℵ 

Thus, ∀ϑ∊ℵ, 

                Q(ϑ),                                    ϑ∊ℵ\ℵ=∅ 

T(ϑ)= 

               [V(ϑ)\Y(ϑ)]∩[Y(ϑ)\V(ϑ)],   ϑ∊ℵ∩ℵ=ℵ  

Hence, ∀ϑ∊ℵ, 

                Q(ϑ),           ϑ∊ℵ\ℵ=∅ 

T(ϑ)= 

                ∅,                ϑ∊ℵ∩ℵ=ℵ  

Since ∀ϑ∊ℵ, T(ϑ)=∅, (T,ℵ) =∅ℵ. Moreover [(Y,ℵ)\̃(V,ℵ) ] ∩̃ [(V,ℵ) \̃(Y,ℵ) ]=∅ℵ can be shown similarly. 

NOTE: In classical set theory, (V\Y)\(Y\V)=V\Y (as (V\Y)∩(Y\V)=∅) and (Y\V)\(V\Y)=Y\V (as 

(Y\V)∩(V\Y)=∅). As an analogy, we have the following: 

 27) [(V,ℵ) \̃(Y,I)] \̃ [(Y,I) \̃(V,ℵ) ]=  (V,ℵ) \̃(Y,I) and [(Y,I) \̃(V,ℵ) ] \̃ [(V,ℵ)\̃(Y,I) ]= (Y,I)\̃(V,ℵ) 

Proof: Let (V,ℵ)\̃(Y,I) =(Q,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                ϑ∊ℵ\I 

Q(ϑ)= 

                V(ϑ)\Y(ϑ),       ϑ∊ℵ∩I 

Let (Y,I)\̃(V,ℵ) =(K,I). Then, ∀ϑ∊I,  

                Y(ϑ),                ϑ∊I\ℵ 

K(ϑ)= 

                Y(ϑ)\V(ϑ),       ϑ∊I∩ℵ 
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And let (Q,ℵ) \̃ (K,I) =(T,ℵ), where ∀ϑ∊ℵ, 

                Q(ϑ),                ϑ∊ℵ\I 

T(ϑ)= 

                Q(ϑ)\K(ϑ),       ϑ∊ℵ∩I 

Thus, ∀ϑ∊ℵ, 

                V(ϑ),                                      ϑ∊(ℵ\I)\I=ℵ\I 

                V(ϑ) \Y(ϑ) ,                           ϑ∊(ℵ∩I)\I=∅ 

 T(ϑ)=      V(ϑ)\Y(ϑ),                              ϑ∊(ℵ\I)∩(I\ℵ)=∅ 

                V(ϑ)\[Y(ϑ) \V(ϑ)],                 ϑ∊(ℵ\I)∩(I∩ℵ)=∅ 

                [V(ϑ) \Y(ϑ)] \Y(ϑ),               ϑ∊(ℵ∩I)∩(I\ℵ)=∅ 

                [V(ϑ) \Y(ϑ)] \[Y(ϑ)\V(ϑ)],    ϑ∊(ℵ∩I)∩(I∩ℵ)=I∩ℵ       

Hence, ∀ϑ∊ℵ, 

                V(ϑ),               ϑ∊ℵ\I 

T(ϑ)= 

                V(ϑ) \Y(ϑ),    ϑ∊ℵ∩I 

Thus, (T,ℵ)=(V,ℵ) \̃((Y,I). Moreover, [(Y,I)\̃(V,ℵ)]\̃[(V,ℵ)\̃((Y,I)]=(Y,I)\̃(V,ℵ) can be shown 

similarly. 

In classical set theory, (V\Y) ∩(Y∩V)=∅  and (Y\V) ∩(V∩Y)=∅. Now, we have the following analogy.  

28) [(V,ℵ) \̃ (Y,ℵ) ] ∩̃ [(Y,ℵ) ∩̃ (V,ℵ) ]=∅ℵ  and  [(Y,ℵ) \̃ (V,ℵ) ] ∩̃ [(V,ℵ) ∩̃ (Y,ℵ) ]=∅ℵ. 

Proof: Let (V,ℵ) \̃(Y,ℵ) =(Q,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                ϑ∊ℵ\ℵ=∅ 

Q(ϑ)= 

                V(ϑ)\Y(ϑ),       ϑ∊ℵ∩ℵ=ℵ 

Let (Y,ℵ)∩̃ (V, ℵ)=(K,ℵ). Then, ∀ϑ∊ℵ,  

                Y(ϑ),                  ϑ∊ℵ\ℵ=∅ 

K(ϑ)= 

                Y(ϑ) ∩ V(ϑ),     ϑ∊ℵ∩ℵ=ℵ 

And let (Q,ℵ) ∩̃ (K,ℵ) =(T,ℵ),  where ∀ϑ∊ℵ,  

                Q(ϑ),                  ϑ∊ℵ\ℵ=∅ 

T(ϑ)= 

                Q(ϑ) ∩ K(ϑ),     ϑ∊ℵ∩ℵ=ℵ 

Thus, ∀ϑ∊ℵ, 

               Q(ϑ),                                         ϑ∊ℵ\ℵ=∅ 

T(ϑ)= 

               [V(ϑ)\Y(ϑ)]∩ [Y(ϑ) ∩V(ϑ)],   ϑ∊ℵ∩ℵ=ℵ  

Hence, ∀ϑ∊ℵ, 

                Q(ϑ),          ϑ∊ℵ\ℵ=∅ 

T(ϑ)= 

                ∅,               ϑ∊ℵ∩ℵ=ℵ  
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Since ∀ϑ∊ℵ, T(ϑ)= ∅, (T,ℵ) = ∅ℵ. Moreover, [(Y,ℵ) \̃(V,ℵ) ] ∩̃ [(V,ℵ)  ∩̃ (Y,ℵ) ]=∅ℵ can be shown 

similarly.  

NOTE: In classical set theory, (V\Y)\(Y∩V)=(V\Y) (since (V\Y)∩(Y∩V)=∅)  and (Y\V)\(V∩Y)=Y\V 

(since (Y\V) ∩(V∩Y)=∅). As an analogy, we have the following: 

29) [(V,ℵ) \̃(Y,I) ] \̃ [(Y,I) ∩̃(V,ℵ) ]= (V,ℵ) \̃(Y,I)  and  [(Y,I) \̃(V,ℵ) ] \̃[(V,ℵ) ∩̃(Y,I) ]= (Y,I) \̃ (V,ℵ). 

Proof: Let (V,ℵ)\̃(Y,I) =(Q,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),               ϑ∊ℵ\I 

Q(ϑ)= 

                V(ϑ)\Y(ϑ),      ϑ∊ℵ∩I 

Let (Y,I) ∩̃ (V,ℵ) =(K,I). Then, ∀ϑ∊I,  

                Y(ϑ),                ϑ∊I\ℵ 

K(ϑ)= 

                 Y(ϑ)∩V(ϑ),    ϑ∊I∩ℵ 

And let (Q,ℵ) \̃ (K,I) =(T,ℵ), where ∀ϑ∊ℵ, 

                Q(ϑ),                ϑ∊ℵ\I 

T(ϑ)= 

                Q(ϑ)\K(ϑ),       ϑ∊ℵ∩I    

Thus, ∀ϑ∊ℵ, 

                V(ϑ),                                        ϑ∊(ℵ\I)\I=ℵ\I 

                V(ϑ) \Y(ϑ) ,                            ϑ∊(ℵ∩I)\I=∅ 

 T(ϑ)=     V(ϑ) \Y(ϑ),                               ϑ∊(ℵ\I)∩(I\ℵ)=∅ 

                V(ϑ)\[Y(ϑ) ∩V(ϑ)],                 ϑ∊(ℵ\I)∩(I∩ℵ)=∅ 

                [V(ϑ) \Y(ϑ)] \Y(ϑ),               ϑ∊(ℵ∩I)∩(I\ℵ)=∅ 

                [V(ϑ) \Y(ϑ)] \[Y(ϑ) ∩V(ϑ)],    ϑ∊(ℵ∩I)∩(I∩ℵ)=I∩ℵ       

Hence, ∀ϑ∊ℵ,  

                V(ϑ),               ϑ∊ℵ\I 

T(ϑ)=   

                V(ϑ) \Y(ϑ),    ϑ∊ℵ∩I 

Thus, (T,ℵ)=(V,ℵ) \̃((Y,I). Moreover, [(Y,I) \̃(V,ℵ)]\̃[(V,ℵ) ∩̃(Y,I)]= (Y,I) \̃(V,ℵ) can be shown 

similarly. 

 In classical set theory, V∩(Y\V) =∅  and Y∩(V\Y) =∅ . Now, we have the following analogy: 

30) (V,ℵ) ∩̃ [(Y,ℵ)\̃(V, ℵ)]=∅ℵ  and  (Y,ℵ) ∩̃ [(V,ℵ) \̃ (Y,ℵ) ]=∅ℵ. 

Proof: Let (Y,ℵ) \̃(V,ℵ) =(Q,ℵ). Then, ∀ϑ∊ℵ,  

                Y(ϑ),                ϑ∊ℵ\ℵ=∅ 

Q(ϑ)= 

                Y(ϑ)\V(ϑ),       ϑ∊ℵ∩ℵ=ℵ 

Let (V,ℵ)∩̃ (Q, ℵ)=(K,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                 ϑ∊ℵ\ℵ=∅ 

K(ϑ)= 

                V(ϑ)∩Q(ϑ),      ϑ∊ℵ∩ℵ=ℵ 
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Thus, ∀ϑ∊ℵ, 

                V(ϑ),                             ϑ∊ℵ\ℵ=∅ 

K(ϑ)= 

               V(ϑ)∩ [Y(ϑ)\V(ϑ)],       ϑ∊ℵ∩ℵ=ℵ  

Hence, ∀ϑ∊ℵ, 

                V(ϑ),           ϑ∊ℵ\ℵ=∅ 

K(ϑ)= 

                ∅,                ϑ∊ℵ∩ℵ=ℵ  

Since ∀ϑ∊ℵ, K(ϑ)= ∅, (K,ℵ) = ∅ℵ. Moreover (Y,ℵ) ∩̃ [(V,ℵ)\̃(Y,ℵ) ]=∅ℵ can be shown similarly. 

NOTE: In classical set theory, V\(Y\V)=V (since V∩(Y\V)= ∅) and Y\(V\Y)=Y (since Y∩(V\Y)= ∅). 

Now, we have the followin analogy: 

31) (V,ℵ) \̃ [(Y,I)\̃(V, ℵ)]=(V,ℵ)  and  (Y,I) \̃ [(V,ℵ) \̃(Y,I) ]=(Y,I). 

Proof: Let (Y,I) \̃(V,ℵ) =(Q,I). Then, ∀ϑ∊I,  

                Y(ϑ),               ϑ∊I\ℵ 

Q(ϑ)= 

                Y(ϑ)\V(ϑ),      ϑ∊I∩ℵ 

Let (V,ℵ)\̃(Q, I)=(K,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),               ϑ∊ℵ\I 

K(ϑ)= 

                V(ϑ)\Q(ϑ),      ϑ∊ℵ∩I 

Thus, ∀ϑ∊ℵ, 

                V(ϑ),                       ϑ∊ℵ\I 

 K(ϑ)=     V(ϑ)\Y(ϑ),               ϑ∊ℵ∩(I\ℵ)= ∅ 

                V(ϑ)\[Y(ϑ)\V(ϑ)],    ϑ∊ℵ∩(I∩ℵ)= ℵ∩I        

Hence, ∀ϑ∊ℵ, 

                V(ϑ),           ϑ∊ℵ\I 

K(ϑ)= 

                V(ϑ),           ϑ∊ℵ∩I  

Since ∀ϑ∊ℵ, K(ϑ)=V(ϑ), (K,ℵ)=(V,ℵ). Moreover, (Y,I) \̃ [(V,ℵ) \̃(Y,I)]=(Y,I) can be shown similarly. 

In classical set theory, V∪Y=(V\Y) ∪(Y\V) ∪(V∩Y). Now, we have the following analogy: 

32) (V,ℵ) ∪̃ (Y, I)=[(V,ℵ) \̃ (Y,I) ] ∪̃  [(Y, I)\̃ (V, ℵ)] ∪̃ [(V,ℵ) ∩̃ (Y,I)].        

Proof: Let (V,ℵ)\̃(Y,I) =(Q,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),               ϑ∊ℵ\I  

Q(ϑ)= 

                V(ϑ)\Y(ϑ),       ϑ∊ℵ∩I 

Let (Y,I) \̃ (V,ℵ) =(K,I). Then, ∀ϑ∊I,  
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                Y(ϑ),                ϑ∊I\ℵ 

K(ϑ)= 

                Y(ϑ)\V(ϑ),       ϑ∊I∩ℵ 

And let (Q,ℵ) ∪̃ (K,I) =(T,ℵ), where ∀ϑ∊ℵ, 

                Q(ϑ),                ϑ∊ℵ\I 

T(ϑ)= 

                Q(ϑ)∪K(ϑ),      ϑ∊ℵ∩I 

Thus, ∀ϑ∊ℵ, 

               V(ϑ),                                        ϑ∊(ℵ\I)\I=ℵ\I 

               V(ϑ) \Y(ϑ) ,                             ϑ∊(ℵ∩I)\I=∅ 

 T(ϑ)=     V(ϑ) ∪Y(ϑ),                             ϑ∊(ℵ\I)∩(I\ℵ)=∅ 

               V(ϑ) ∪ [Y(ϑ)\V(ϑ)],                 ϑ∊(ℵ\I)∩(I∩ℵ)=∅ 

               [V(ϑ) \Y(ϑ)] ∪Y(ϑ),                ϑ∊(ℵ∩I)∩(I\ℵ)=∅ 

               [V(ϑ) \Y(ϑ)] ∪ [Y(ϑ)\V(ϑ)],    ϑ∊(ℵ∩I)∩(I∩ℵ)=I∩ℵ       

Hence, ∀ϑ∊ℵ,  

                V(ϑ),                                        ϑ∊ℵ\I 

T(ϑ)= 

               [V(ϑ) \Y(ϑ)]∪[Y(ϑ)\V(ϑ)],    ϑ∊ℵ∩I 

Let (V,ℵ) ∩̃(Y,I) =(W,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                 ϑ∊ℵ\I 

W(ϑ)= 

                V(ϑ) ∩Y(ϑ),     ϑ∊ℵ∩I 

Let (T,ℵ) ∪̃(W,ℵ)=(R,ℵ). Thus, for all ϑ∊ℵ; 

                T(ϑ),                 ϑ∊ℵ\ℵ=∅ 

R(ϑ)=   

                T(ϑ) ∪W(ϑ),    ϑ∊ℵ∩ℵ=ℵ 

Thus, ∀ϑ∊ℵ, 

                V(ϑ) ∪V(ϑ),                                                      ϑ∊(ℵ\I) ∩(ℵ\I)=ℵ\I 

R(ϑ)=       V(ϑ) ∪[V(ϑ) ∩Y(ϑ)],                                         ϑ∊(ℵ\I)∩(ℵ∩I) =∅ 

               [[V(ϑ) \Y(ϑ)]∪[Y(ϑ)\V(ϑ)]] ∪V(ϑ),                  ϑ∊(ℵ∩I)∩(ℵ\I)=∅                        

               [[V(ϑ) \Y(ϑ)]∪[Y(ϑ)\V(ϑ)]]∪[V(ϑ)∩Y(ϑ)],     ϑ∊(ℵ∩I)∩(ℵ∩I)=ℵ∩I 

Since [[V(ϑ) \Y(ϑ)] ∪ [Y(ϑ)\V(ϑ)]] ∪ [V(ϑ) ∩Y(ϑ)] = V(ϑ) ∪ Y(ϑ), thus, 

                V(ϑ),                 ϑ∊ℵ\I 

R(ϑ)=        

               V(ϑ) ∪ Y(ϑ),      ϑ∊ℵ∩I 

Therefore, (R,ℵ)= (V,ℵ) ∪̃ (Y, I).  

NOTE: Since [(V,ℵ) ∪̃ (Y, I)] ∪̃ (Z,K) ≠(V,ℵ) ∪̃ [(Y, I)) ∪̃ (Z,K)] , we should also have looked the 

following: 

33) (V,ℵ) ∪̃ (Y, I)=[(V,ℵ) \̃ (Y,I) ] ∪̃  [[(Y, I)\̃ (V, ℵ)] ∪̃ [(V,ℵ) ∩̃ (Y,I)]]. 

Proof: Let (Y,I)\̃(V,ℵ) =(Q,I). Then, ∀ϑ∊I,  
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                Y(ϑ),               ϑ∊I\ℵ 

Q(ϑ)= 

                Y(ϑ)\V(ϑ),      ϑ∊I∩ℵ 

Let (V,ℵ) \̃ (Y,I) =(K,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                ϑ∊ℵ\I 

K(ϑ)= 

                V(ϑ)\Y(ϑ),       ϑ∊ℵ∩I 

And let (Q,I) ∪̃ (K,ℵ) =(T,I), where ∀ϑ∊I, 

                Q(ϑ),                ϑ∊I\ℵ 

T(ϑ)= 

                Q(ϑ)∪K(ϑ),     ϑ∊I∩ℵ 

Thus, ∀ϑ∊I, hence, 

                 Y(ϑ),                                     ϑ∊(I\ℵ)\ℵ=I\ℵ 

                Y(ϑ) \V(ϑ) ,                          ϑ∊(I∩ℵ)\ℵ=∅ 

T(ϑ)=       Y(ϑ)∪V(ϑ),                           ϑ∊(I\ℵ)∩(ℵ\I)=∅ 

                Y(ϑ)∪[V(ϑ)\Y(ϑ)],                ϑ∊(I\ℵ)∩(ℵ∩I)=∅ 

                [Y(ϑ)\V(ϑ)]∪V(ϑ),               ϑ∊(I∩ℵ)∩(ℵ\I)=∅ 

                [Y(ϑ)\V(ϑ)]∪[V(ϑ)\Y(ϑ)],    ϑ∊(I∩ℵ)∩(ℵ∩I)=ℵ∩I       

Hence, ∀ϑ∊I,  

               Y(ϑ),                                          ϑ∊I\ℵ 

T(ϑ)= 

               [Y(ϑ) \V(ϑ)] ∪ [V(ϑ)\Y(ϑ)],     ϑ∊I∩ℵ 

Let (V,ℵ) \̃(Y,I) =(W,ℵ). Then, ∀ϑ∊ℵ,  

                V(ϑ),                ϑ∊ℵ\I 

W(ϑ)=  

                V(ϑ) \Y(ϑ),     ϑ∊ℵ∩I 

Let (W,ℵ)∪̃(T,I)=(R,ℵ). Thus, for all ϑ∊ℵ;  

                W(ϑ),               ϑ∊ℵ\I 

R(ϑ)= 

                W(ϑ) ∪T(ϑ),    ϑ∊ℵ∩I 

Thus, ∀ϑ∊ℵ, 

               V(ϑ)                                                                   ϑ∊(ℵ\I)\I=ℵ\I 

               V(ϑ) \Y(ϑ),                                                        ϑ∊(ℵ∩I)\I =∅ 

               V(ϑ)∪Y(ϑ),                                                        ϑ∊(ℵ\I)∩(I\ℵ)=∅      

R(ϑ)=     V(ϑ)∪ [[Y(ϑ)\V(ϑ)] ∪ [V(ϑ)\Y(ϑ)]]                ϑ∊(ℵ\I)∩(I∩ℵ)=∅               

               [V(ϑ)\Y(ϑ)]∪Y(ϑ),                                             ϑ∊(ℵ∩I)∩(I\ℵ)=∅      

               [V(ϑ)\Y(ϑ))]∪ {[Y(ϑ)\V(ϑ)] ∪ [V(ϑ)\Y(ϑ)]}  ϑ∊(ℵ∩I)∩(I∩ℵ)= ℵ∩I     

Since [V(ϑ) \Y(ϑ)] ∪ [[Y(ϑ)\V(ϑ)] ∪ [V(ϑ)∩Y(ϑ)]]=V(ϑ)∪Y(ϑ),  
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                V(ϑ),                 ϑ∊ℵ\I 

R(ϑ)=        

               V(ϑ)∪Y(ϑ),      ϑ∊ℵ∩I 

Therefore, (R,ℵ)= (V,ℵ) ∪̃ (Y, I). 

In [10], it was shown that the collection of soft sets with a fixed set of parameter set associated respect 

to restricted difference becomes a BCK algebra. Now, we have the following:  

Theorem 3.6. (Sℵ(U), \̃, ∅ℵ) is a bounded BCK algebra whose every element is an involution. 

Proof:  Let (V,ℵ), (Q,ℵ),(Z,ℵ)∊ Sℵ(U). Then,  

BCI-1  [((V,ℵ) \̃ (Q,ℵ)) \̃ ((V,ℵ) \̃ (Z,ℵ))] \̃((Z,ℵ) \̃ (Q,ℵ))= ∅ℵ. In fact, 

Let  (V,ℵ) \̃ (Q,ℵ)=(T,ℵ) , where ∀ϑ∊ℵ;   

                   V(ϑ),                ϑ∊ℵ\ℵ=∅    

 T(ϑ)=         

                   V(ϑ) \Q(ϑ) ,       ϑ∊ℵ∩ℵ=ℵ 

Let (V,ℵ) \̃(Z,ℵ)=(M,ℵ) , where ∀ϑ∊ℵ;  

                 V(ϑ),               ϑ∊ℵ\ℵ=∅    

 M(ϑ)=       

                 V(ϑ)\Z(ϑ),       ϑ∊ℵ∩ℵ=ℵ 

Let (T,ℵ) \̃(M,ℵ)=(W,ℵ), where ∀ϑ∊ℵ; 

                 T(ϑ),               ϑ∊ℵ\ℵ=∅    

 W(ϑ)=       

                 T(ϑ)\M(ϑ),      ϑ∊ℵ∩ℵ=ℵ 

Hence, ∀ϑ∊ℵ; 

                 T(ϑ),                                     ϑ∊ℵ\ℵ=∅    

 W(ϑ)=       

                 [V(ϑ) \Q(ϑ)]\ [V(ϑ)\Z(ϑ)],    ϑ∊ℵ∩ℵ=ℵ 

Let (Z,ℵ) \̃(Q,ℵ)=(S,ℵ), where ∀ϑ∊ℵ;  

                 Z(ϑ),               ϑ∊ℵ\ℵ=∅    

 S(ϑ)=       

                 Z(ϑ)\Q(ϑ),      ϑ∊ℵ∩ℵ=ℵ 

Let (W,ℵ) \̃(S,ℵ)=(X,ℵ), where ∀ϑ∊ℵ; 

                  W(ϑ),             ϑ∊ℵ\ℵ=∅    

 X(ϑ)=       

                  W(ϑ) \S(ϑ),    ϑ∊ℵ∩ℵ=ℵ          

Thus, ∀ϑ∊ℵ, 

                  W(ϑ),                                                          ϑ∊ℵ\ℵ=∅    

 X(ϑ)=       

                 { [V(ϑ) \Q(ϑ)]\ [V(ϑ)\Z(ϑ)]}\[Z(ϑ)\Q(ϑ)],  ϑ∊ℵ∩ℵ=ℵ          

Thus, ∀ϑ∊ℵ;   
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                  W(ϑ),        ϑ∊ℵ\ℵ=∅    

 X(ϑ)=       

                  ∅ ,             ϑ∊ℵ∩ℵ=ℵ  

It is seen that (X,ℵ)= ∅ℵ. 

BCI-2  [(V,ℵ) \̃ ((V,ℵ) \̃(Q,ℵ))] \̃ (Q,ℵ)= ∅ℵ. In fact, let (V,ℵ) \̃ (Q,ℵ)=(T,ℵ), where ∀ϑ∊ℵ;   

                 V(ϑ),                  ϑ∊ℵ\ℵ=∅    

 T(ϑ)=       

                 V(ϑ) \Q(ϑ) ,       ϑ∊ℵ∩ℵ=ℵ 

Let (V,ℵ) \̃(T,ℵ)=(M,ℵ) , where ∀ϑ∊ℵ;  

                 V(ϑ),               ϑ∊ℵ\ℵ=∅    

 M(ϑ)=        

                 V(ϑ)\T(ϑ),       ϑ∊ℵ∩ℵ=ℵ 

Thus, ∀ϑ∊ℵ 

                  V(ϑ),                        ϑ∊ℵ\ℵ=∅    

 M(ϑ)=      

                 V(ϑ) \[V(ϑ)\Q(ϑ)],  ϑ∊ℵ∩ℵ=ℵ          

Thus, ∀ϑ∊ℵ, 

                  V(ϑ),                 ϑ∊ℵ\ℵ=∅    

 M(ϑ)=       

                  V(ϑ)∩Q(ϑ),      ϑ∊ℵ∩ℵ=ℵ          

Let (M,ℵ)\̃(Q,ℵ) =(L,ℵ) , where ∀ϑ∊ℵ;   

                    M(ϑ),                     ϑ∊ℵ\ℵ=∅    

 L(ϑ)=       

                   M(ϑ)\Q(ϑ) ,            ϑ∊ℵ∩ℵ=ℵ 

Let (V,ℵ) \̃(L,ℵ)  =(D,ℵ), where ∀ϑ∊ℵ;  

                    M(ϑ),                           ϑ∊ℵ\ℵ=∅    

 D(ϑ)=       

                   [V(ϑ) ∩Q(ϑ)] \Q(ϑ) ,   ϑ∊ℵ∩ℵ=ℵ 

Thus, 

                  M(ϑ),                   ϑ∊ℵ\ℵ=∅    

 D(ϑ)=       

                  ∅,                         ϑ∊ℵ∩ℵ=ℵ           

It is seen that (D,ℵ)= ∅ℵ. 

BCI-3 By Theorem 3.5. (5),  (V,ℵ) \̃(V,ℵ) =∅ℵ. 

BCI-4 By Theorem 3.5. (19), (V,ℵ)\̃(Y,ℵ) =∅ℵ ⟹(V,ℵ)⊆̃(Y,ℵ) and (Y,ℵ)\̃(V,ℵ) =∅Q ⟹(Y,ℵ) ⊆̃(V,ℵ)  

and thus, (V,ℵ)=(Y,ℵ).  

BCK-5 By Theorem 3.5. (7),  ∅ℵ\̃(V,ℵ)= ∅ℵ. 
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Thus, (Sℵ(U), \̃, ∅ℵ)  is a BCK-algebra. Since, (V, ℵ)\̃  Uℵ=∅ℵ  for all (V, ℵ)∈ Sℵ(U) (b)y Theorem 3.5. 

(8), (Sℵ(U), \̃, ∅ℵ) is a bounded BCK-algebra, where ℵ is a fixed set of parameter set. Moreover since  Uℵ 

\̃[Uℵ\̃(V, ℵ)]=(V, ℵ) for all (V, ℵ)∈ Sℵ(U), (As Uℵ\̃(V, ℵ)= (V, ℵ)r  by Theorem 3.5. (9)), and Uℵ\̃(V, 
ℵ)r =[(V, ℵ)r]r=(V, ℵ)), every element of Sℵ(U) is an involution. 

In fact, since restricted difference soft set operation coincides with soft complementary difference 

operation in the collection of soft sets with a fixed parameter set, the BCK algebra in [10] and the BCK-

algebra in this paper are in fact the same.  

 

 

4. CONCLUSION 

 

Since the inception of soft set theory by Molodtsov, numerous variations of soft set operations have 

been described and used. In this article, in order to improve the soft binary piecewise difference 

operation, we have explored its overall properties, especially in comparison with the fundamental 

properties of the difference operation in classical set theory and we have obtained very interesting 

analogies. Furthermore, we have proved that the set of all soft sets with a fixed parameter set is a 

bounded BCK-algebra together with the soft binary piecewise difference operation. Since studying the 

algebraic structure of soft sets from the perspective of operations provides deep insight into the algebraic 

structure of soft sets and its application and soft set algebra shows the potential applications of soft sets 

in classical and nonclassical logic, we hope this paper contibutes to the literature of soft set in this regard. 
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