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Doğru ve gerçek zamanlı elektrik talebi tahmininin artan önemi ışığında, bu araştırma, tahmin 
doğruluğunu önemli ölçüde artırmak amacıyla bir derin öğrenme modeli sunmaktadır. Doğrusal 
regresyon gibi geleneksel tahmin yöntemleri, elektrik kullanımıyla ilgili verilerde yer alan 
karmaşık kalıpları yakalamakta zorlanmaktadır. Standart makine öğrenimi yöntemlerinin, önerilen 
derin Uzun Kısa Vadeli Bellek (Long Short-Term Memory-LSTM) modeliyle karşılaştırıldığında 
yetersiz kaldığı görülmüştür. Ortalama Mutlak Hata (MAE) 5.454 ve Ortalama Karesel Hata 
(MSE) 18.243, derin LSTM modelinin bu sorunun üstesinden gelmedeki yeterliliğini 
göstermektedir. Doğrusal regresyon ise 47.352 MAE değeri ve 65.606 MSE değeri ile önerilen 
modelden daha düşük başarı sonucu elde etmiştir. Daha yüksek tahmin hassasiyeti ve güvenilirliği 
nedeniyle, derin LSTM modeli elektrik talebinin doğru, gerçek zamanlı tahmini için uygun bir 
seçenektir.  
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In light of the increasing importance of accurate and real-time electrical demand forecasting, this 
research presents a deep learning model with the goal of dramatically improving predictive 
accuracy. Conventional methods of forecasting, such as linear regression, have trouble capturing 
the complex patterns included in data about electricity usage. Standard machine learning methods 
are shown to be wanting when compared to the suggested deep Long Short-Term Memory (LSTM) 
model. Mean Absolute Error (MAE) of 5.454 and Mean Squared Error (MSE) of 18.243 
demonstrate the deep LSTM model's proficiency in tackling this problem. The linear regression, 
on the other hand, achieved a MAE of 47.352 and an MSE of 65.606, which is lower than the 
proposed model. Because of its greater predictive precision and reliability, the deep LSTM model 
is a viable option for accurate, real-time prediction of electricity demand. 
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1. INTRODUCTION (GİRİŞ)
The issues related with global warming and the

energy resources scarcity are soaring. It therefore calls 
for strong Energy Management System (EMS) at this 
moment. Industries are on the look out for improved 

EMS in order to realize its potential to revolutionize 
energy monitoring and budgeting. Smart meters 
represent very sophisticated tools for measuring 
power consumption at home or office levels. This 
makes them an extremely strong partner on the way 
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toward efficient and reduced costs when it comes to 
energy planning [1]. 

The smart meter’s data becomes one of the valued 
resources that provides a huge pool of data for 
analytics-based management. Smart microgrid is an 
integral component in the tapestry of EMS. Examples 
include interpreting consumption trend, demand 
forecast, and optimal energy exchange to decipher 
energy load [2]. Within the realm of load forecasting, 
varying prediction horizons come to the fore: short 
term, midterm and longterm forecast . However, 
decisions concerning prosumers within the smart 
energy grids will require a short timeline, namely, 
minutes to days. In addition, medium-term forecasts, 
weeks to months ahead, are crucial in power systems 
scheduling [3-4], while long term forecasts, 
monthly/yearly predictions, support grid maintenance 
planning. 

In essence, load forecasting seeks to predict 
electricity demand from end-use consumers in 
advance. This can be done using various methods, out 
of which machine learning (ML) strategies are 
becoming increasingly popular for having a more 
usable approach. To make informed decision making 
in energy management, accurate forecasts of future 
energy demands should be provided to enable proper 
planning and scheduling . Still, load forecasting is also 
not a walk in the park considering that energy 
consumption patterns change greatly over time. 
Dynamism results into concept drifting, which makes 
traditional ML approaches obsolete [5]. 

There are numerous reasons why people’s energy 
consumptions behavior could change. These reasons 
include increasing or decreasing prices for fuel; 
temporal consideration relating to date or season. As 
an example, changes in pricing lead to the demand that 
the customers should react on the cost price increase. 
However, traditional ML approaches fail and 
deteriorate due to recognising dynamic nature of 
energy load demand [6]. 

Current research focuses on deep learning (DL) 
based approaches to interval load forecasting using the 
power of Long-Short Term Memory (LSTM) 
networks. It should however be noted that LSTM has 
shown very good results for load forecasting. An 
adaptive mechanism that grapples with new load 
consumption patterns due to concept drift in order to 
improve the efficiency of DL models -the model is 
updated automatically according to new energy usage 
patterns that signal changes. Nonetheless, 
active/passive tracking of concept drift is prone to 
various problems- particularly defining a magnitude 
threshold that would ensure overall good predictions 
[7-8].  

This paper offers an interval-load forecast learning 
model called hybrid LSTM as a solution for these 
problems. A complete solution encompasses both 
pass and active drift adaptation. A hybrid LSTM 
network is developed to be able rapidly learn 
changing load consumption scenarios having 
captured the historical consumption patterns. There is 
a detailed comparison with baseline models in the 
paper and hence the effectiveness of the proposed 
hybrid LSTM model. In addition, a trade-off 
analysis of various adaptation strategies takes 
into account the predictive performance as well 
as computation costs that guides appropriate choice of 
adaptation. 

In the subsequent sections, we consider related 
works in section 2. Section 3 proposes a new hybrid 
LSTM solution. Section 4 evaluates it experimentally 
and section 5 concludes the results. 

2. RELATED WORKS (İLGİLİ ÇALIŞMALAR)

Researchers have extensively employed ML 
algorithms and DL to develop criteria for load-
balanced forecasting across a plethora of fields. Using 
deep learning and the current spatio-temporal 
correlation in appliance load data, [9] develop a short-
term home load forecasting method. Electricity 
consumption behaviours and their internal spatio-
temporal relationship are studied using several time 
series in the framework. The proposed forecasting 
method also makes use of a deep neural network and 
an iterative process. The results demonstrate that both 
iterative ResBlocks and load data from appliances 
contribute to better predicting results. The proposed 
method reduces Root Mean Squared Error by 3.89 
percentage points to 20.00 percentage points, Mean 
Absolute Error by 2.18% to 22.58%, and Mean 
Absolute Percentage Error by 0.69 percentage points 
to 32.78 percent. The suggested method is further 
tested with further trials to examine the effects of 
incorporating load data from appliances, iterative 
ResBlocks, and other parameters. 

In order to effectively deploy demand response 
strategies in manufacturing facilities, [10] want to 
create a system to predict the electrical energy 
demand of metal cutting machine tools. Based on the 
findings of the previous research, the effectiveness 
of LSTM and convolutional neural networks 
(CNNs) in predicting the electric load of a 
machine tool for a 100-second time horizon is 
compared and contrasted. The results show that 
specifically the combination of CNN and LSTM in a 
DL strategy delivers accurate and robust time series 
forecasts with reduced feature preparation work. 
Different network topologies, such as an attention 
mechanism for the LSTMs, and other hyperparameter
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combinations are assessed to see whether they can 
further enhance the predicting accuracy.

Using a combination of the factored conditional 
restricted boltzmann machine (FCRBM) and the 
conditional restricted boltzmann machine (CRBM), 
[11] provide a rapid and accurate short-term
load forecasting system. A rectified linear unit
(ReLU) and a sigmoid function are used in training
the stacked FCRBM and CRBM. Utilities in the US
have offline demand side load statistics that have been
put via the suggested framework. Based on
predicted demand, power plants may ramp up or
down their output, add more generators, or trade
energy with nearby grids. Their suggested
approach is verified using three performance
metrics: the mean absolute percentage error
(MAPE), the normalised root mean square error
(NRMSE), and the correlation coefficient. When
compared to artificial neural networks (ANNs) and
CNNs, the results demonstrate the accuracy and
robustness of stacked FCRBM and CRBM.

Optimisation of an ANN model is presented by [12] 
using an embedded multi-population Differential 
Evolution (DE) micro-Genetic Algorithm (mGA). To 
begin, a method for optimising and balancing both 
global and local search—the mGA embedded multi-
population DE—is proposed. The projected DE is 
then used to fine-tune the ANN's training-time 
weights. Four cutting-edge ML methods are used to 
compare the entire model's performance against the 
publicly available Panama electrical load dataset. 
Compared to the other chosen machine learning 
methods, the suggested DE based model is shown to 
have superior prediction accuracy in the evaluation 
results. 

To enhance prediction accuracy, [13] suggested a 
self-adaptive DL model. Meanwhile, RSPSO is 
employed to determine the network's optimum 
architecture, which involves discrete variables (i.e. 
the amount of neurons in each layer and the 
quantity of hidden layers) and categorical 
variables (i.e. activation function in each layer 
and learning approach). Additionally, the 
architecture and structure of the dynamic DL 
model are updated using the moving horizon 
approach, allowing it to capture the most recent 
highlighting patterns in the building's electrical load. 
The electricity consumption of a school building and 
the local weather profile are used to evaluate the 
suggested load prediction model. The best model for 
predicting energy consumption beyond the next 
horizon is found to be the self-adaptive load 
prediction model, but this model's prediction 
performance  degrades with increasing horizon length. 
Prediction accuracy and repeatability are shown by the

suggested prediction model's mean squared error, 
mean absolute error, and coefficient of 
determination all falling between 4.48 kW and 
11.23 kW, 1.28 kW and 2.31 kW, and 97.52% and 
98.92%, respectively. Adding Gaussian white noise 
to meteorological data results in an increase in mean 
absolute error between 2.08% and 15.33%, 
showcasing the reliability of the proposed 
prediction model in dealing with weather forecast 
uncertainty. Therefore, the suggested accurate, 
resilient, repeatable and self-adaptive 
load forecast model can be anchored in 
practical energy management systems thus 
facilitate building operation and system control. 

The dynamic drift-adaptive Long Short-
Term Memory (DA-LSTM) architecture proposed 
by [14] can enhance the performance of load 
forecasting models without the need for a drift 
threshold. They incorporate a number of 
active and passive adaption mechanisms into 
the framework. They provide a comprehensive 
analysis of the proposed framework and apply it to 
a real-world problem in a cloud context in order to 
evaluate DA-LSTM in a realistic situation. Each 
method's efficiency is measured by how well it 
can make predictions and how much computing 
time it takes. The experimental findings 
reveal that, compared to the literature's 
baseline methodologies, our framework 
outperforms them across a variety of evaluation 
metrics. 

3. MATERIALS AND METHODS (MATERYALLER

VE YÖNTEMLER) 

Meticulous design is paramount given its prospective 
significant impact in real-world applications. The 
proposed approach harnesses DL techniques for 
forecasting power consumption. Notably, when 
regression is performed on the accumulated data, a 
model predicated on the LSTM algorithm is 
employed. This data encapsulates various factors 
influencing energy consumption patterns, such as 
weekly, monthly, or annual electricity usage. 

Upon segregating the data into bifurcated sets, the 
methodology proceeds in two primary phases: data 
normalization and inference derivation. The Max-Min 
normalization technique is utilized to standardize the 
data, ensuring each constituent datum is normalized 
prior to the regression phase. The analytical phase is 
executed using two distinct strategies. Initially, a deep 
hybrid-based model is proposed, followed by the 
application of a machine learning linear regression 
method. Figure 1 delineates the sequential execution 
of these stages. 
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Figure 1. The proposed model 

3.1 Dataset (Veriseti)

The Short-term Electricity Load Forecasting 
(Panama) dataset predicts Panamanian post-
transmission electricity loads [15]. Weekly load 
projections are broken down hourly from daily and 
weekly pre-transmission power generation records in 
this dataset. Historical electrical load statistics, 
weekly projections, and calendar features like school 
sessions and vacations are included in its 
comprehensiveness. Notably, the information 
includes temperature, humidity, rainfall, and wind 
velocity for three major Panamanian cities. 

3.2 Pre-processing (Ön İşleme)
For neural networks, pre-processing, especially 

normalization, significantly impacts the effectiveness 
of the training phase. By normalizing raw inputs, the 
data becomes more conducive to training. Absence of 
normalization can decelerate the neural network 
training process, given that normalization's primary 
role is to ensure uniform scaling of data. A Min-Max 
normalization process applied to an electricity 
forecasting dataset [16]. For each feature x in S, the 
normalization as in Algorithm  (1). 
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It takes as input a vector S consisting of features 
related to electricity forecasting. The algorithm 
initializes by determining the minimum Xmin and 
maximum Xmax values within S. 

3.3 Linear Regression (Doğrusal Regresyon) 

Linear regression stands as one of the most prevalent 
and intuitively comprehensible ML techniques [17], 
rooted deeply in statistical analysis. Its primary 
objective is to establish a linear relationship among 
multiple variables [18]. In the context of this paper, 
the linear regression methodology is employed to 
forecast electricity consumption, leveraging the 
normalized values from the dataset as illstrated in 
Algorithm (2). 

3.4 Hybrid LSTM - Dense Model (Önerilen Hibrit LSTM
– Dense Modeli)

This research aims to present an innovative model that 
integrates the capabilities of LSTM with a dense 
network. The ultimate goal of this fusion is to enhance 
data regression, with a specific emphasis on electricity 
forecasting. The proposed network model employs the 
renowned backpropagation technique. In this method, 
the weights affiliated with certain network 
connections undergo consistent adjustments. The 
primary objective behind this is to minimize the 
discrepancy between the original output vector, as 
generated by the designated network, and the 
anticipated output vector. Through this novel 
integration of LSTM and dense networks, we aspire to 
set a new benchmark in the realm of accurate 
electricity forecasting. 

In a model, the output of each neuron in the dense 
layer is influenced by all of the neurons in the layer 
below it. Matrix-vector multiplication is performed by 
the neurons in the dense layer. This is where the row 
vector from the preceding layers is multiplied by the 
column vector from the dense layer. The primary rule 
for multiplying matrices and vectors is that the 
number of elements in the row vector must match the 
number of elements in the column vector. Because of 
this, the output of the dense layer will be an N-
dimensional vector. 

In general, the proposed hybrid deep model for load 
forecasting of electricity is made up of five layers as 
shown in Figure 2, and an optimizer as a final 
progress. 

Figure 2. Proposed deep model layer structure 

Table 1 outlines the architecture of a specific the 
proposed deep LSTM regression model, detailing the 
sequence of layers, the number of parameters for each 
layer, and the output shape. The model complexity is 
dictated by the number of parameters, where too many 
can cause overfitting and too few can result in 
underfitting.  

Table 1. Proposed deep LSTM layers 

 The data's dimensionality at each processing stage is 
represented by the output shape of each layer. In this 
model, it begins with an LSTM layer with 52,400 
parameters, generating 100 features per sample. 
Subsequently, a series of Dense layers follow, with 
varying parameters and output features: the first with 
10,100 parameters and 100 features, the next with 
6,060 parameters and 60 features, and another with 
3,050 parameters and 50 features. The model 
concludes with a final Dense layer of 51 parameters, 
yielding a single output per sample, indicating its 
suitability for regression or binary classification tasks. 

3.5 Performance Measurements (Performans Ölçümleri)

The performance of the model is evaluated based on 
specific metrics. The MAE (Mean Absolute Error) 
and MSE (Mean Squared Error) are two such 
measures used to assess the proposed model. 

1- The Mean Absolute Error (MAE) measures the
average discrepancy between two continuous
variables [19], X and Y. These variables can represent
paired observations of the same phenomenon.
Comparisons such as predicted values vs. actual
values, posterior time vs. beginning time, or a standard
gauge method vs. an alternative measuring approach
are examples where Y vs. X might be used. When
there are n data points on a scatter plot, each with
coordinates (xi, yi), the MAE measures the average
vertical distance of each point from the Y=X line.
Contrary to the mention, MAE does not stand for the
average horizontal distance from the Y=X line; it
always denotes vertical distances. The method to
compute this distance is presented in Eq. (2) .

Considering that there are n samples of model errors 
that are calculated as (ei 5, i = 1, 2 . . . n). 

Layer Type Parameter Output shape 
LSTM 52400 (non, 100) 

Dense 
Dense 

10100 
6060 

(non, 100) 
(non, 60) 

Dense 3050 (non, 50) 

Dense 51 (non, 1) 

𝑀𝐴𝐸 =
1
𝑛' |𝑒!|

"

!#$
 (2) LSTM 

Unit 
(100) 

Dense 
Unit 
(100) 

Dense 
Unit 
(60) 

 

Dense 
Unit 
(50) 

 

Dense 
Unit (1) 
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2- The Mean Squared Error (MSE) is the average of
the squared differences between predicted and actual
values. Because errors are squared before being
averaged, the MSE will always yield non-negative
values. Values closer to zero indicate better model
performance. Graphically, the MSE can be thought of
as the second moment of the error distribution. This
characteristic allows it to capture both the variance of
the estimator (the extent to which estimates differ
from one data sample to another) and its bias. The
calculation of MSE is detailed in Eq. (3), as described
by [20].
Where Xi denote to the original sample data, and Yi
refered to the processed one.
3- Root Mean Squared Error (RMSE)
The RMSE, or root mean squared error [21], is
calculated by taking the square root of the MSE. It's
another popular metric for estimating the typical size
of the mistake, and it uses the same measurement scale
as the source data.

RMSE = √𝑀𝑆𝐸 (4) 

These metrics are critical for gauging the model's 
effectiveness in predicting future electricity demand. 
Better model performance is indicated by smaller 
values of MAE, MSE, and RMSE, as this indicates 
that the projected values are closer to the actual 
values. 

4. RESULTS AND DISCUSSION (SONUÇLAR VE
TARTIŞMA)

Comparing the best attained result from the deep 
model within the linear regression algorithm, there is 
a big difference, and much better regression and 
prediction performance when utilizing the proposed 
deep model rather than the machine learning linear 
algorithm as shown in Table 2. 

Table 2. Comparing of two model performance  
MAE MSE 

Linear regression 47.352 65.606 

Deep LSTM (Proposed 
study) 

5.454 18.243 

Also, Figure 2, and Figure 3,  illustrated the MAE, and 
MSE for the best results of the proposed deep model 
and linear regression algorithm. 

Figure 2. MAE for the proposed deep model and linear 
regression algorithm. 

Visualising model performance shows how much 
better the proposed Deep LSTM model is than the 
more traditional Linear Regression method. The 
enormous gap between the two models is clearly 
demonstrated by the bar plot when looking at MAE.  

Figure 3. MSE for the proposed deep model and linear 
regression algorithm. 

Linear Regression performs poorly with an enormous 
MAE of 47.352, however the proposed Deep LSTM 
model performs impressively better with an MAE of 
only 5.454. Compared to the more basic linear method 
of standard regression, the proposed Deep LSTM 

𝑀𝑆𝐸 = [
1
𝑛' (𝑋! − 𝑌!)%

"

!#$
]$ %&  (3)
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model's superior performance is clear. This visual 
representation is a demonstration of the game-
changing potential of deep learning for time-series 
forecasting. 

Figure 4 displays the MAE, MSE, and RMSE at three 
different epochs (100, 200, and 300) for a variety of 
look-back periods (10, 20, 30, 40, and 50). 

As the look-back period lengthens, the MAE, MSE, 
and RMSE for epoch 100 all tend to decrease. While 
both MSE and RMSE display variability in epoch 200, 
MAE increases, especially when considering a look-
back of 30. 

The MAE maintains its downward trend by epoch 
300, and the MSE and RMSE exhibit stable 
behaviour. The choice of the look-back time effects 
the model's prediction performance, with a trade-off 
between short-term accuracy and capturing long-term 
relationships. These visualisations help assist the 
selection of an ideal look-back time based on the 
trade-off between bias and variance in the model.  

Interesting insights on the model's generalisation 
performance can be gleaned from the outcomes of the 

testing phase as shown in Figure 5. The MAE and 
RMSE values in epoch 100 are both low, indicating 
that the model has successfully learned patterns from 
the training data. However, both MAE and RMSE 
increase noticeably when we move on to epoch 200. 
This increase could indicate that the model is having 
trouble generalising to new data, or that the training 
approach needs to be tweaked to improve 
generalisation. 

There is no clear pattern by epoch 300. It appears that 
the MAE is improving while the RMSE is still 
somewhat volatile. This trend emphasises the need for 
careful evaluation of model performance throughout 
numerous epochs, so that overfitting and underfitting 
can be detected. 

These findings highlight the iterative nature of model 
learning and testing and suggest taking a systemic 
view when analysing the data. Insightful guidance for 
improving models for robust real-world applications 
can be gleaned from the interplay between MAE and 
RMSE. 

Figure 4 . Results from the training phase. 

Figure 5 . Results from the testing phase. 
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5. CONCLUSION (SONUÇ)

The proposed deep LSTM model provides a clear leap 
in predictive accuracy. Additionally, the MAEs and 
MSEs are greatly reduced. Particularly, the deep 
LSTM model achieves a good MAE of 5.454 and an 
MSE of 18.243 while the linear regression counterpart 
is slow with an MAE of 47.352 and an MSE of 65.606. 
Such a big distinction highlights the ability of the 
advanced model of providing markedly better and 
more reliable forecasts, rather than plain linear 
regressions. 

Even though it would be wrong not to recognize the 
strengths of the deep LSTM model, any study comes 
with its own limitations. The modelling is quite useful 
for a short-term power prediction but could have been 
distorted by the dynamic unpredictable factors. 
Thirdly, the nature of input data as well their presence 
affects the model effectiveness. In that order, future 
research endeavours can focus on addressing these 
problems in order to improve the reliability and 
suitability of this deep LSTM model. 

Moreover, the study paves way for further research. 
Further research can be pursued in tuning model 
hyperparameters, examining additional features for 
better prediction accuracy, and also applying DL 
approaches across other forecasting horizons. Further, 
can contribute to the general discussion of the 
applicability and limitations of DL models in 
regression problems. 
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