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Abstract
Based on the normality assumption on dependent variable, regression analysis is one of
the most popular statistical techniques for studying the dependence between response and
explanatory variables. However, violation of this assumption in the data makes regres-
sion analysis inappropriate in several real life situations. Copula is a powerful tool for
modeling multivariate data and have recently been employed in regression analysis. The
key concept behind copula-based regression approach is to formulate conditional expec-
tation in terms of copula density and marginal distributions. In this paper, we explore
parametric and semiparametric estimations of the copula-based regression function. The
maximum likelihood (ML), inference functions for margins (IFM), and pseudo maximum
likelihood (PML) techniques are adopted here for estimation purposes. Extensive numeri-
cal experiments are performed to illustrate the performance of the proposed copula-based
regression estimators under specified and misspecified scenarios of copulas and marginals.
Finally, two real data applications are also presented to demonstrate the performance of
the considered estimators.
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1. Introduction
For studying dependence between response and explanatory variables, regression analy-

sis is one of the most commonly used statistical techniques. It is widely used for prediction
and forecasting. However, in several practical situations the linear regression analysis may
give fallacious results as the relationship between variables may be nonlinear, the distribu-
tion of the dependent variable could be non-normal, and multicollinearity may be present
between explanatory variables.

In general, a statistical model can be presented in the following form
Y = h(X,β) + ϵ, (1.1)
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where Y is dependent variable, h : Rk → R is a real valued function, X = (X1, X2, . . . , Xk)
are explanatory variables, β denotes vector of model parameters, and ϵ is random error
term. The function h may take linear and non-linear forms and may assume exponential,
logarithmic, polynomial, trigonometric, and Lorenz curve shapes. For a linear function h,
Eq. (1.1) leads to

Y = β0 + β1X1 + · · · + βkXk + ϵ,

which is commonly known as multiple linear regression. The generalized linear model
(GLM) is a natural extension of the classical linear regression models and may overcome
several drawbacks associated with it. However, applicability of the GLM models is also
limited in practical situations as the distribution of dependent variable is a member of
exponential family. For more details one may refer to [23].

Recently, copula functions have been used successfully to study the dependence be-
tween response and explanatory variables. Copula is a function that connects marginals
to the joint distribution and was first introduced by [30]. Let Y , X1, X2,. . . ,Xk be the
random variables with marginals FY (y), FX1(x1), . . . , FXk

(xk) and the joint distribution
F (y, x1, . . . , xk), respectively. Then Sklar showed that the marginals and the joint distri-
bution are connected through copula C via the relation

F (y, x1, . . . , xk) = C(FY (y), FX1(x1), . . . , FXk
(xk)), ∀ (y, x1, . . . , xk) ∈ Rk+1, (1.2)

where the function C : [0, 1]k+1 → [0, 1] is termed as a copula. For continuous random
variables, the representation is unique. The advantage of the copula is that it enables us
to separate marginal effect from dependence structure and is also invariant under strictly
monotone transformations of random variables. With these appealing features, copula
have been extensively used for theoretical, methodological, and applied work in recent
years with applications in diverse areas like finance, biology, economics, engineering, hy-
drology, and insurance. For describing the dependence among random variables, a large
number of parametric families of copulas have been proposed and studied in literature.
For a detailed discussion about copula, one can refer the popular monographs of [17, 24]
and the references therein.

Despite of the huge families of copulas readily available in literature, only few attempts
have been made to study the regression models through copulas in recent years. Leong and
Valdez [22] derived the mean regression function for multivariate Gaussian, Student’s-t,
and FGM families of copulas and utilized them in insurance claims prediction. Sungur
[32] introduced an alternative approach to regression analysis using copulas and inves-
tigated its key properties. Crane and van der Hoek [6] derived conditional expectation
formula for copulas and used them in exchange-rate data. A detailed discussion about the
advantage of copula regression over ordinary least squares and generalized linear models
is outlined in [26]. de Leon and Wu [7] investigated copula-based regression models for
mixed outcomes and applied them to burn injury data. Vellaisamy and Pathak [34] pro-
vided a simple characterization for multivariate linear regression copulas. It is well-known
that the Gaussian and t-copulas are important members of elliptical families of copulas
and play significant role in multivariate modeling. Pitt et al. [28] proposed a Gaussian
copula regression model when the dependence between response and explanatory variables
is characterized by correlation coefficient. Regression analysis has been using Gaussian
copula more and more, but not much work has been done on using t-copula for prediction
in the literature. Sheikhi et al. [29] recently explored the idea of heteroscedasticity in
relation to regression models that use copulas. Some other important references related
to regression analysis via copula include [1,2,10,18,21]. Noh et al. [25] have recently pro-
posed an important inferential aspect of copula-based regression models. They considered
a semiparametric (SP) approach for estimating regression function, in which the copula
belongs to a parametic family. The copula parameters are estimated through parametric
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technique and the marginals are estimated nonparametrically via rescaled version of em-
pirical distribution. Dette et al. [9] discussed the shortcoming of the estimation proposed
by [25]. Bouezmarni et al. [4] addresses the semiparametric estimation of the regression
function based on copula for right-censored data. Hamori et al. [14] explored generalized
regression models via copula and obtained calibration estimator for the regression curve.
A Bayesian approach for regression copulas has been studied by [31].

In the literature, several estimation techniques for copula have been proposed and stud-
ied. These methods can be parametric, semiparametric, or nonparametric in nature. For
a good source of copula estimation one can refer to [5, 11, 33]. We can develop a range of
estimators and estimation methods for copula-based regression functions by taking into
consideration various estimation strategies for copula and marginals. Moreover, the de-
velopment of a new class of copula-based regression estimation techniques is a topic of
interest.

The primary aim of this article is to explore parametric and semiparametric estimation
for a copula-based regression function and study the performance of these techniques
under specified and misspecified scenarios of copulas and marginals. To the best of our
knowledge, this study has not been explored in the literature. We consider maximum
likelihood (ML), inference function for margins (IFM), and pseudo maximum likelihood
(PML) approaches for estimation. A theoretical comparison of the proposed techniques is
quite tedious. We consider a numerical comparison based on a well-organized simulation
study. We found that under correct specification of copula and marginals, the ML method
performs better than IFM and PML with respect to estimated variance, mean-squared
error, and relative efficiency. However, in case of misspecified scenario for either copulas
or marginals, PML performs better than ML and IFM.

The article is organized as follows: Section 2 introduces a mathematical framework of
regression function in terms of copula-based conditional expectation. Regression function
for some well-know families of multivariate copulas are presented. In Section 3, we discuss
the concept of copula-based regression estimation in brief. Section 4 cares for some numer-
ical experiments under different scenario of marginals and copula dependence and provide
a comparative study for the considered estimation techniques. Two real data analyses are
reported in Section 5. Finally, a brief discussion about findings of the study are concluded
in Section 6.

2. Copula-based regression models
Let Y be a continuous response variable and X = (X1, X2, . . . , Xk) be explanatory

random vector. Let F be the joint distribution of (Y,X). For a Borel measurable function
ξ, the conditional expectation of ξ(Y ) given X = x is given by

r(x) = E(ξ(Y )|X = x) =
∫
ξ(y) ∂

∂y
FY |X(y|x)dy,

where FY |X(y|x) is conditional distribution of Y given X.
In terms of copula density, the conditional expectation of ξ(Y ) given X = x is

r(x) = E(ξ(Y )|X = x) =
∫
ξ(y)c(FY (y),F(x))

cX(F(x))
dFY (y), (2.1)

where c(v,u) = c(v, u1, . . . , uk) = ∂k+1C(v, u1, . . . , uk)
∂v∂u1 . . . ∂uk

is the density of the copula C,

cX(u) = cX(u1, . . . , uk) = ∂kC(1, u1, . . . , uk)
∂u1 . . . ∂uk

is the density of the copula associated with
the random vector X = (X1, X2, . . . , Xk), and F(x) = (FX1(x1), . . . , FXk

(xk)).
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Under the pairwise independence assumption on explanatory variables, Eq. (2.1) leads
to

r(x) = E(ξ(Y )|X = x) =
∫
ξ(y)c(FY (y),F(x))dFY (y).

It may be noticed that Eq. (2.1) is a general form for the conditional expectation in
terms of copulas. One can obtain higher order conditional moments for a suitable choice
of function ξ. When ξ(y) = y, Eq. (2.1) leads to the conditional mean function on
Y on X which is well-known as a regression of Y on X. Also, with the help of Eq.
(2.1), we can deduce conditional variance for Y given X via relation Var (Y |X = x) =
E
(
Y 2|X = x

)
− (E (Y |X = x))2.

Next, we present regression functions for some well-known families of the multivariate
copulas. The mathematical derivation of the results for the considered families of copula
is either reported in or motivated by [6, 22,25,34].

2.1. Regression for elliptical copula
Let the joint distribution of the random vector (Y,X) be determined by a (k + 1)-

dimensional elliptical copula of the form

C(v,u) = HΣ
(
H−1(v),κ−1(u)

)
,

where HΣ is a multivariate elliptical distribution with correlation matrix Σ, H−1 is quan-
tile function for univariate elliptical distribution, and κ−1(u) =

(
H−1(u1), . . . ,H−1(uk)

)
.

Multivariate Gaussian and Student’s-t copulas are two important members of the multi-
variate elliptical copula with wide applications in finance and risk management. Then the
regression function of Y given X = x is given by

r(x) =
∫
y

hΣ
(
H−1(FY (y)),κ−1(F(x))

)
hΣX

(κ−1(F(x)))
dy,

where hΣ and hΣX
are joint density of multidimensional elliptical distributions for the

vector (Y,X) and X, respectively, and ΣX is correlation matrix for the vector X. Next,
we have the following examples.

Example 2.1. Let the joint distribution of a (k + 1)-dimensional random vector (Y,X)
be determined by a Gaussian copula with correlation matrix

Σ =
(

1 ρ
′

ρ ΣX

)
of the form

C(v,u) = ΦΣ
(
Φ−1(v),φ−1(u)

)
,

where ΦΣ is the joint cumulative distribution of a multivariate normal random variable
with mean vector zero and correlation matrix Σ, Φ−1 is inverse distribution function of
standard normal variate, and φ−1(u) =

(
Φ−1(u1), . . . ,Φ−1(uk)

)
. Then the regression

function of Y given X = x is [22, 25]

r(x) = E

[
F−1

Y

(
Φ
(

u′Σ−1
X ρ + Z

√
1 − ρ′Σ−1

X ρ

))]
,

where u′ =
(
Φ−1(FX1(x1)), . . . ,Φ−1(FXk

(xk))
)
, ρ

′ = (corr(Y,X1), . . . , corr(Y,Xk)), Z is
standard normal variate with cumulative distribution function Φ, and ΣX is correlation
matrix of vector X.
In particular for a bivariate Gaussian copula, if Y and X1 follow N(0, 1), then regression
function of Y given X1 = x1 is linear of the following form

r(x1) = E(Y |X1 = x1) = ρ1x1,

where ρ1 is correlation between Y and X1 [34].
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Example 2.2. Consider a (k + 1)-dimensional t-copula of the form

C(v,u) = tν,Σ
(
t−1
ν (v),T−1

ν (u)
)
,

where tν,Σ is the multivariate Student’s-t distribution with degrees of freedom ν and
correlation matrix Σ, and t−1

ν is the inverse distribution function of univariate Student’s-t
distribution with ν degrees of freedom and T−1

ν (u) = (t−1
ν (u1), . . . , t−1

ν (uk)). Let the joint
distribution of the random vector (Y,X) be given by t-copula. Then conditional mean
function of Y on X is

r(x) = E

[
F−1

Y

(
tν(ρ′Σ−1

X u +
√
ν(1 − ρ′Σ−1

X ρ)
(

1 + 1
ν

u′Σ−1
X u

)
/(ν + k)Z

)]
,

u′ =
(
t−1
ν (FX1(x1)), . . . , t−1

ν (FXk
(xk))

)
, ρ

′ = (corr(Y,X1), . . . , corr(Y,Xk)), Z is standard
univariate t random variable [22].

It may be verified that if all marginals are identically distributed as a Student’s-t with
location parameter µ and scale parameter σ, then for bivariate case the regression function
of Y given X1 = x1 is

r(x1) = E(Y |X1 = x1) = ρx1 + (1 − ρ)µ,

where ρ is correlation between Y and X1.

2.2. Regression for Archimedean copula
Consider a (k + 1)- dimensional Archimedean copula of the form

C(v,u) = ψ−1
(
ψ(v) +

k∑
i=1

ψ(ui)
)
,

where ψ is a generator function. Let the joint distribution of the random vector (Y,X) be
given by C(v,u). Then the regression function of Y on X = x is given by

r(x) = E

[
Y
ψ−1(k+1)(ψ(C(FY (y),F(x)))

ψ−1(k)(ψ(CX(F(x)))
ψ

′(FY (y))
]
,

where ψ−1(k+1) and ψ−1(k) represent the (k + 1)th and kth derivatives of ψ−1 and ψ
′ is

first order derivative of ψ.

Example 2.3. Let the distribution of the random vector (Y,X) be determined by the
Clayton copula defined by

C(v,u) =
(
v−θ +

k∑
i=1

u−θ
i − (k + 1) + 1

)−1/θ

, θ ∈ (−1,∞).

Then regression function of Y on X is

r(x) = (kθ + 1) {CX(F(x))}−(kθ+1)
∫
y{FY (y)}−(θ+1){C(FY (y),F(x))}((k+1)θ+1)dFY (y).

When k = 1, for the bivariate vector (Y,X1), we have

r(x1) = (θ + 1){FX1(x1)}−(θ+1)
∫
y{FY (y)}−(θ+1){C(FY (y), FX1(x1))}(2θ+1)dFY (y).
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3. Copula-based regression estimation
Eq. (2.1) is a general expression for regression in terms of copulas and can be used as

an estimating equation. For ξ(y) = y, if F̂Y and F̂(x) = (F̂X1(x1), . . . , F̂Xk
(xk)) are given

estimators of FY and F, respectively. Also, if ĉ and ĉX are some known estimators for
densities c and cX , respectively, then regression function r(x) can be estimated by

r̂(x) =
∫
y
ĉ(F̂Y (y)), F̂(x))

ĉX(F̂(x))
dF̂Y (y). (3.1)

In the literature, different techniques are available for estimating the copulas and marginals.
It may be noticed that the estimator in Eq. (3.1) may be parametric, semiparametric and
nonparametric in nature depending on its component estimation. In general, classical
maximum likelihood (ML) estimation is adopted to estimate the copula and marginals pa-
rameter simultaneously in parametric method. However, this method is computationally
tedious and estimates of the copula parameters may be affected by marginals misspec-
ification. Two stage parametric estimation technique, which is well-known as inference
function for margins (IFM) has emerged as alternative of the ML in literature. It is more
flexible, easy in computation, and equally efficient as ML method. The two stage semi-
parametric pseudo maximum likelihood (PML) method proposed by [11] is commonly used
in recent years for semiparametric case. First of all, we briefly discuss these estimation
techniques here.

Let Xi = (X1,iX2,i, . . . , Xk,i). For a random sample (Yi,Xi) of size n from (Y,X). The
log-likelihood function L is given by

L =
∑n

i=1 log c(FY (Yi), FX1(X1,i), . . . , FXk
(Xk,i)) +

∑n
i=1 log fY (Yi) +

∑k
j=1

∑n
i=1 log fXj (Xj,i), (3.2)

where fY and fXj (Xj), j = 1, 2, . . . , k are densities of the random variables Y and Xj ’s,
respectively. Let C(·, θ) be a parametric copula. Let C0 = {C(·, θ) : θ ∈ O}, where O is
an open subset of Rk. Let Y ∼ FY (y;α), and Xj ∼ FXj (xj ;βj), j = 1, 2, . . . , k. Then,
in classical ML estimation technique, the model parameters are estimated by maximizing
Eq. (3.2) taking into account the parametric copula and parametric marginals. In IFM
method, the marginals parameters α and βj , j = 1, 2, . . . , k are estimated by using Yj

and Xj,1, . . . , Xj,n, respectively through the classical ML approach in the first step. Using
these estimates for the marginal parameters, an estimate θ̂n of the copula parameter θ is
obtained in second step by maximizing pseudo-log-likelihood equation defined by [16,19]

L(θ) =
n∑

i=1
log c(FY (Yi; α̂), FX1(X1,i; β̂1), . . . , FXk

(Xk,i; β̂k); θ),

where α̂ and β̂j are estimates for α and βj , j = 1, 2, . . . , k, respectively.
However, in semiparametric PML approach, first the marginals are estimated from data
nonparametrically through empirical distribution function which is defined by

F̂Y (y) = 1
n

n∑
i=1

I(Yi ≤ y),

where I{Yi ≤ y} = 1 for Yi ≤ y, and zero otherwise. Similarly, other marginals are
estimated via F̂Xj (xj) = 1

n

∑n
i=1 I(Xji ≤ xj), j = 1, . . . , k. In the second step, estimate

for the copula parameter is obtained by maximizing pseudo-log-likelihood function of the
form

L(θ) =
n∑

i=1
log c(F̂Y (Yi), F̂X1(X1,i), . . . , F̂Xk

(Xk,i); θ).

That is
θ̂n = arg max

θ
L(θ).
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Based on these estimation techniques for copulas and marginals, a parametric and semi-
parametric estimators for copula-based regression function r(x) are defined by

r̂(x) = 1
n

n∑
i=1

Yi
c(FY (Yi; α̂),F(x; β̂); θ̂n)

cX(F(x; β̂); θ̂n)
and

r̂(x) = 1
n

n∑
i=1

Yi
c(F̂Y (Yi), F̂(x); θ̂n)

cX(F̂(x); θ̂n)
,

where F(x; β̂) = (FX1(x1; β̂1), . . . , FXk
(kk; β̂k)) and F̂(x) = (F̂X1(x1), . . . , F̂Xk

(kk)) are
parametric and nonparametric estimates for F(x), respectively.

A theoretical comparison for the proposed estimators for the regression function is quite
difficult task in a general setup. Therefore, we perform a well-organized numerical scheme
to study the behavior of these estimators in the next section.

4. Simulation study
In this section, we undertake some numerical experiments to compare the efficacy of the

considered estimation approaches, that is, ML, IFM, and PML estimation for regression
function in terms of regression estimated variance (EV), mean squared error (MSE), and
relative efficiency under correctly specified and misspecified copulas and marginals. For a
large sample, 95% confidence intervals for the regression estimators are also obtained. To
carry out a simulation study, we consider the following bivariate families of copulas here:

(a) Gaussian Copula: C(v, u1) = Φ2
(
Φ−1(v),Φ−1(u1); ρ

)
.

(b) Ali-Mikhail-Haq (AMH): C(v, u1) = vu1/[1 − θ(1 − v)(1 − u1)].

(c) Frank Copula: C(v, u1) = −1
θ

(
1 + (e−θv−1)(e−θu1 −1)

(e−θ−1)

)
.

(d) Clayton Copula: C(v, u1) =
(
v−θ + u−θ

1 − 1
)−1/θ

.

(e) Plackett Copula: C(v, u1) = [1+(θ−1)(v+u1)]−
√

[1+(θ−1)(v+u1)]2−4θ(θ−1)vu1
2(θ−1) .

(f) Gumbel: C(v, u1)= exp{−[(−log v)θ + (−log u1)θ]1/θ}.

(g) Student’s-t: C(v, u1)= t2,Σ
(
t−1
2 (v), t−1

2 (u1); ρ
)
.

These copulas are well-known members of widely used elliptical, Archimedean, and non-
Archimedean family of copulas which cover a wide range of dependence. For more detail,
one can refer to [17,24,29].

To assess the robustness properties of the considered methods, we consider the following
sets of univariate distributions: (i) X1 ∼ N(0, 1), Y ∼ N(0, 1), (ii) X1 ∼ χ2

3, Y ∼ χ2
3,

(df=3), (iii) X1 ∼ Exp(1), Y ∼ Exp(1), where Exp stands for exponential, and (iv)
X1 ∼ Exp(1), Y ∼ χ2

3. When underlying copula is Gaussian and marginals are normal,
it leads to correct specifications in copula and marginals both, whereas each of the other
combinations corresponds to misspecification either in copula or in marginals or in both.
Let r(i)(x1) and r

(i)
m (x1) denotes the estimates of regression function and estimated mean

regression function of r(x1) for the ith repeated sample, respectively. Let r0(x1) be the
true value of regression function, and N denotes the number of repeated samples. Then,
we define regression estimated variance (EV)=N−1∑{r(i)(x1)−r

(i)
m (x1)}2, which measure

how far each estimated value of the regression function from their mean of the estimated
regression function and mean squared error (MSE)=N−1∑{r(i)(x1) − r0(x1)}2, which
is the average of the squares of the errors. The smallest value of EV and MSE of the
regression estimator indicates the better performance of the corresponding estimation
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approach. Also, the estimated relative MSE-efficiency of method ‘M’ with respect to
IFM method is defined by {Estimated MSE of IFM}/{Estimated MSE of ‘M’}, where
‘M’ stands for ML and PML. The large value of relative MSE-efficiency indicates better
performance of the method ‘M’. Using regression estimate and standard error (SE), we
compute a 95% confidence interval of the form r̂(x1) ± 1.96 SE(r̂(x1)). All the numerical
computations were performed using freely available packages in R software (Version 4.2.1).
Computations for the numerical experiments considered here in this study are much time
consuming, therefore we restrict the number of observations in each sample to 100 and
the number of repeated samples to 200 throughout this study.

The main findings of the simulation study are reported in Tables 1-4 and Figure 1-
2 below. The EV and MSE of the regression estimators are presented in Table 1 and
Table 2. From Table 1, it is quite clear that ML and IFM methods are highly nonrobust
under misspecified marginals. For specified marginals ML is robust. In case of specified
marginals and misspecified copulas, Table 2 suggest that PML works slightly better over
ML and IFM method for AMH, Frank, and Plackett family of copulas. However, the
difference between MSE’s of these estimators are small, while in case of Clayton, Gumbel,
and Student’s-t copula, PML performs more robust than ML and IFM. One more thing
here, we notice that very large values for EV and MSE in Table 1 and Table 2 are not
precise, but we presented them because they successfully reveals the dominating nature of
PML over ML and IFM methods. Moreover, Figure 1 shows the relative MSE-efficiency
plots of ML and PML methods with respect to IFM method for Gaussian copula with
different choice of marginals. Under correct specification of copula and marginals, the
ML method performs better over the PML technique as expected and small values of
dependence parameter efficiency of ML method is very high as compared to PML and
rapidly decreases as dependence parameter increases. In case of misspecified marginals
and Gaussian copula, the PML performs better over ML method. Figure 2 display the
relative MSE-efficiency plots of regression function for correctly specified normal marginals
and misspecified copulas. From Figure 2, we observe that PML performs slightly better
than ML for AMH, Frank, Plackett, and Clayton copulas for the lower values of the copula
parameters. However, for higher values of the copula parameters, the PML is more efficient
than ML when copula is Clayton. As well as, in case of Gumbel and student’s-t copula, it
can be observed that the PML technique become more efficient as the value of dependence
parameter increases. We also get the same observation for other dependence parameter
which are not displayed here by the authors to save the space.

Table 1. Estimated variance (EV) and MSE (*) of regression function for Gauss-
ian copula and different marginals.

−−−−−→
Margins (N(0, 1), N(0, 1)) (χ2

3, χ
2
3) (Exp(1), Exp(1)) (Exp(1), χ2

3)
ρ ML IFM PML ML IFM PML ML IFM PML ML IFM PML

0.1 0.050 0.300 0.279 102 1.550 0.370 3.58 0.08 0.040 53.6 0.694 0.37
0.32* 3.690* 3.48* 622* 83.0* 29.9* 39.3* 4.56* 2.86* 499* 53.2* 29.9*

0.2 0.093 0.409 0.387 82.1 1.81 0.440 3.90 0.09 0.040 44.2 0.77 0.44
0.501* 5.410* 5.130* 602* 91.4* 33.6* 41.5* 5.02* 3.15* 506* 57.0* 33.6*

0.5 0.522 1.100 1.068 165 3.49 0.840 6.12 0.166 0.08 84.8 1.25 0.84
4.26* 18.43* 17.35* 938* 137* 53.5* 59.7* 7.51* 4.67* 750* 75.5* 53.5*

0.8 2.898 4.143 4.195 355 11.4 2.36 25.5 0.440 0.21 687 2.83 2.36
48.64* 93.92* 87.47* 2208* 324* 132* 162* 17.3* 10.5* 2327* 125* 133*

0.9 6.898 9.160 8.896 785 25.2 4.94 57.3 0.92 0.45 423 4.00 4.94
150* 238.0* 216.0* 4591* 637* 262* 334* 33.6* 20.1* 2797* 165* 262*
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Figure 1. Relative MSE-efficiency box plots of regression function for ML and
PML methods for Gaussian copula and different marginals. Here, triangle dot
represents the average value of the relative MSE-efficiency.

Table 2. Estimated variance (EV) and MSE (*) of regression function for differ-
ent copulas and normal marginals.

↓Copula θ ML IFM PML ↓Copula θ ML IFM PML
-0.50 0.0184 0.0110 0.0108 0.20 0.0092 0.0085 0.0089

0.2672* 0.2589* 0.2622* 0.2555* 0.2542* 0.2530*
AMH 0.10 0.0101 0.0102 0.0102 Frank 0.50 0.0100 0.0090 0.0091

0.2589* 0.2575* 0.2569* 0.2613* 0.2603* 0.2590*
0.70 0.0162 0.0181 0.0140 0.80 0.0107 0.0094 0.094

0.3502* 0.3556* 0.3342* 0.2678* 0.2672* 0.2635*
0.20 0.0809 0.0244 0.0219 0.10 0.0063 0.0071 0.0059

0.4635* 0.5668* 0.5241* 0.5315* 0.5330* 0.5272*
Plackett 0.40 0.0287 0.0127 0.0123 Clayton 0.50 68.2321 56.185 0.0665

0.6063* 0.5568* 0.5231* 8.4160* 7.7610* 0.8692*
0.80 0.0115 0.0091 0.0091 0.90 301.98 639.38 0.2310

0.6159* 0.5627* 0.5251* 17.680* 25.530* 1.4570*
1.5 84.7388 55.5257 0.7582 0.1 4.0621 7.8002 0.0685

9.9460* 8.2036* 1.7594* 2.1655* 2.8977* 1.54603*
Gumbel 2.0 225.1018 145.1410 1.3293 Student’s-t 0.3 13.9987 4.3279 0.0974

16.2837* 13.3947* 2.5949* 3.7763* 2.2186* 0.9931*
2.5 525.4496 342.4594 1.9402 0.5 127.4184 145.3792 0.2280

24.5084* 20.2524* 3.2423* 11.5866* 12.3601* 2.3925*

Table 3 and Table 4 show an approximate 95% confidence interval for regression esti-
mator based on normal approximation. The lower confidence limit and upper confidence
limit are denoted by CL and CU, respectively. The shortest length confidence intervals are
obtained under the correct specifications of copula and marginals in ML method in Table
3. However, in the case of misspecified margins, the confidence intervals are wider. For
correctly specified normal margins and misspecified copula families, one can easily observe
from Table 4 that PML has smaller confidence intervals over ML and IFM methods. We
also consider the different choices of copulas and marginals under misspecified scenarios.
In such cases, we obtained a highly non-robust result in terms of relative efficiency, EV,
and MSE. Therefore, these results are not reported in this paper.
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Figure 2. Relative MSE-efficiency box plots of regression function for ML and
PML method for different family of copulas with normal marginals. Here, triangle
dot denotes the average value of the relative MSE-efficiency.

Table 3. 95% confidence interval (C.I.) of the regression function for Gaussian
copula with different margins.

−−−−−→
Margins (N(0, 1), N(0, 1)) (χ2

3, χ
2
3) (Exp(1), Exp(1)) (Exp(1), χ2

3)
↓Techniques ρ CL CU CL CU CL CU CL CU

0.1 -0.0176 0.9375 26.1626 71.8649 -6.3218 18.3074 -22.7536 65.0271
0.2 -1.7892 0.9939 -25.3768 71.0831 -6.5088 18.8190 -22.6871 65.7470

ML 0.5 -5.9078 2.2053 -32.3548 88.0380 -7.8361 22.5270 -27.9881 79.6610
0.8 -20.4271 6.9801 -49.2540 135.440 -13.3071 36.7581 -54.2701 135.331
0.9 -36.0251 12.144 -71.4060 194.873 -19.2641 52.6513 -55.1848 152.671
0.1 -5.5362 2.0151 -8.8671 26.9401 -2.1109 6.2819 -7.7068 21.5803
0.2 -6.7403 2.4056 -9.3073 28.2574 -2.2519 6.5965 -7.3294 22.3445

IFM 0.5 -12.5521 4.3191 -11.4436 34.6142 -2.6919 8.0779 -8.4508 25.7163
0.8 -28.4889 9.6001 -17.6819 53.0116 -4.0749 12.2838 -10.8992 33.0180
0.9 -45.4130 15.2136 -24.8489 74.2972 -5.6712 17.1241 -12.5616 38.0271
0.1 -5.3777 1.9651 -5.3057 1.18270 -1.6913 4.9655 -5.3057 16.1826
0.2 -6.5576 2.3441 -5.6272 17.1547 -1.7668 5.2105 -5.6272 17.1547

PML 0.5 -12.1753 4.1974 -7.1121 21.6555 -2.1349 6.3606 -7.1121 21.6555
0.8 -27.4714 9.2832 -11.2121 34.0852 -3.1850 9.5953 -11.2122 34.0852
0.9 -43.2401 14.5150 -15.7653 47.8759 -4.3842 13.2457 -15.7653 47.8759
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Table 4. 95% confidence interval (C.I.) of regression function for different copulas
and normal margins.

−−−−−−−→
Techniques ML IFM PML

↓Copula θ CL CU CL CU CL CU
-0.50 -1.0056 1.0257 -0.9883 1.0112 -0.9985 1.0139

AMH 0.10 -0.9953 0.9985 -0.9953 0.9987 -0.9937 0.9981
0.70 -1.2129 1.1126 -1.22218 1.1217 -1.1735 1.0982
0.20 -0.9864 1.0000 -0.9830 0.9986 -0.9795 0.9974

Frank 0.50 -0.9973 1.0114 -0.9953 1.0098 -0.9886 1.0075
0.80 -1.0098 1.0241 -1.0090 1.0224 -0.9984 1.0191
0.20 -1.2578 1.2711 -1.1953 1.1575 -1.2252 1.1950

Plackett 0.40 -1.1142 1.1134 -1.0993 1.0891 -1.1171 1.0943
0.80 -1.0353 1.0244 -1.0349 1.0211 -1.0406 1.0230
0.10 -1.0710 1.0176 -1.0749 1.0176 -1.0589 1.0132

Clayton 0.50 -17.7370 15.339 -16.0540 13.960 -2.0403 1.3757
0.90 -37.692 31.825 -53.396 46.947 -3.7436 1.9832
1.5 -15.1716 23.9145 -12.0851 20.1537 -1.3692 5.5451

Gumbel 2.0 -25.0571 38.9351 -19.8729 32.7660 -2.2200 7.9774
2.5 -38.8939 57.4200 -31.0095 48.5790 -2.8955 9.8962
0.1 -4.1268 4.3832 -5.5251 5.8625 -1.9799 1.9705

Student’s-t 0.3 -7.2151 7.6253 -4.2281 4.4908 -1.9661 1.9365
0.5 -23.4022 22.1312 -24.4242 24.1489 -4.7282 4.6739

5. Real data analysis
To illustrate the performance of the considered estimation techniques for copula-based

regression functions, we have analyzed two different real data sets here. First of all, we
standardized the chosen data sets and performed Anderson-Darling (AD) test for the
goodness of fits for the marginals. The AD-test is performed using R-software through
‘fitur’ package. One of the main challenging tasks is to choose a suitable family of copulas
for fitting the data. So, we adopt a reasonable strategy for the selection of copula family
and perform the goodness of fit test. Recently, several new methods for the goodness of
fit test of copulas have been proposed [3, 12, 13, 20]. Here, we have used the test studied
by [12], which is based on the regularized test statistic Rn and is available in R software
(see package ‘copula’ [15]). This test involves PML technique for estimation. The null
hypothesis under consideration is H0 : C ∈ C0 where C0 is a class of parametric families of
copulas used in the simulation study. In addition, we also analyze the behavior of the best
estimation method based on the predictive performance for real data sets. For prediction
performance, we chose the cross-validation (CV) error criteria explored in [1, 25]. The
mathematical formula of CV error is given by CV = median1≤i≤n|Yi − r̂−i(X1i)|, where
r̂−i(X1i) denotes the estimate of r(x1) from data set {(Yj , X1j); j ̸= i, j = 1, 2, . . . , n}.

5.1. Real data analysis 1
Here we consider the ‘bodyfat’ data set which contains the percentage of body fat as a

response variable along with covariates which represent several physiological measurements
related to 252 men [27]. This data set is also available in R-software under package ‘mfp’.
In the present study, we restrict ourselves to only two variables namely, siri (body fat
percent) and ankle circumference (in cm). In this data set, the variable X1 represents
the ankle circumference and Y represents the siri. The scatter plot displayed in Figure 3
shows that the variable Y and X1 are positively correlated. The correlation between both
variables is 0.267.
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Figure 3. Scatter plot between siri (Y ) and ankle circumference (X1) on original
(left) and standardized (right) scale.

From the Anderson-Darling (AD) test for the standardized data, we observed that X1
and Y both fit normal distribution with p-values 0.8864 and 0.8896, respectively. We also
performed the goodness-of-fit test for copula selection for the ‘bodyfat’ data set. The
values of copula parameter estimates, test statistic Rn, and p-values are reported in Table
5 for different families of copulas.

Table 5. Summary statistics for bodyfat data set.

Gaussian Clayton Frank Plackett AMH Gumbel Student’s-t

Estimate(θ̂) 0.3169 0.5239 1.9011 2.4777 0.6690 1.2356 0.2891
Rn-statistic 0.2469 0.3909 0.2793 0.2945 0.3543 0.3749 0.3602

p-value 0.0744 0.0045 0.0274 0.0235 0.0025 0.0125 0.0055

Based on the smallest Rn-statistic with the largest p-value, we found that the Gaussian
copula provides the best fit to the given data set. As the copula is Gaussian and both
marginals are normal, it corresponds to the correct specification scenario. The relative
efficiency of the regression estimator with respect to IFM technique is reported in Table
6. The regression EV and MSE for the ML, IFM, and PML techniques are also reported
in Table 7. From Table 6 and Table 7, we observe that the ML technique performs better
than the IFM and PML methods for the considered data set if the copula and marginals
are correctly specified. Moreover, the cross-validation (CV) error of the regression function
for ML and PML methods are reported in Table 8. The smallest error corresponding to the
Gaussian copula and standard normal marginals affirms the best predictive performance
under the ML method. The boxplot of CV error values of the regression function for
different families of copulas under ML and PML methods (see Figure 4) also support
this study. Overall the copula-based regression function for the Gaussian copula performs
better than that for other families of copulas considered in this study.

Table 6. Relative MSE-efficiency (in %) of ML and PML of regression function
for bodyfat data.

↓Techniques Gaussian Plackett AMH Clayton Frank Gumbel Student’s-t
ML 1285.049 99.9855 100.8865 109.1891 100.3827 91.5162 84.8216

PML 102.4017 101.015 101.2518 270.6355 101.3249 133.5509 556.3656
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Table 7. Estimated Variance(EV) and MSE of regression function for bodyfat
data set.

−−−−−−−→
Techniques ML IFM PML

↓Copula EV MSE EV MSE EV MSE

Gaussian 0.06060 0.53399 0.18953 6.86204 0.19084 6.70110
AMH 0.00621 0.34200 0.00691 0.34504 0.00705 0.34077
Frank 0.00467 0.27589 0.00542 0.27695 0.00537 0.27333

Plackett 0.00301 0.28249 0.00307 0.28245 0.00299 0.27961
Clayton 3.16875 2.21874 4.18806 2.42262 0.05196 0.89516
Gumbel 0.33395 0.48855 0.27994 0.44710 0.02175 0.33478

Student’s-t 1.03439 1.12750 0.86048 0.95637 0.08963 0.17189

Table 8. Cross-validation (CV) error of ML and PML of regression function for
bodyfat data.

↓Techniques Gaussian Plackett AMH Clayton Frank Gumbel Student’s-t
ML 0.128350 0.229823 0.206144 0.185438 0.229841 0.609933 0.666596

PML 0.161046 0.225764 0.185923 0.188548 0.222643 0.160290 0.239602

ML PML ML PML ML PML ML PML ML PML ML PML ML PML
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Figure 4. Box plots of the cross-validation (CV) error values of the regression
function for ML and PML method. Triangle dots indicate the average value of
CV errors.

5.2. Real data analysis 2
Here, we consider ‘growth data’ studied in [8]. This data measures the national growth

of 61 countries around the world during years 1960 to 1985. There are five variables in this
data set. GDP per worker growth is considered as the response variable, whereas labor
force growth (LFG), equipment investment (EQP), non-equipment investment (NEQ),
and the relative GDP gap (GAP) are explanatory variables. We restrict our study to
a bivariate case with a response variable GDP per worker growth denoted by Y and
explanatory variable LFG denoted by X1. These variables are negatively correlated with
correlation -0.148. The scatter plot of both variables also reveals the same (see Figure 5).
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Figure 5. Scatter plot between GDP per worker growth (Y ) and labor force
growth (LFG) (X1) on original (left) and standardized (right) scale.

We perform the Anderson-Darling (AD) test for marginals and calculate the goodness
of fit-test statistic Rn for the copulas used in the simulation study. Both marginals fit the
normal distribution with p-values 0.97 and 0.21, respectively. Table 9 presents the fitted
summary statistic along with Rn values of different copulas except the Gumbel copula
which yields a negative value of the Kendall’s tau and hence does not provide a feasible fit
to the given data set. The smallest Rn-statistic with the largest p-value in Table 9 suggest
that the Clayton copula gives an acceptable fit compared to other copulas.

Table 9. Summary statistics for the growth data.

Gaussian Clayton Frank Plackett AMH Student’s-t

Estimate(θ̂) -0.1376 -0.1460 -0.7586 0.6953 -0.2991 -0.1023
Rn-statistic 0.0802 0.0708 0.0797 0.0781 0.0721 0.0867

p-value 0.0395 0.1603 0.0375 0.0495 0.0545 0.0884

Table 10. Relative MSE-efficiency (in %) of ML and PML of regression function
for growth data.

↓Techniques Gaussian Plackett AMH Clayton Frank Student’s-t
ML 216.1137 99.9292 99.2922 96.4919 98.7256 61.4963

PML 105.0046 99.3589 99.8875 100.6617 98.9650 100.410

Table 11. Estimated Variance(EV) and MSE of regression function for growth
data set.

−−−−−−−→
Techniques ML IFM PML

↓Copula EV MSE EV MSE EV MSE
Gaussian 0.00980 0.87134 0.18771 1.88309 0.17083 1.79334

AMH 0.01606 0.27026 0.01692 0.26835 0.01678 0.26865
Frank 0.02088 0.30555 0.02085 0.30166 0.02073 0.30481

Plackett 0.02055 0.28303 0.02053 0.28283 0.02030 0.28466
Clayton 0.04225 0.58859 0.02988 0.56794 0.02325 0.56421

Student’s-t 0.54746 0.59776 0.33205 0.36760 0.05402 0.36610
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Relative MSE-efficiency, EV, and MSE are reported in Tables 10 and 11. From these
values, we observe that the PML technique works good if the copula is misspecified but
the marginals are correct. Moreover, Table 12 and Figure 6 show the best prediction
performance of the PML technique in terms of the smallest CV error for the Clayton
copula. Overall we observe that the copula-based regression function for Clayton copula
performs better than other families of copulas for the given data set.

Table 12. Cross-validation (CV) error of ML and PML of regression function for
growth data.

↓Techniques Gaussian Plackett AMH Clayton Frank Student’s-t
ML 0.018930 0.034897 0.029909 0.012944 0.037145 0.017474

PML 0.032690 0.047123 0.037411 0.002884 0.048047 0.046862

Figure 6. Box plots of the cross-validation (CV) error values of the regression
function for ML and PML method where triangle dots indicate the average value
of CV errors.

6. Conclusion
In this paper, we employed copulas to regression analysis, in which regression functions

are expressed in terms of copula density and marginal distributions. Regression functions
for some well-know families of multivariate copulas, namely, Student’s-t copula, Gaussian
copula, and Archimedian family of copulas are reported. In particular, some bivariate
copula-based regression functions are also deduced. Based on a random sample, we have
explored parametric and semiparametric estimations of copula-based regression functions.
We adopted maximum likelihood (ML), inference function for margins (IFM), and pseudo
maximum likelihood (PML) techniques for the copula-based regression estimation. Based
on extensive numerical experiments, we study the performance of these techniques under
specified and misspecified scenarios of copulas and marginals. Under correct specification
of copula and marginals, the ML technique performs better over IFM and PML in terms
of estimated variance (EV), mean squared error (MSE), relative MSE-efficiency, relative
efficiency, and confidence interval. However, in case of misspecified scenario for either
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copulas or marginals, PML technique performs better. In case of misspecified copulas
and marginals both, we found that the results are highly non-robust. Finally, to study
the performance of the considered estimation techniques for the copula-based regression
functions, we analyzed two real data sets. The results of real data analysis also support
the findings of our empirical study.
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