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Abstract: In this paper, we will present the notion of statistical convergence in A -metric spaces, which is

an important concept in summability theory. We will define statistical convergence in A -metric spaces and

investigate its basic properties. Furthermore, we will explore the relationship between strongly p -Cesàro

and statistical convergence in A -metric spaces.
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1. Introduction
Metric spaces are an important topic in mathematics, particularly in analysis and topology. Fréchet

[11] was the first to introduce the notion of metric space in 1906. Since then, many researchers

have been interested in the generalization of metric spaces and have published various papers on

this topic [7, 14, 17–19, 25]. One of the outcomes of these studies was the concept of A -metric

space, which was proposed by Abbas et al. [2] in 2015 as a generalization of S-metrics which is a

generalization of metric spaces. Some fixed point theorems in this space have been studied.

The concept of statistical convergence was introduced in 1951 by Fast in [9] and Steinhaus

in [26]. Afterwards, Shoenberg [24] introduced it in 1959. Since then, the properties of statistical

convergence have been studied by different mathematicians and applied in several area (see, [4–

6, 8, 10, 12, 13, 15, 22, 23, 27]).

Let’s recall the definitions of natural density, statistical convergence and p -strongly Cesàro

summability (see the references given above for details).

For a set K of positive integers, the asymptotic (or natural) density is defined as follows;

δ(K) = lim
k

1

k
∣{t ≤ k ∶ t ∈K}∣

, where ∣{t ≤ k ∶ t ∈K}∣ denotes the number of elements of K not exceeding k.
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A sequence (xt) is said to be statistically convergent to x , if for every ε > 0 ,

lim
k

1

k
∣{t ≤ k ∶ ∣xt − x∣ ≥ ε}∣ = 0.

A sequence (xt) is said to be statistically Cauchy, if for every ε > 0 , there exists a positive integer

S = S(ε) such that

lim
k

1

k
∣{t ≤ k ∶ ∣xt − xS ∣ ≥ ε}∣ = 0.

A sequence (xt) is said to be p -strongly Cesàro summable to x, if

lim
k→∞

1

k

k

∑
t=1
∣ xt − x ∣p= 0.

Recently, Bilalov and Nazarova [3] investigated statistical convergence in metric spaces. In

[16], Kedian et al. defined the concept of statistical convergence in cone metric spaces. Then

Nuray [21] examined statistical convergence in 2-metric spaces, and [20] investigated partial metric

spaces. Recently, Abazari [1] introduced the definition of statistically convergent sequence and

studied its basic properties in g-metric spaces.

In this paper, we examine the concept of a statistically convergent sequence and investigate

some of its fundamental properties in A -metric spaces. Then, we discuss statistically compact

spaces and characterize the statistical completeness of A -metric spaces. Furthermore, we explore

the relationship between strong p -Cesàro convergence and statistical convergence in A -metric
spaces.

Now let us give the basic definitions and notations that we will use in our study.

Definition 1.1 [2] Let X be a nonempty set. A function A ∶ Xn → [0,∞) is called an A-metric

on X if for any xi, a ∈X, i = 1,2, . . . , n the following conditions hold;

(A1) A (x1, x2, . . . , xn−1, xn) ≥ 0,

(A2) A (x1, x2, . . . , xn−1, xn) = 0⇔ x1 = x2 = . . . = xn,

(A3) A (x1, x2, . . . , xn−1, xn) ≤ ∑n
k=1A(xk, xk, . . . , xk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n−1

, a).

Also the pair (X,A) is called an A-metric space.

Example 1.2 [2] Let X = R . A function A ∶Xn → [0,∞) by

A(x1, x2, . . . , xn−1, xn) =
n

∑
k=1
∑
k<j
∣xk − xj ∣

is an A-metric space on X.
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Lemma 1.3 [2] Let (X,A) be an A-metric space. Then A(x,x, . . . , x, y) = A(y, y, . . . , y, x) for

all x, y ∈X.

Lemma 1.4 [2] Let (X,A) be an A-metric space. For all x, y ∈X , we get

A(x,x, . . . , x, z) ≤ (n − 1)A(x,x, . . . , x, y) +A(y, y, . . . , y, z)

and

A(x,x, . . . , x, z) ≤ (n − 1)A(x,x, . . . , x, y) +A(z, z, . . . , z, y).

Definition 1.5 [2] The A-metric space (X,A) is called bounded if there exists an r > 0 such that

A(y, y, . . . , y, x) ≤ r for all x, y ∈X. Otherwise, X is unbounded.

Definition 1.6 [2] Let (X,A) be an A-metric space and (xt) be a sequence in this space:

(1) The sequence (xt) is said to be convergent to x , if for every ε > 0, there exists a positive

integer t0 such that A(xt, xt, . . . , xt, x) < ε for every t ≥ t0.

(2) The sequence, (xt) is said to be a Cauchy sequence if for every ε > 0, there exists a positive

integer t0 such that A(xt, xt, . . . , xt, xm) < ε for all t,m ≥ t0 .

2. Main Results
This section introduces the definition of statistical convergence of sequences in A -metric space

and studies some basic properties. It also explores the relationship between strongly p -Cesàro and

statistical convergence in A -metric spaces.

Definition 2.1 Let (X,A) be an A-metric space. We say that a sequence (xt) in X is statistically

convergent to x ∈X, if for every ε > 0,

lim
k→∞

1

k
∣{t ≤ k ∶ A(xt, xt, . . . , xt, x) ≥ ε}∣ = 0

or equivalently

lim
k→∞

1

k
∣{t ≤ k ∶ A(xt, xt, . . . , xt, x) < ε}∣ = 1

and is denoted by xt
ASÐ→ x. This means that A(xt, xt, . . . , xt, x) < ε holds for almost all t . In this

case, we write Ast − limxt = x in the sense of statistical convergence.

Definition 2.2 Let (X,A) be an A-metric space. We say that a sequence (xt) in X statistically

Cauchy sequence, if for every ε > 0, there exists a positive integer l = l(ε)

lim
k→∞

1

k
∣{t, l ≤ k ∶ A(xt, xt, . . . , xt, xl) ≥ ε}∣ = 0
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or equivalently

lim
k→∞

1

k
∣{t, l ≤ k ∶ A(xt, xt, . . . , xt, xl) < ε}∣ = 1.

Theorem 2.3 Any convergent sequence in an A−metric space (X,A) is also statistically conver-

gent.

Proof Let (xt) be a sequence in A -metric space (X,A) such that converges to x ∈X. For every

ε > 0, there exists a positive integer k0 such that for all t ≥ k0 ,

A(xt, xt, . . . , xt, x) < ε.

The set

A(k) = {t ≤ k ∶ A(xt, xt, . . . , xt, x) < ε},

then we can write

∣A(k)∣ = ∣{t ≤ k ∶ A(xt, xt, . . . , xt, x) < ε}∣ ≥ k − k0.

Therefore

lim
k→∞

∣A(k)∣
k
= 1.

Hence (xt) is statistically convergent. ◻

The following example shows that the converse of above theorem is not valid.

Example 2.4 Let X = R and A be the metric as follows;

A ∶ Rn → R+

A (x1, x2, . . . , xn) = max{∣x1 − x2∣ , ∣x1 − x3∣ , ∣x1 − x4∣ , . . . , ∣x1 − xn∣

∣x2 − x3∣ , ∣x2 − x4∣ , . . . , ∣x2 − xn∣ ,
. . .

∣xn−2 − xn−1∣ , ∣xn−2 − xn∣ ,

∣xn−1 − xn∣}.

Consider the following sequence

xt ∶=
⎧⎪⎪⎨⎪⎪⎩

t, if t is square
0, o.w.

.

It is clear that (xt) is statistically convergent while it is not convergent normally.
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Theorem 2.5 Let (X,A) be an A-metric space and (xt) be a sequence in this space. If xt
ASÐ→ x

and xt
ASÐ→ y, then x = y.

Proof For any ε > 0 , we define the following two sets

A(ε) ∶= {t ∈ N ∶ A(xt, xt, . . . , xt, x),≥
ε

n
}

B(ε) ∶= {t ∈ N ∶ A(xt, xt, . . . , xt, y). ≥
ε

n
}

Since xt
ASÐ→ x and xt

ASÐ→ y , then δ1(A(ε)) = 0 and δ1(B(ε)) = 0. Let C(ε) ∶= A(ε) ∪ B(ε), then

δ1(C(ε)) = 0. So δ1(Cc(ε)) = 1. Suppose that t ∈ Cc(ε) , then by Lemma 1.3 and Lemma 1.4, we

can write

A(x,x, . . . , x, y) ≤ (n − 1)A(x,x, . . . , x, xt) +A(xt, xt, . . . , xt, y)

= (n − 1)A(xt, xt, . . . , xt, x) +A(xt, xt, . . . , xt, y)

< (n − 1) ε
n
+ ε

n

= ε.

Since ε > 0 is arbitrarty, we have A(x,x, . . . , x, y) = 0. Therefore x = y.

◻

Theorem 2.6 Let (xt) and (yt) be two sequences in an A-metric space (X,A) . If yt
ASÐ→ y and

A(xt, xt, . . . , xt, y) ≤ A(yt, yt, . . . , yt, y) for each t ∈ N , then xt
ASÐ→ y.

Proof Let yt
ASÐ→ y. For each ε > 0, we can write

{t ≤ k ∶ A(xt, xt, . . . , xt, y) < ε} ⊇ {t ≤ k ∶ A(yt, yt, . . . , yt, y) < ε}

and

δ({t ≤ k ∶ A(xt, xt, . . . , xt, y) < ε}) ≥ δ({t ≤ k ∶ A(yt, yt, . . . , yt, y) < ε}) = 1.

Therefore xt
ASÐ→ y . ◻

Definition 2.7 ([4]) A set A = {tm ∶ m ∈ N} is said to be statistically dense in N , if the set

A(k) = {tj ∈ A ∶ tj ≤ k} has asymptotic density 1, that is,

δ(A) = lim
k→∞

∣ A(k) ∣
k

= 1.
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Definition 2.8 Let (X,A) be an A-metric space and (xt) be a sequence in X . A subsequence

(xtm) of sequence (xt) is said to be statistically dense in X if the index set {tm ∶ m ∈ N} is

statistically dense subset of N, namely,

δ({tm ∶m ∈ N}) = 1.

The following theorem shows the equivalence between some properties of A -metric spaces.

This result has been previously studied for cone metric spaces. We will give a proof for the A -metric

spaces case using some techniques from [16].

Theorem 2.9 Let (xt) be a sequence in an A-metric space (X,A) . Then the followings are

equivalent:

(i) (xt) is statistically convergent in (X,A) ,

(ii) There is a convergent sequence (yt) in X such that xt = yt for almost all t ∈ N,

(iii) There is a statistically dense subsequence (xtm) of (xt) such that (xtm) is convergent,

(iv) There is a statistically dense subsequence (xtm) of (xt) such that (xtm) is statistically

convergent.

Proof (i)⇒ (ii) Let ε > 0 and xt
ASÐ→ x ∈X. We can write

lim
k→∞

1

k
∣ {t ≤ k ∶ A(xt, xt, . . . , xt, x) < ε} ∣= 1.

We can choose (tm) as an increasing sequence in N such that

1

k
∣ {s ≤ k ∶ A(xs, xs, . . . , xs, x) <

1

2m
} ∣> 1 − 1

2m

for every k > tm. We can assume that tm < tm+1 for each m ∈ N. Now we define (ys) as follows;

ys ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xs, 1 ≤ s ≤ t1
xs, tm < s ≤ tm+1,A(xs, xs, . . . , xs, x) <

1

2m

x, o.w.
.

Choose m ∈ N such that 1

2m
< ε. Then A(ys, ys, . . . , ys, x) < ε for each s > tm , that is, (ys) is

convergent to x. Fix k ∈ N, for tm < k ≤ tm+1, we get

{s ≤ k ∶ ys ≠ xs} ⊆ {1,2, . . . , k} − {s ≤ k ∶ A(xs, xs, . . . , xs, x) <
1

2m
}.
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Thus

lim
k→∞

1

k
∣ {s ≤ k ∶ ys ≠ xs} ∣ ≤ lim

k→∞

1

k
k − lim

k→∞

1

k
∣ {s ≤ k ∶ A(xs, xs, . . . , xs, x) <

1

2m
} ∣

< 1 − (1 − 1

2m
)

= 1

2m

< ε.

Hence lim
k→∞

1

k
∣ {s ≤ k ∶ ys ≠ xs} ∣= 0, that is, δ({s ∈ N ∶ ys ≠ xs}) = 0. Therefore xs = ys for almost

all s ∈ N.

(ii) ⇒ (iii) Assume that (yt) is a convergent sequence in X such that xt = yt for almost

all t ∈ N. Let A = {t ∈ N ∶ xt = yt}. Then δ(A) = 1. Thus (yt)t∈A is both a convergent sequence

and a statistically dense subsequence of (xt).

(iii) ⇒ (iv) It is an obvious consequence of Theorem 2.3.

(iv) ⇒ (i) Assume that there is a statistically dense subsequence (xtm) of (xt) such that

xtm

ASÐ→ x ∈X. Let A = {tm ∶m ∈ N}. Then δ(A) = 1. Since, for each ε > 0,

{t ∈ N ∶ A(xt, xt, . . . , xt, x) < ε} ⊇ {tm ∈ N ∶ A(xtm , xtm , . . . , xtm , x) < ε}

, thus

δ ({t ∈ N ∶ A(xt, xt, . . . , xt, x) < ε}) ≥ δ ({tm ∈ N ∶ A(xtm , xtm , . . . , xtm , x) < ε}) = 1,

we get xt
ASÐ→ x ∈X. ◻

The following corollary is a direct consequence of Theorem 2.9.

Corollary 2.10 In A-metric spaces, every statistically convergent sequence has a convergent

subsequence.

Theorem 2.11 Let (xt) be any statistically convergent sequence in an A-metric space (X,A) ,

then it is statistically Cauchy.

Proof Let (xt) be a statistically convergent sequence in A -metric space (X,A), that is, for

ε > 0, lim
k→∞

1

k
∣ {t ≤ k ∶ A(xt, xt, . . . , xt, x) <

ε

n
} ∣= 1. Then we can write

A(xt, xt, . . . , xt, x) <
ε

n
for a.a.t,
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and if s ∶= s(ε) is chosen so that

A(xs, xs, . . . , xs, x) <
ε

n
.

Then by Lemma 1.3 and Lemma 1.4, we get

A(xt, xt, . . . , xt, xs) ≤ (n − 1)A(xt, xt, . . . , xt, x) +A(x,x, . . . , x, xs)

= (n − 1)A(xt, xt, . . . , xt, x) +A(xs, xs, . . . , xs, x)

< (n − 1) ε
n
+ ε

n

= ε for a.a.t.

So (xt) is a statistically Cauchy sequence. ◻

Definition 2.12 Let (X,A) be an A-metric space. We say that (X,A) is statistically complete

if every statistically Cauchy sequence in X is also statistically convergent.

Lemma 2.13 Every statistically complete A-metric space is also complete.

Proof Let (X,A) be a statistically complete A -metric space. If a sequence (xt) be a Cauchy

sequence in X , then it is a statistically Cauchy sequence in this space. Since (X,A) is statistically

complete, the sequence (xt) is statistically convergent. By Corollary 2.10, there is a subsequence

(xtm) of the sequence (xt) that converges to a point x ∈X. Since (xt) is a Cauchy sequence, so,

for ε > 0, there exist a positive integer K such that

A(xt, xt, . . . , xt, xs) <
ε

n

for each t, s ≥ K. Also (xtm) converges to x. So, there exists a positive integer m0 such that

tm0 ≥K and

A(xtm0
, xtm0

, . . . , xtm0
, x) < ε

n
.

By Lemma 1.3 and Lemma 1.4, we have

A(xt, xt, . . . , xt, x) ≤ (n − 1)A(xt, xt, . . . , xt, xtm0
) +A(xtm0

, xtm0
, . . . , xtm0

, x)

< (n − 1) ε
n
+ ε

n

= ε

for each t ≥K, that is, (xt) converges to x. So, (X,A) is a complete A -metric space. ◻
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In a partial metric space, Nuray [21] examined the relationship between p -strongly Cesàro

summability and statistical convergence. Here following the same approach, we explain the rela-

tionship between strongly q -Cesàro convergence and statistical convergence in an A -metric space

(X,A) .

Definition 2.14 Let (X,A) be an A-metric space, let (xt) be a sequence in X, and let p be a

positive real number. The sequence (xt) is said to be p-strongly Cesàro summable to x ∈X if

lim
k→∞

1

k

k

∑
t=1
[A(xt, xt, . . . , xt, x)]p = 0

and is denoted by xt
A[C,p]
Ð→ x.

Theorem 2.15 Let (xt) be a sequence in an A-metric space (X,A) and p ∈ R>0. Then

(i) If the sequence (xt) is strongly p-Cesàro summable to x ∈X, then it is statistically convergent

to x.

(ii) If (X,A) is bounded and the sequence (xt) is statistically convergent to x ∈ X, then it is

strongly p-Cesàro summable to x .

Proof

(i) Let (xt) be a sequence in an A -metric space (X,A). Assume the sequence (xt) is

strongly p -Cesàro summable to x ∈X. Then for any ε > 0, we can write

k

∑
t=1
[A(xt, xt, . . . , xt, x)]p =

k

∑
t=1

A(xt,xt...,xt,x)≥ε

[A(xt, xt, . . . , xt, x)]p

+
k

∑
t=1

A(xt,xt...,xt,x)<ε

[A(xt, xt, . . . , xt, x)]p

≥
k

∑
t=1

A(xt,xt...,xt,x)≥ε

[A(xt, xt, . . . , xt, x)]p

≥∣ {t ≤ k ∶ A(xt, xt, . . . , xt, x) ≥ ε} ∣ εp.

This completes the proof.

(ii) Now suppose that (X,A) is bounded and (xt) is statistically convergent to x. Since

(X,A) is bounded, there exists a constant L > 0 such that A(xt, xt, . . . , xt, x) < L for all xt, x ∈X.
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Let ε > 0 be given and choose Kε such that

1

k
∣ {t ≤ k ∶ A(xt, xt, . . . , xt, x) ≥ (

ε

2
)

1
p

} ∣< ε

2Lp

for all k >Kε and set Ak = {t ≤ k ∶ A(xt, xt, . . . , xt, x) ≥ (
ε

2
)

1
p

}. Now for all k >Kε , we can write

1

k

k

∑
t=1
[A(xt, xt, . . . , xt, x)]p =

1

k
∑
t∈Ak

[A(xt, xt, . . . , xt, x)]p +
1

k
∑
t∉Ak
t≤k

[A(xt, xt, . . . , xt, x)]p

< 1

k
( kε

2Lp
)Lp + 1

k
k
ε

2
= ε.

So, (xt) is strongly p -Cesàro summable to x. ◻
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